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Abstract

The sucess of a genetic optimization algorithm in continuous parameter space depends
on the recombination (crossover) operators that it uses. In this paper we consider a wide
spectrum of such opsrators within a unified framework and study their relative impor-
tance in the search process. We consider four basic types recombination operators which
cover the relevant exploration potential of a continuous space: Interpolation, Extrapola-
tion, Exchange and Mutation. Each of these basic types may have several variants. We
characterize the various operators and their variants by their spatial sampling properties
and examine their contributions to the search by applying different mixtures of the op-
erators in several benchmark problems. The results suggest that the optimal mixture of
operators may depend cn the problem. But, in general, all basic types are needed for
efficient optimization.

1 Background

Genetic algorithm models (GAs) that manipulate coatinuous parameters have been occasion-
ally attempted throughout the GAs’ history. In particular, continuous models hive been
attempted in real-life applications where continuous parameters constitute a natural repre-
sentation of the problem domain (2, 3, 4, 9]. Despite their reported advantage over binary
in certain problems, continuous GA models (CGAs) were neither used nor investigated ex-
tensively because their alleged efficiency was paradoxical to common interpretations of the
schema theorem.

Traditional interpretations of GAs suggest that a parameter that can receive many values
is worrisome due to the risk that many of its values will never be ecamined unless excessively



large population sizes and mutation rates are used. Ilolland’s original analysis of schemata
processing and imv]'cit parallelism has been so fundamental, that it made coniinuous param-
eters counter-intuitive.

In recent years, 2 few theoretical works suggested why the apparently paradoxical efficiency
achieved by various CGA models can be explained in terms of fundamental GAs theory (1,
6, 7, 14]. Though CGAs were used before (widely discussed in [4] and in the application to
robot path planning in [2]), much of the important documented studies on CGA’s were only
published in 1991.

First should be noted Goldberg’s theoretical work on virtual aiphabets [7] The th.eory
of virtual alphabets suggests that the explicit growth or decay of symbols in successive gen-
erations of a binary representation also occurs in the continuous space, only implicitly. The
range of values in the continuous interval are dynamically distributed in such a way that only
few segments in that range are sampled frequently. Goldberg called these attracting intervals
virtual alphabet and suggested that in a continuous parameter space a CGA only searches
among a limited number of the virtual alphabets, hence includes a much reduced range of
possible values than what is intuitively associated with continuous parameters.

Though the above rational is an elegant explanation to the paradox why CGAs work well,
it still leaves much of the mysterv why continuous models supersede binary representations
on many problems, ani what type of reproductive/recombination operators one should nse
to maximize the utility of CGAs.

Several crossover mechanisms were offered so far: Wright [14] suggested that three off-
spring are produced from two parents p; and p; such that one offspring is the mid point
between p; and p;, one is 1.5p, — 0.5p;, and the third is —0.5p; + 1.5p;. Janikow and
Michalewicz suggested a mid point crossover [8] and some elaborated mutation operator.
Radcliffe suggested a flat crossover which chooses a point a long the line connecting p; and
P2 with uniform probability [13]). Eshelman and Schaffer [6] suggested recently an elaboration
of Radcliffe’s flat crossover they called blend crossover which extends the line from which an
offspring is selected beyond the points defined by the two parents (a kind of extrapolation).

in this paper we extend previous work on crossover mechanisms for CGA mentioned
above. The basic goal of this work is not to advocate a specific version of CGA, but ratker, to
consider a full range of possible operators and understand their contribution to a successful
optimization process. We analyze and test four reprnductive operators and their variants,
which constitute the basic reproductive operations possible in continucus space. These op-
erators are characterized by their spatial sampling properties, and their relative role in the
search process is tested on several problems. We suggest that with a mixture of these opera-
tors, better and more general exploratory capability than what was possible with the above
mechanisms is obtained.

2 The Model and Operators

The problem to be solved by the algorithm is defined as an optimization problem of a real
function F(z) of a real vector z. The dimensionality of the vector = (i.e. the number of
problem parameters to be optimized) is d. Each of the z; (j = 1..d) parameters can be
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restricted to a given interval J; = |lminj,lmaz;]- The goal of the optimization problem is to
find real vector z that corresponds to the global minimum {(or maximum) of F(z) over the d
dimensional interval

d
I= H[lmmj: lma:j]
j=1

2.1 Description of the Algorithm

In the continuous scheme, each individual is represented simply by the vector z* € I, namely
each of the components J:; (¢ =1..n, j = 1..d) is a real number from the interval I;, where
n is the size of the ponulation.

Like the usual genetic algorithm scheme, our algorithm alternates between two majo.
phases, selective reproduction and crossover-mutation The selection method we use here
is more or less standard. Starting with an initial population of n individual vectors z*,
each of these vectors is evaluated by calculating the value f; = F(z*), which is the objective
function, or the ‘fitness’ of individual 1. A probability p, is then associated with each iadividual
according to the rule (for a minimization problem):

fmu: - f:‘

Lo 2t
B fmaz - fr’in

where fmax (fmin) i8 the worst (best) value amongst the f; over the current population.

A new population is then created by selective reproduction. Each individual of the new
population will be selected from the old generation according to the probabilities p;. This
process, which favo:rs those individvals with small f;, produces a new set of n vectors z; in
which a subset of the old population is present (some of them may be duplicated, of course).

The next phase is the crossover-mutation phase, in which new vectors are created from
those of the selected population. In this process, a set of ‘genetic operators’ is used in order
to create the ‘cffspring’ of pairs of ‘parent vectors’.

2.2 The Reproduction Operators

The underlying assumption of the approach presented here is that the relevant information for
the optimization task is simply the locati.n of each individual (vector) in the d dimensional
space, and its relative fitness. Therefore, the operators described below are constructec in
such a way as to extract different elements of this geometrical information in order to create
an offspring with improved performance. In what follows we describe four operators. Three
of them, interpclation, extrapolation and exchange are pairvsise operators. Namely, they take
two parents and create an offspring which will inherit some of the information contained
by the parents. The forth operator, mutation, is an unary operator which introduces a low
probability perturbation of a small magnitude to members of the parent population.



2.2.1 Interpolation

The interpolation operator creates an offspring which is a weighted average of its two parents.
To be more specific, the new vector 274, is chosen as a random point on the line connecting
the two parent vectors, z! and z2:

™Y = az' + (1 - o)z’
The simplest choice of the parameter a is u = 0.5, and then the offspring is just the midpoint
average of its two parents. This is the operator used in [8] and variation of that used in [14],
and it will be referred to here as mid-point interpolation. In a more general realization of this
operation, one can choose a to be a random number from the interval [0, 1] like in [13]. We
shall call this operator line interpolation.

2.2.2 Extrapolation

'Taking into account the values of two parents, it is nossible to find a better solution (i.e.
a vector with a smaller F), by mroving outward from the better of the two along the line
connecting the two. This idea motivates the extrapolation operator. Like the interpolation,
this operator creates the offspring as a random point on the line connecting the two parents,
but this time the pcint will be on the interval from the better parent, say z2, and away from
the other parent z?,

z™v = a(z? - ) 4 2%

Like the previous operator, there are two version of the extrapoiation operator. In the
roint eztrapolation a is a pre-specified parameter (usually @ < 1). While in the line ez-
trapolation version, a is a random number from the interval [0, eztrapolation range], (where
extrapolation-range is set externally). Constructed this way, the offspring can be ‘out of
bound’ in one or more of its components. In such a case, each of these components is trun-
cated tc its nearest bound. This operator also prevents the genetic process from being trapped
within the convex hull of the current population while exploiting meaningful genetic informa-
tion.

2.2.83 Exchange

The ex-hange operator (also uted in [8)]) is similar in operation to the binary uniform crossover
which mixes whole parameters and constructs an offspring from two parents by choosing for
each parameter z], the corresponding parameter of one of the parents, z}, or z? with equal
probability (the equivalent binary uniform crossover).

2.2.4 Mutation

The mutation operator crestes an offspring which is close to the original parent, but differs
from it by a small random vector. In our implementation

g =g} +am; , (j=1.d)

4



a; is a random number in [0.5,0.5), and m; = C x (lmazj — lmin;) where C is a (constant)
mutation-range parameter. Again, an ‘out of bound’ offspring is truncated to the nearest
bounds.

2.3 The application of the operators

After thr selection process, the new population is created by taking each pair z* and z'*?,
and selecting at random one of the three pairwise operators according to the probabilities:
Pint, Pest a0d Pezch (interpolation, extrapolation and exchange, respectively). When the sum
$ = Pint + Pext + Pezch < 1, @ fraction 1 ~ s of the vectors is copied to the next generation
without a change (i.e. the parent z* is copied to the new generation with no change). Tke
best vector of the previous generation, is copied unchanged to the next generation as well.
The last oper~.cor, mutation, is then applied with a probability pmue (the mutation rate) to
all the new vectors apart from the best one. The new populatior is now evaluated, and a new
cycle of rcproduction begins, and so on.

3 Crossover in Continuous Parameter Space

Like in binary representations, in which the choice of crossover devends on its schemata
exploration capabilities in the context of the problem domain [5], the choice of continuous
recombination operators is guided according to their exploratior capabilities in the continuous
space. However, in contrast to binary representations i1n which the creation of new search
points is limited to parameter mixing, in continuous space new search poiats can be created
through many pairwise operations not restricted to these values. To take full advantage of
the continuous space, these operators shou'd optimally explore the continuous space in the
neighborhood of the parent populaticn. The role of the four suggested operators is to perform
different types of local search in a neighborhood defined by two parent vectors. In this sectior
we present a simple geometrical picture of che spatial sampling characteristics of the differert
operators. This picture is complementary to the “virtual alphabet” (7] and the “interval
schemata” [6] analysis of CGA’s.

Assuming that the two parent vectors have already been selected, what are the lc :ations
that should be considered as possible futuie search points? If we have a pair of two good
pointe, then a possible place for & local optimum is somewhere in between them. Such
operation iz obtained by the interpolation operator (Figure 1).

The continuous crossover aralog of the binary crossover is the exchange operator. The
exchznge operator will create a new point iz one of th> corners of the rectangle spanned by
the parents (Figure 1). This operatiop fits into tie usual concept that a good schema (ie. a
good choice of a subset of the paramecers) will have a good chance ¢~ proliferate thic way in
the population.

However, the use of only the interpolation and exchange operators as in [8, 13, 14] will limit
the search within the d-dimensional rectangle defined by the existing population of vectors
(and their exchanged versions). As suggested easlier, additional ways to explore the parameter
space are needed. indeed, random inutation. can help (if the random increments are large



exchange

mid-point idterpolation

line intprpolation

A

line extrapolation

Figvre 1: A schematic description of a 2-D offspring created by the interpolatior, extrapola-
tion and exchange operators, and the two operator variants: ‘point’ and ‘line’. X! and X?
zre the parent vectors where X2 Laving a better fitness.

enoujh), but the extrapolation operator described above enables the search to escape these
lirnits in a more directed way. In particular, this operator enables the algorithm to search for
optimal solutions on the surface of tho available parameter space.

The extrapolation operator is motivated by the idea of hill climbing. Two points in the
neighborhood of a minimum can be arranged in such a way that the line between them points
to the general lirection of the local optimum (Figure 1).

It is possible to fit the exchange and interpolation into a unified general operator which is
termed h.:e a rectangular interpolation. This operator will create a new vector with uniform
distribution over the entire rectangle spanned by the two parents. This will be done by taking
a different random number a; € [0, 1] for each component j = 1..d, and then

27V = a2} + (1 - a;)z3.
Similar operators, such ss the arithmetical crossover suggested by Janikow and Michalewicz
(11, 10], which opcrate on part of the components will all produce offsprings within the same

rectangular region. In a similar manner we can define th2 rectangular extrapolation operator,

which creates the new vector

new

™ = a,-(z? - r;) + z?

where
a;j € [0, eztrapolation range).



The dashed frames in Fig.l show the regions covered by the rectangular operators in two
dimensions. It is important to remember that the neighborhood defined by two parents can
span a large portion of “he available space. Since we choose the parents at random, they
may be located at far away regions of the search space. Note also that jor all the pairwise
operators discr.sed above, the average distance of an offspring from it’s parents is proportional
to the discance between them. Hence the importance of the mutation operator in a case of a
premature convergence of the entire population into a region of a local minimum. In this work,
we do nct address the problem of non trivial constrains on the search space (see [10, 11, 12].
Since we consider a rectangular search space, the simple truncation is sufficient to keep the
population within the rectangular boundaries. More elaborate mechanisms (like projectiug
an offspring to the neasrest boundary) will be needed in cases of othe- types of constraints.

4 Experimental Results

In this section we study the performance of the algorithm on three test problems that were
presented and used for the study of various ZGA’s. These are the functions {3, f6 and fi4 as
defined in the test suite used by Eshelman and Schafier [6].

Our goal is to demonstrate the efficiency of the algorithm, to gain some understanding
of the contribution and importance of the different operators in d’ Terent situations, to find
the optimal combinations of these operators and to suggest a generally good choice of the
“application rate” parameters: Pint, Pest a0d Perch-

The first function, 14, is an optimal control problem that was used as a test function in
[8, 6]. It is a high dimensional dynamic control problem, in which the control vector z should
minimize *he function

d
F(z) = y3 + ) [z} +9]]
=1
where y; = yj_1 + Zj, with yo = 100, d = 45 and the components of r are restricted to the
intervals J; = [—~200,200]. The optimal solution with these parameters is F* ~ 16180.4.

For each choice of operators and parameters, 30 search runs were performed, 5000 gener-
ations each. Each of these runs was initialized with a {'fferent population of random vectors,
uniformly distributed over the allowed region.” Population size was 60. The performance
measure which we use is the eusemble average of the best solution found in each run, and its
deviation.

First wc add-ess the issue of choos'ng an optin:al combination of pairwise operators for
a given problem domain. We use fl4 2s an example. There is a total of nine pairwise
operations obtained from two basic opera’' 'rs: interp.iation and extrapoldtion, and their
three possible variants: ‘point’, ‘line’, and ‘rectangula:’. The three variants represent the
number of geometrical degrees of freedom restricting the twc operators. Hence, the ‘point’
version fully specifies the result of the two operators to a specific point. The ‘line’ version
allows one degree of freedom (for the offspring vector), while the rectangular version leaves d
degrees of freedom per vector.



[ Extrapolation Interpolaticn
point line rectang.
poini 16300.0 (50.0) | 27300 (3000) | 240000 (30000)
line 161845 (1.5) | 16181.9 (0.4) | 16186.0 (2.0)
rectang. 16190.0 (6.0) | 16184.2  (1.0) | 15185.2 (1.3) |

Table 1: the control problem - operator choice comparison (the deviation in parentheres).

Table 1 shows the performance of each of the 9 possibie choices for the interpolation and
extrapolation operators (with extrapoiation range 0.5, Pint, Pezt and Pezcn = 1/3, and the
mutation rate and range are 0.02 and 0.01 respectively).

Investigating Table 1 shows that for ihis proble.n the optimal choice of operators is line
extrapolation with line interpolation. Another good choice of operators is the l'ne interpo-
lation witu rectangular extrapolation. These choices aot only produce close tc an optimal
solution, but also find it very consistently (as indicated by the small deviation). It should
be emplasized though, that we have studied here only comb.nations in which there is just
one variant of each of tiie two operators - interpolation and extrapolation. In a more general
experiment one should be able to use any combination of operators.

Next we would like to study the influence of the rates pins, Pezt =id Pezch On the pei-
formance of the algorittm. Table 2 presents the performance of the algorithm with iine
iaterpolation and extrapolation, with different sets of values of those probabilities (the rest
~f the parameters are the same). There are three groups of parameter sets in the table. In
the first, the sum s = Pin¢ + Pext + Pexch i8 unity. In the s2cond group s = 0.9, and in the
third s = (8. A smaller s values usually decreases the performance, although the combi-
nations (0.4,0.4,0.1) and (0.3,0.3,0.2) perform close to the optimal. It is evident that the
‘equi-partition’ between operators, i.e. Pint = Pext = Pezch = 1/3 is more or less the optimal
choice. It is certainly clear that all the operators are necessary for good performance (for
details see Table 2). In general, performance is not too sensitive to small deviations frcan
Ihnt; Pest; Dexch eq“i'pa'nition'

Of course, the optimal choice of the operators and the different parameters may depend
on the specific optimization problem. To illustrate this, we present a short account of several
experiments done with the two other test functions, f3 and £6.

The {3 test function (originally defined by De Jong), is a five dimensional “staircase”
function. Since it is a monotonic functi~n, it is obvious why the extrapolation operator
should do well on this problem. The exchange operator is also expected to be importan*, as
the different parameters have independent contributions to the function (no epistasis). Si:ice
in all cases the algorithm found the global minimum (which is the small step where all the
variables are smaller than -5.0) within 100 gern-rations, we use here a different measure of
performance: the average number function evaluations needed to find the solution (and the
deviation).

Table 3 shows the performance of each of the 9 possible choices for the interpolation and
extrapoiation operators, with extrapolation range 0.5, Pin¢, Pest a0d Pezcn = 1/3. In this
problem stronger mutations were needed in order to achieve good performance, the mutation
rate and range are both 0.2 . The population size is 40.



It is evident that for this problem the optimal choice of operators is lin~ exirapolation with
point interpolation. Since the point version of the extrapolation operator always produces
the offspring as far as possible, this is the version that better exploits the monotonicity of
this test function.

In Table 4 we present the performance for different choices of the rates. As expecied, the
exchange and extrapolatiun are the dominant operators for this probleia - the best perfor-
mance obtained without interpolation ! Nevertheless, the equipartition choice still offers close
to optimal perfcrmance.

Yet another situation is encountered with the third function, f6. This is a two dimensional
cylindrical'y symetric wave, with a decaying e¢nvelope. It has a global minimum at the origin
and many suboptirrl rings around it. It was found that the best operators in this case
are the rectangular interpoiation and extrapolation. The reason is probably their ability to
sample larger arcas, : nd heuce they have a better chance to find good 2nough points in the
vicinity of the small optimal region. This is a hai ler problem and nezded a finer tuning of
the parameters in order .o achieve good performance. With a population size of 50, mutation
rate of 0.2, mutation range 0.05 and and equipartition of the operators, the average number
of function evaluations needed to find the true minimum was 8400 (dev. 5470).

5 Summary

We studied a simple and general genetic algorithm which usus continuous parameters, and
recommend to use this forma’, of representation and algorithm when continuous parameters
are a natural representation of the solution space of 3 given problem. Four hasic ‘genetic’
operators (and their variants) which suit this representation, were presented. A preliminary
study of performance on a few benchmark problems has established the potential of using a
mixture of genetic operators for optimiza*‘on of functions in real domains.

This study also gives some intuition as to the right choice of the operators and parameters.
Our recommendation for a generic CGS for an arbitrary problem is to try equal proportions
of three pairwise operators: line interpr.lation, line extrapolation and exchange, wich a small
mutation rate and range (‘rom 0.01 to 0.2), au extrapolation range 0.5.

It is clear though, that much research is still needed in order to understand the large
spectrum of possible operators and their efficicnt application. Obvious improvement can be
achicved by including adaptive schemes to set the application rate parameters, time d2pendent
operators (like the dynamic mutation in [8]) and sm..rt schedulez for the parameters which
may help in impi1oving the search efficiency and robustness.
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Pint | Pest | Pezch | Performance
0.333 [ 0.333 | 0.333 16181.9
02 |04 |04 16235.4
04 |uv2 |04 16208.7
04 |04 |02 16182.7
05 |025 |025 16185.1
025 |05 1025 16479.5
025 [0.25 |05 16189.8
05 [05 100 16720.6
05 [00 |05 30097.7
00 |05 [05 551832.8
03 |03 |03 16186.4
0.1 |04 |04 41345.8
04 |01 |04 16836.3
04 [04 |01 16182.3
04 [04 |00 "18014.6
03 [03 |02 16182.6

Table 2: The control problem - operator rates comparison.

Extrapolation Interpolation

point line rectang.
point 524 (207) | 399 (168) | 467 (213)
line 970 (407) | 648 (226) | 790 (323)
rectang. 792 (261) | 836 (300) | 772 (211)

Table 3: f3 test function - operator choice comparison. in parentheses, the deviation of the
performance.

Pint_ | Peat | Pezcn | Perfurmance
0.333 [ 0.333 | 0.333 | 399 (168)
02 [04 [o04 365 (125)
04 |02 [04 614 (203)
0.4 0.4 0.2 408 (201)
0.5 0.5 0.0 496 (309)
05 |00 [05 |1403 (603)
00 |05 |05 318 (111)

Table 4: f3 test function - operator rates comparison.
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