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Abstract

The sucess of a genetic optimization algorithm in continuous parameter space depends
on the recombination (crossover) operators that it uses. In this paper we consider a wide
spectrum of such operators within a unified framework and study their relative impor-
tance in the search process. We consider four basic types recombination operators which
cover the relevant exploration potential of a continuous space: Interpolation, Extrapola-
t ion, Exchange and Mutation. Each of these baaic types may have several variants. We
characterize the various operators and their variants by their spatial sampling properties
and examine their contributions to the search by applying different mixtures of the op
erators in several benchmark problems. The results suggest that the optimal mixture of
operators may depend cn the problem. But, in general, all basic types are needed for

efficient optimization.

1 Background

Genetic algorithm models (GAs) that manipulate continuous parameters have been occasion-
ally attempted throughout the GAs’ history. In particular, continuous models h ~ve been
attempted in real-life applications where continuous paramete~s constitute a natural repre-
sentation of the problem domain [2, 3, 4, 9] Despite their reported advantage over binary
in certain problems, continuous GA models (CGAS) were neither used nor investigated ex-
tensively because their alleged efficiency was paradoxical to common interpretations of the
schema theorem,

Traditional interpretations of GAs suggest that a parameter that can receive many values
is worrisome due to the risk that many of its values will never be e.camined unless excessively
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large population sizes and mutation rates are used. IIolland’s original analysis of schemata
processing and imd”cit parallelism has been so fundamental, that it made continuous param-
eters counter-intuitive.

In recent years, a few theoretical works suggested Thy the apparently paradoxical efficiency
achieved by various CGA models can be explained in terms of fundamental GAS theory [1,
6, 7, 14]. Though CGAS were used before (widely discussed in [4] and in the application to
robot path planning in [2]), much of the important documented studies on CGA’s were only
published in 1991.

First should be noted Goldberg’s theoretical work on virtuaf alphabets [7] The theory
of virtual alphabets suggests that the explicit growth or decay of symbols i--tsuccessive gen-
erations of a binary representation also occurs in the continuous space, only implicitly. The
range of vzlues in the continuous interval are dynamically distributed in such a way that only
few segments in that range are sampled frequently. Goldberg called these attracting intervals
virtual alphabet and suggested that in a continuous parameter space a CGA only searches
among a limited number of the virtual alphabets, hence includes a much reduced range of
possible values than what is intuitively associated with continuous parameters.

Though the above rational is an elegant explanation to the paradox why CGAS work well,
it still leaves much of the mystery why continuous models supersede binary representations
on many problems, ami what type of reproductive/recombination operators one should use
to maximize the uttity of CGAS.

Several crossover mechanisms were offered so far: Wright [14] suggested that three off-
spring are produced from two parents pl and pa such that one offspring is the mid point
between ~ and ~, one is 1.5~ - 0.5~, and the third is –0.5~ + 1,5~. Janikow and
Michalewicz suggested a mid point crossover [8] and some elaborated mutation operator.
Radcliffe suggested a /iut crossover which chooses a point a long the line connecting pl and
pa with uniform probabilityy [13]. Eshelman and SchaiTer [6] suggested recently an elaboration
of P~adcJiffe’sflat crossover they called blend crossover which extends the line from which an
offspring is selected beyond the points defined by the two parents (a kind of extrapolation).

m this paper we extend previous work on crossover mechanisms for CGA mentioned
above. The basic goal of this work is not to advocate a specific ver~ion of CGA, but rather, to
consider a full range of possible operators and understand their contribution to a successful
optimization process. We analyze and test four reproductive operators and their variants,
which constitute the basic reproductive operations possible in continuous space. ‘These op-
erators are characterized by their spatial sampling properties, and their relative role in the
search process b tested m several problems, We suggest that with a mixture of the~e opma-
tors, better and more general exploratory capability than what was possible with the above
mechanisms is obtained.

2 The Model and Operators

The problem to be solved by the algorithm is defined as an optimization problem of a real
function F(z) of a real vector z, The dimensionality of the vector z (i.e. the number of
problem parameters to be optimized) is d. Each of the Zj (j = l..d) parameters can be
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] The goal of the optimization problem is torestrictd to a given inter~ ~j = !kl?lj, ‘maJ .

find real vector z that corresponds to the global minimum (or maximum) of F(=) over the d
dimensional interval

d

j=l

2.1 Description of the Algorithm

h the continuous scheme, each individual is represented simply by the vector z’ E 1, namely
each of the components z; (i = l..n , j = l..d) is a real number from the interval Ij, where
n is the size of the population.

Like the usual genetic algorithm scheme, our algorithm alternates between two majo,
phases, selective reproduction and crossover-mutation The selection method we use here
is more or less standard. Starting with an initial population of n individual vectors xi,
each of these vectors is evaluated by calculating the value ~i = F(zi ), which is the objective
function, or the ‘fitness’ of individual i. A probability p, is then associated with each Lxlividual
accordinq to the rule (for a minimization problem):

fmtu - fi

“ afmaz– frm

where f~ (fmin)is the worst (best) value amongst the fi over the current population.

A new population is then created by selective reproduction. Each individual of the new
population will be selected from the old generation according to the probabilities pi. This
process, which favors those individuals with small fi,produces a new set of n vectors ~i in
which a subset of the old population is present (some of them may be duplicated, of course).

The next phase is the crossover-mutation phase, in which new vectors are created from
those of the selected population. In this process, a set of ‘genetic operators’ is used in order
to create the ‘cffspring’ of pairs of ‘parent vectors’.

2.2 The Reproduction Operators

The underlying assumption of the approach presented here is that the relevant information for
the optimization taak is simply the locati. n of each individual (vector) in the d dimensional
space, and its relative fitness. Therefore, the operators described below are constructed in
such a way as to extract different elements of this geometrical information in order to crest e
an offspring with improved performance. In what follows we describe four operators, Three
of them, interpolation, extrapolation and exchange are pairwise operators. Namely, t hey take
two parents and create an offspring which will inherit some of the information contained
by the parents. The forth operator, mutation, is an unary operator which introduces a low
probability perturbation of a small magnitude to members of the parent population,



2.2.1 Interpolation

The interpolation operator creates an offspring which is a weighted average of its two parents.
To be more specific, the new vector z-, is chosen as a random point on the line connecting
the two parent vectors, Zl and Zz:

z new = UZ1 + [1 - a)z2.

The simplest choice of the parameter u is u = 0.5, and then the offspring is ju~t the midpoint
average of its two p~uents. This is the operator used in [8] and variation of that used in [14],
and it will be referred to here as mid-point interpolation. In a more general realization of this
operation, one can choose a to be a random number from the interval [0, 1] like in [13]. We
shall call this operator fine interpolation.

2.2.2 Extrapolation

‘!hking into account the values of two parents, it is possible to find a better solution (i.e.
a vector with a smaller F), by moving outward from the better of the two along the line
connecting the two. This idea motivates the ext rapolat ion operator. Like the interpolation,
this operator creates the offspring as a random point on the line connecting the two parents,
but this time the point will be on the interval from the better parent, say Z2, and away from
the other parent Z1,

z- = a(zz - d) + 22.

Like the previous operator, there are two version of the extrapolation operator. In the
point eztqxdation a is a pm-specified parameter (usually a < 1). While in the line ez-
tmpdation version, a is a random number f~om the interval [0, eztrapofation range], (where

extrapolation-range is set externally). Constructed this way, the offspring can be ‘out of
bound’ in one or more of its components. In suc& a case, each oft hese components is trun-
cated t~ its nearest bound. This operator also prevents the genetic process from being trapped
within the convex hull of the current population while exploiting meaningful genetic informa-
tion.

2.2.s Exchange

The exchnge operator (also ueed in [8]) is similar in operation to the binary uniform crossover
which mixes whole parameters and constructs an offspring from two parents by choosing for
each parameter z~, the corresponding parameter of one of the parents, x;, or z? with equal
probability (the equivalent binary uniform crossover).

2.2.4 Mutation

The mutation operator cre~tes an offspring which is close to the original parent, but differs
from it by a small random vector. Xnour implementation

z~ = z; + Upj , (j = I.od)
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uj is a random number in [0.5, 0.5], and rnj = C x (1~, – f~,m)) where C is a (constant)
mutation-range parameter. Again, au ‘out of bound’ offspring is truncat-d to the nearest
bounds.

2.3 The application of the operators

After thr selection process, the new population is created by taking each pair Z’ and z’+!,
and selecting at random one of the three pairwise operators according to the probabilities:
r,~, pe~ and Pea (interpolation, extrapolation and exchange, respectively). When the sum
s = P;ti + PM + p=d < 1, a fraction 1 – s of the vectais is copied to the next generatim
wit bout a change (i.e. the parent z’ is copied to the new generation with no change). The
best vector of the previous generation, is copied unchanged to the next generation as well.
The last operator, mutation, is then applied with a probability pm~ (the mutation rate) to
all the new vectors apart from the best one. The new populatioxt is now evaluated, and a new
cycle of reproduction begins, and so on.

3 Crossover in Continuous Parameter Space

Like in binary representations, in which the choice of crossover depends on its schemata
exploration capabilities in the context of the problem domain [5], the choice of continuous
recombination operators is guided according to their exploration capabilities in the continuous
space. However, in contrast to binary representations m which the creation of new search
points is limited to parameter mixing, in continuous space new search points can be created
through many pairwise operations not restricted to these values. To take full advantage of
the continuous space, these operators should optimally explore the continuous space in the
neighborhood oft he parent population. The role oft he four suggested operators is to perform
different types of local search in a neighborhood defined by two parent vectors. In this sectior
we present a simple geometrical picture of che spatial sampling characteristics of the differe~t
operators. This picture is complementary to the “virtual alphabet” [7] and the “inte:lal
schemata” [6] analysis of CGA’S.

Assuming that the two parent vectors have already been selected, what are the k :ations
that should be considered as possible futule search points? If we have a pair of two good
pointe, then a possible place for a local optimum is somewhere in between them. Such
ope~ation k obtained by the interpolation operator (Figure 1).

The continuous crossover ax alog of the binar~ crossover is the exchange operator. The
exchznge operator will create a new point iii one of t hs corners of the rectangle spanned by
the parentg (Figure 1). This operation fits into t ~Ieusual concept that a good schema (i.e. a
good choice of a subset of the parame~ers) will h,we a go~d chance t? proliferate thic way in
the population.

However, the use of only the interpolation and exchange operators as in [8, 13, 14] will limit
the search within the d-dimensional rectangle defined by the existifig population of vectors
(and their exchanged versions), As suggested ed.ier, additional ways to explore the parameter
space are needed. Indeed, random mutation. can help (if the random. increments are large
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Figure 1: A scheinatic description of a 2-D offspring created by the interpolation, extrapola-
tion and exchange operators, and the two operator variants: ‘point’ and ‘line’. Xl and Xz
are the parent vectors where X2 kaving a better fitness.

enoul~h), but the extrapolation operator described above enables the search to escape these
lircit:! in a more directed way. In particular, this operator enables the algorithm to search for
optimal solutions on the surface of the availabk parameter space.

The extrapolation operator is motivated by the idea of hill climbing. Two points in the
neighborhood of a minimum can be arranged in such a way that the line between them points
to the general direction of the local optimum (Figure 1).

It is possible to fit the exchange and interpolation into a unified general operator which is
termed h.te a rectangukr interpolation. This operator will create a new vector with uniform
distribution over the entire rectangle spanned by the two parents. This will be done by taking
a different random number Uj E [0, 1] for each component j = 1..d, and then

y
‘J

= UjZ~ + (1 – Uj)Zf.

Similar operatms, such u the arithmetical crossover suggested by Janikow and Michalewicz
[11, 10], which operate on part of the components will all produce offsprings within the same
rectangular region. In a similar manner we can define t~~ rectangular extrapolation operator,
which creates the new vector

&’” = aj(~~ – z;) + ~~

where

aj E [0, eztrapoiation range].
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The dashed frames in Fig. 1 show the regiohs covered by the rectangdar operators in two
dimensions. It ia important to remember that the neighborhood defined by two parents can
span a large portion of “;he avaiiable space. Since we choose the parents at random, they
may be located at far away regions of the search space. Note alSO that for all the pairwim

operators discv.sed above, the average dist ante of an offspring from it’s parents is proportional
to the distance between them. Hence the importance of the mutation operator in a case of a
premature convergence of the entire population into a region of a local minimum. In this work,
we do net address the problem of non trivial constrains on the search space (see [10, 11, 12].
$ince ~ consider a ~t~~ search space, the simple truncation is sufficient to keep the

population within the rectangular boundaries. More elaborate mechanisms (like project i~g
an offspring to the neasrest boundary) will be needed in cases of other typea of constraints.

4 Experimental Results

In this section we study the performance of the algorithm on three teat problems that were
presented and used for the study of various CGA’S. These are the functions f3, f6 and f14 as
defined in the test suite used by Esheiman and SC.haikr [6].

Our goal is to demonstrate the efficiency of the algorithm, to gain some understanding
of the contribution and importance of the different operatms in c1Terent situations, to find
the optimal combinations of these operators and to suggest a generally good choice of the
“application rate” parameters: pti, pet and pti~.

The first function, f14, is an optimal control problem that was used as a test function in
[8, 6]. It is a high dimensional dynamic control problem, in which the control vector z should
minimize the function

d

wi.sre Yj = Yj-1 + Zj, with VO= 100, d = 45 and the components of x are restricted to the
intervals lj = [-200, 200]. The optimal solution with these parameters is ~ = 16180.4.

For each choice of operators and parameters, 30 search runs were performed, 5000 gener-
ations each. Each oft hese runs was initialized with a d‘fferent population of random vectors,
uniformly distributed over the allowed region.’ Population size was 60. The performance
measure which we use is the eusemble average of the best solution found in each run, and its
deviation.

First wc add-em the issue of choos:ng an optirml combination of pairwise operators for
a given problem domain. We u~e f14 as an example. There is a total of nine pairwise
operations obtained fkom two basic opera+ rs: interp~~ation and extrapolation, and their
three possible variants: ‘point’, ‘line’, and ‘rect anguk’. The three variants represent the
number of geometrical degrees of freedom restricting the twc operators. Hence, the ‘point’
version fully specifies the result of the two operators to a specific point. The ‘line’ version
allows one degree of freedom (for
degrees of freedom per vector,

the offspring vector), while the rectangular version leaves d
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Extrapolation Interpolation 1
point line rectaug.

~oini 16300.0 (50.0) 27300 (3000) 240000 (30000)
16184.5 (1.5) 16181.9 (0.4) 16186.0 (2.0)line

rect ang. I 16190.0 (6.Oj 116184.2 (1.0) ] 1S185.2 (1.3~

Table 1: the control problem - operator choice comparison (the deviation in parenther.es).

Table 1 shows the performance of each of the 9 possible choices for the interpolation and
extrapolation operators (Vulth extrapolation range 0.5, ~, pa and p+ = 1/3, and the
mutatioa rate and range are 0.02 and 0.01 respectively).

‘investigating Table 1 shows that for this problem tht: optimal choice of operators is line
extrapolation wit h line interpolation. Another good choice of operators is the line int erpo-
lation wit~ rectangular extrapolation. These choices not only produce close tc an optimal
solution, but also find it very consistently (as indicated by the small deviation). It should
be emphasized though, that we have studied here only combaations in which there is just
one variant of each of t!w two operators - intcrpolat;on and extrapolation. In a more general
experiment one should be able to use any combination of operators.

Next we would like to study the influence of the ratea X@, p- ad p=4 on the pe~-
formance of the algontl m. Table 2 presents the performance of the algorithm with tine
interpolation and extrapolation, with different sets of valu~~ of those probabtities (the rest
“f the mrameters are the same). There are three groups of parameter sets in the table. In

the fimt, the sum s = pa + pa + PA is unity. In the sxond group s = 0.9, and in the

third s = O 8. A smaller s values usually decreases the performance, although the combi.
nations (0.4,0.4,0.1) and (0.3,0.3,0.2) perform close to the optimal. It is evident that the
‘equi-partition’ between operators, i.e. p;ti = pert = pez~ = 1/3 ib more or less the optimal
choice. It is certainly clear that all the operators are necessary for good performance (for
details see Table 2). In general, performance is not too sensitive to small deviations frcm

hds Pti, Pa& eq~-p~ition.

Of course, the optimal choice of the operators and the different parameters may depend
on the specific optimization problem. To illustrate this, we present a short account of several
experiments done with the two other test functions, f3 and f6.

The f3 test function (originally defined by De Jong), is a five dimensional “staircase”
function. Since it is a monotonic functh, it is obvious why the extrapolation operator
should do well on this problem. The exchange operator is also expected to be import an+, as
the different parameters have independent contributions to the function (no epistasis). Si:~ce
in all cases the algorithm found the global minimum (which is the small step where all the
variables are smaller than -5.0) within 100 generations, we use here a different measure of
performance: the average number function evaluations needed to find the solution (and the
deviation).

Table 3 shows the performance of each of the 9 possible choices for the interpolation and
extrapolation operators, with extrapolation range 0.5, Piti} pe=t and pe=A = 1/3. In this
problem stronger mutations were needed in order to achieve good performance, the mutation
rate and range are both 0,2 . The population size is 40.
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It is evident that fcr this problem the optimal choice of operators is liDCea:rapolation with

point interpolation. Since the point version of the extrapolation operator always produces
the offspring as fiat. as possible, this is the version that better exploits the monotonicity of
th:s test function.

In Table 4 we present the performance for different choices of the rates. As expected, the
exchwge and extrapolation are the dominant operators for this problein - the best perfor.
ruance obtained wit bout interpolation ! Nevert heleas, the equ.ipart it! xi choice still offers close
to optimal performance.

Yet another situation is encountered with the third function, f6. This is a two dimensional
cylindricaJ!y symetric wave, with a decaying envelope. It haa a global minimum at the origin
and many suboptimd rings around it. It was found that the best operators in this case

are the rectangular interpolation and extrapolation. The reason is probably their ability to
sample larger areas, ; nd heuce they have a better chance to find good mough points in the
viciuity of the small optimal region. This is a ha +e: problem and ne.ded a finer tuning of
th~ parimetera in order ‘bo achieve good performance. ‘~lth a pepdation size of S0, mutation

rate of 0.2, mutation range 0.05 and and equipartiti{m of the operators, the average number
of function evaluations needed to find the true ti~mum was 8400 (dev. 5400).

5 Summwy

We studied a simple and general genetic algorithm which usu continuous parameters, and
recommend to use this forma’. of representation and algorit hrn when continuous parameters

are a natural representation of the solution space of ~ given problem. Four basic ‘genetic’
opel atora (and their variants) which suit this representation, were presented. A preliminary
study of performance on a few benchmark problems has established the potential of using a
mixture of genetic operators for opthnim “cm of functions in real domains.

This study also givea some intuition as to the right choice of the operators and parameters.
Our recommendation for a generic CGl for an arbitrary problem is to try equal proportions
of three pairwise operators: line interpf.lation, line extrapolation and exchange, w. ~h a small
mutation rate and range (horn 0.01 to 0.2), =A extrapolation range 0.5.

It is clear though, that much research is still needed in order to understand the large
spectr~m of possible operatora and their eflicient application. Obvious improvement can be
achi( ved by including adaptive schemes to set the application rate parameters, time dependent
operators (like the dynanuc mutation in [8]) and smi~t schedulec f~x the parameters which
may help in impxqwtig the search efficiency and robustness.
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Pint Pat pe=~ Performance
0.333 0.333 0.333 16181.9

0.2 0.4 0.4 16235.4

0.4 I U.2 0.4 16208.7,
0.4 0.4 ]0.2 16182.7
0.5 0.25 I0.25 16185.1

i0.25 0.5
1 1
0.25 16479.5

0.25 0.25 0.5 16189.8
or 0.5 !0.0 16720.6
0.5 I0.0 I0.5

>
I 30097.7

0.0 I 0.5 I0.5 551832.8
1

0.3 0.3 0.3 I 16186.4
0.1 0.4 0.4 41345.8

1 1

0.4 0.1 0.4 1 16836.3
0.4 0.4 0.1 16182.3

0.4 0.4 0.0 18014.6a
0.3 0.3 0.2 16182.6

Table 2: The control problem - operator rates comparison.

Extrapolation - Interpolation
point line rect ang.

point 524 (207) 399 (168) 467 (213)
line 970 (407) 648 (226) 790 (323)
rect ang. 792 (261) 836 (300) 772 (21 1)

Table 3: f3 test function - operator choice comparison. in parentheses, the deviation of the
performance.

Pint Pe=t p.=~ Perf(jrmance
0.333 0.333 0.333 399 (168)
0.2 0.4 0,4 365 (125)
0.4 0.2 0.4 614 (203)
0,4 0.4 0,2 408 (201)
0.5 0.5 0.0 498 (309)
0.5 0,0 0.5 1403 (603)
0.0 0.5 0.5 318 (111)

Table 4: f3 tedt function - operator rates comparison,
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