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NUMERICAL MODELING OF THE SURFACE TOPOGRAPHY EFFECTS

ON THE SATURATED POOL NUCLEATE BOILING CURVE

by

Cetin Unal and Kemal Pasamehmetoglu

Nuclear Technology and Engineering Division
Engineering and Safety Analysis Group

Los Alamos National Laboratory
Los Alamos, NM 87545 : _ ;'_

ABSTRACT

A numerical study of saturated pool nucleate boiling with an

emphasis on the effect of surface topography is presented. The

numerical model consisted of solving the three-dimensional transient

heat conduction equation within the heater subjected to nucleate

boiling over its upper surface. The surface topography model

considered the distribution of the cavity and cavity angles based on

exponential and normal probability functions. Parametric results

showed that the saturated nucleate boiling curve shifted left and

became steeper with an increase in the mean cavity radius. The boiling

curve was found to be sensitive to the selection of how many cavities

were selected for each octagonal cell. A small variation in the statistical

parameters, especially cavity radii for smooth surfaces, resulted in

noticeable differences in wall superheat for a given heat flux. This
result indicated that while the heat transfer coefficient increased with

cavity radii, the cavity radii or height alone was not sufficient to

characterize the boiling curve. It also suggested that statistical

experimental data should consider large samples to characterize the

surface topology. The boiling curve shifted to the right when the cavity

angle was obtained using a normal distribution. This effect became less

important when the number of cavities for each cell was increasing
because the probability of the potential cavity with a larger radius in

each cell was increased. When the contact angle of the fluid decreased



for a given mean cavity radii, the boiling curve shifted to the right.

This shift was more pronounced at smaller mean cavity radii and

decreased with increasing mean cavity radii.

NOMENCLATURE

al Empirical constant

C1 Empirical constant

Nm Mean number of cavities per cell

NT Total number of cavities

q Surface-time averaged wall heat flux (W/m 2)

Rc Cavity mouth radius (mm)

Rc,m Mean cavity mouth radius (mm)

Rmax Maximum cavity radius (mm)

Rz Cavity height (mm)

pfd Probability density function

13 Half-cone angle

_m Mean half-cone angle

ATw Surface-time averaged wall superheat (°C)

0 Contact angle

aN Standard deviation for number of cavities per cell

a B Standard deviation for cavity cone angle

I. INTRODUCTION

A complete understanding of the nucleate boiling process continues to elude

engineers and scientists despite more than half a century of research. This situation

possibly arises because there are an abundant number of parameters (quite often

dependent with unknown functional interrelations) affecting the phenomenon. It

is almost impossible to design experiments where these parameters may be varied

and controlled independently from each other. Fortunately, in recent years, there is



, an increased trend where Me experiments are complemented with detailed

modeling so that parametric dependencies and data reduction may be better

accomplished.

As part of that effort, we developed a computer model where the saturated

pool nucleate boiling over a horizontal surface is simulated (Pasamehmetoglu and

Nelson 1991a). Along with sample nucleate boiling calculations, the model is

described in a recent publication (Pasamehmetoglu 1992). However, this paper was

aimed primarily at illustrating the various aspects of the model without targeting

any specific questions pertinent to pool nucleate boiling phenomenon. In this

respect, the present paper is a continuation of the previous ones (Pasamehmetoglu

and Nelson 1991b, Pasamehmetoglu 1992) and it is aimed primarily at investigating

the surface topography effects on the nucleate boiling curve.

The surface conditions strongly affect the nucleate boiling curve. Starting

with the work of Jacob and cooworkers in the early 1930s (cited by Jacob 1949), there is

an abundance of mostly experimental studies in the literature where the effects of

surface conditions on the nucleate boiling curve are investigated. A comprehensive

literature review on the subject would be extensively lengthy to be included in this

paper, and it is outside the scope of our discussion. As examples of such studies, the

readers are referred to the study of Bartheau (1992), Chowdhury and Winterton

(1985), and Dhir (1990).

Typically surface conditions that influence the nucleate boiling are listed in

the literature as the surface roughness and contact angle (Chowdhury and

Winterton 1985). The contact angle may influence the nucleate boiling through a

number of mechanisms. The number of potential sites is a function of contact

angle. As shown by Bankoff (1958), the conical cavities will be potential sites if

0 > 2[5,where 0 is the contact angle and [_is the half-cone angle. Thus, larger contact

angles result in more potential sites and thus, in more active sites, as observed



' experimentally by Wang and Dhir (1991). Contact angle influences the formation

and evaporation of the microlayer. The mechanisms for this phenomenon are not

fully understood. Finally, increasing the contact angle may increase the bubble

departure diameter, thus influencing the bubble emission frequency from a given

site. Changing the contact angle over a narrow range appears to have no serious

consequences on the nucleate boiling curve (Chowdhury and Winterton 1985).

However, Wang and Dhir (1991) reported a noticeable shift of the boiling curve to

the left (enhanced heat transfer) when the contact angle is changed from 18° to 90°

for boiling of saturated water over a copper surface. Contact angle is a function of

the surface energies of the fluid and the heater material and is strongly influenced

by the surface oxidation. Also, one has to carefully distinguish between static and

dynamic contact angles that influence different mechanisms of the nucleate boiling

phenomenon. In the current paper, we do not explicitly address the nature of the

contact angle problem. Throughout our discussion, it is assumed that the contact

angle is explicitly known and considered as a apparent static contact angle. We

incorporate this known value into our analysis to determine the potential active

cavities using Bankoff's (1958) flooding criterion.

Surface roughness influences the nucleate boiling curve by affecting the

number of cavities and the size, shape, and spatial distribution of the cavities.

However, Chowdhury and Winterton (1985) indicated that surface roughness

quantified by center line average (CLA) may be a meaningless parameter. By

comparing the anodized and unanodized surfaces with the same measure of

roughness, they argued that the nuinber of cavities and not the roughness was the

important parameter. In general, the surface roughness as a single parameter is a

statistical representation of the surface topography (Thomas 1981). However,

hidden within this number are a number of parameters that have a direct influence

on the boiling curve. Without the capability of differentiating among those



• parameters and their effects on the boiling curve, the roughness as a single

parameter has little universal meaning in terms of quantifying the boiling curve.

To complicate matters even further, there appear to be different standards and/or

measurement methods in quantifying the surface roughness (Thomas 1981), and

one has to be careful in specifying the method associated with a given numerical

value.

The parameters that characterize the surface roughness and that influence

the nucleate boiling curve are as follows:

1. The number of cavities on the surface. This is a parameter that is not

typically contained within the roughness measurement [CLA or root

mean square (RMS)]. Furthermore, within the context of the nucleate

boiling, how we count the number of cavities is not always clear. The

example shown in Fig. 1 illustrates this point. Both configurations in

(a) and (b) show two adjacent cavities. However, if we apply the gas

entrapment mechanism suggested by Bankoff (1958), both cavities are

capable of individual bubbles [Fig. (l-a)], whereas only a single bubble may

be generated from both cavities [Fig. (l-b)].

2. Cavity shape and characteristic dimensions. The roughness magnitudes

do not directly contain the shape information. The roughness typically

quantifies one of the characteristic dimensions (height). However, on a

natural surface, various cavity shapes are possible. In the boiling

literature, cavity shapes are commonly idealized as conical and reservoir

types for natural surfaces and cylindrical for artificially drilled surfaces.

The shape of natural cavities is expected to significantly deviate from these

idealized geometries. Two dimensions (mouth radius and height) are

sufficient to characterize the conical and cylindrical cavities. Reservoir-



" type cavities may be characterized using three dimensions (mouth radius,

cavity radius, and height). Obviously, as the shape becomes more

complex, the dimensionality of the cavity increases, and the problem

quickly progresses into the domain of fractal geometry. However, in view

of Bankoff's gas entrapment mechanism, the secondary patterns on the

shape of the cavity may have little influence on the nucleate boiling curve

(depending upon contact angle). For instance, conical and truncated

conical cavities are shown in Fig. 2. Depending upon the contact angle,

these hvo cavities may behave identically or quite differently during the

boiling process. For the large contact angle of case (a), both cavities entrap

gas. On the other hand, for the small contact angle in case (b), the conical

cavity is capable of entrapping gas, whereas the truncated cone is

completely flooded. Thus, how the shape of the cavities influences the

boiling depends on the contact angle.

In the present paper, we try to address some of the questions pertinent to

surface effects through numerical simulation. The study is aimed primarily at a

parametric analysis. In that respect, we believe valuable information may be gained

from such studies in terms of understanding the boiling curve behavior and in

terms of interpreting the experimental data. On the other hand, we acknowledge

that our numerical model is currently not capable of modeling ali the details of a

real boiling surface. While the model itself has certain limitations, the major

deficiency is in our capability of defining a real surface (as evidenced by our

discussion in the previous paragraphs).

In the next section, we provide a brief summary of the numerical model for

a boiling surface. The surface topography model, which is used as an input to the

boiling heat transfer model, is discussed subsequently.



IL BOILING HEAT TRANSFER MODEL _

We developed a computer program to investigate the pool boiling

phenomenon over a horizontal heater. The program consists of solving the three-

dimensional transient heat conduction equation within the heater subjected to

nucleate boiling over its upper surface, using a finite-control volume approach.

The details of the program and its closure models are provided in our previous

publications (Pasamehmetoglu and Nelson 1991a, 1991b, Pasamehmetoglu 1992).

A summary is provided in this section.

The numerical grid contains octagonal cells. The size of the octagonal cells

is determined by the maximum bubble departure diameter. In the current

calculations, the bubble departure diameter is assumed to be independent of the

heat flux over the range investigated. The departure diameter also is assumed to

be constant spatially over the boiling surface. For saturated water at atmospheric

pressure, the bubble departure diameter is computed to be ~2.4 mm, using the

correlation of Cole and Rohsenhow (1969). Potential cavities are placed in the center

of each octagonal cell. The program contains inception, growth, and departure

models for the bubbles stemming from those cells. During the bubble waiting time,

a transient conduction model for the liquid layer is used. Microlayer evaporation

and dry spot formation is modeled during bubble growth. Isothermal and isobaric

models are combined to characterize the bubble growth. During the isothermal

stage, the microlayer evaporation is assumed to be solely responsible for bubble

growth. When the bubbles grow to a given departure size, they depart. The cells

that do not contain potential cavities are cooled by natural convection.

The current calculations are performed using a 1-mm-thick copper heater,

and saturated water at atmospheric pressure was considered as the coolant. As

mentioned before, the nucleate boiling takes places on the upper surface of the



. heater. At the bottom surface, a constant heat flu_: is used for the results presented

in this paper.

The major limitation of the numerical model in terms of modeling a true

boiling surface results from the use of the finite-control volume approach with a

fixed grid. Only a single cavity located at the cell center is allowed to participate in

bubble emission. Modeling of multiple sites emitting intermittently under the

projected area of a given bubble currently is not considered. Note that the cross-

sectional size of the octagonal cells coincides with the size of a departing bubble.

Within this cell, a spatially averaged temperature is computed. The lack of spatial

temperature resolution in a given cell along with a fixed grid model makes it

impossible to properly account for multiple cavities in an octagonal cell. To

circumvent this problem, one can use very small grid sizes and allow a growing

bubble to extend over multiple cells. However, our preliminary attempts in using

this approach resulted in very expensive computations for a reasonably sized heater

surface (because of the enormous number of computational cells that results from

this approach). As a result, we decided to neglect the shortcomings in terms of

spatial resolution under a growing bubble and the inability of modeling multiple

sites in a computational cell of lateral dimension on the order of a few millimeters.

The calculations were run until stationary conclitions were obtained.

Typically, 2-3 s of problem time was enough to reach the stationary thermal

conditions. The calculated values, such as wall superheat and heat flux, bugle

density, and active nucleation site density were time averaged for the last 0.1--0.2 s of

the calculation. Sensitivity studies were performed to determine the grid size

dependency of results. No significant dependence was found for axial node sizes.

The readers are referred to the studies of Pasamehmetoglu and Nelson (1991) and

Pasamehmetoglu (1992) for more detailed information for the numerical scheme

and accuracy.
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• The surface topography model used as an input to the boiling heat transfer

program is discussed next.

llL SURFACE TOPOGRAPHY MODEL

To distribute the cavities over a boiling surface, we used a Monte Carlo

scheme. First, we assumed that ali the cavities were conical in shape. This is merely

an assumption and is based on the abundance of literature dealing with conical

cavities and the simplicity of this geometry. The discussion that follows would not

be qualitatively the same with the choice of any other idealized geometry.

Obviously, real geometries would have a considerably more complicated topography

model, but there is not sufficient empirical data for the choice of such complicated

geometries. Such complications would possibly overwhelm the subsequent results

and would not add much to our parametric analysis. Having made the choice of

cortical cavities, two geometric parameters must be determined for the cavity radius

and cone angle.

The cavity radii are obtained using a exponential probability density function,

given by

(Rc/1 exp , (1)
pdf (R c)= Rc,m Rc,m

where Rc, m is the mean cavity radius and is varied parametrically between 1 and

10 Bm in the current calculations. The exponential distribution was suggested by the

experimental study of Yang and Kim (1988). Their measured mean and maximum

cavity radii were 1.03 and 3.0 Bm, respectively. We plotted the cumulative number

densities obtained using Eq. (1) for a mean cavity radius of IBm in Fig. 3 along with

data of Yang and Kim (1988) and our Monte Carlo simulation results. The Monte



• Carlo simulation result presented in Fig. 3 considers two cases for a mean cavity

radius of 1 _tm. In each case, the total number of cavities on the heater surface was

100. As we will discuss later, the selection of seed number for the Monte Carlo

simulation is an important statistical parameter for defining the cavity distribution

curve. Cases considered in Fig. 3 use care for seed numbers that result in minimum

and maximum wall superheats.

Figure 3 shows that the Monte Carlo simulation results are in reasonable

agreement with the exponential cumulative distribution curve. For both seed

numbers, the deviation from the exponential cumulative distribution curve is

much less than the deviation of measured data from the exponential cumulative

distribution curve. As we will mention later, this change could cause a relatively

significant change in the wall superheat. It is difficult to claim that the exponential

distribution is universal for ali surface finishes. However, in view of the lack of

further information, we believe the current approach is as suitable as any other for

the parametric study of interest.

The second independent geometric parameter is either the cone depth or the

cone angle. We chose to model the cone angle using a normal distribution also

suggested by Yang and Kim (1988). Obviously, this is also a distorted distribution,

since negative cone angles are not permissible. Normal distribution is a two

parameter distribution where the mean and standard deviations must be defined.

Note that the cavity cone angle does not directly enter into the boiling heat transfer

calculations. We use Bankoff's (1958) criterion to determine whether a cavity could

be a potential nucleation site. For a cavity to be potentially active, we must have

0<2_ ,

10



where 0 is the contact angle and [5is th_,.half-cone angle determined statisticall,,'

using the normal distribution. In the c',_rrent calculati_ns, tile contact angle is

treated as a constant defined explicitly. If the above criterion is not met, the cavi:y

is assumed to be flooded and not allowed to activate during boiling.

As discussed before, because we can accommodate only one cavity per acti\'e

cell, it is difficult to convert the above statistics to a line-aw:¢_aged value of

roughness (CLA or PaN,IS),which is commonly used in reporting the roughness of

boiling surfaces. These are length-weighted averages, and when only one cavity is

present over a length of -2.5 mm (as it is the case for the current study), the

resulting roughness values are unrealistically small. However, the above statistics

can be converted to a mean-peak-to-valley height (referred to as Rz in German

standards (Batheau 1992, Bier et al. !978). Within the context of our model, Rz

simpl} refers to the arithmetic average of the conical cavity depths. It appears that

sor,'te of the boiling heat transfer data may be correlated as a function of the

parameter Rz. However, later we will show that Rz as a single parameter is not

sufficient to model roughness effects on the nucleate boiling.

In some calculations, we used an approximate approach where more than

one cavity is allowed in a computational cell. We used a normal distribution with

a mean number of cavities Nm and ._ standard deviation of ¢_Nto determine the

number of cavities in a given computational cell. (For the case where there is only

one cavity in the cell, Nm- 1 and C_N= 0.) We assumed that ali these cavities are at

or near the center of the computational cell, and the cavity with the largest radius is

the most favorable. Obviously, the most favorable cavity is a function of the wall

superheat (see, for instance, Han and Griffith 1965). In our numerical model, the

most favorable cavity is an input to the thermal transport solution and is not

interactive. With minor modifications to the computer program, this interaction

could be implemented. However, considering the approximate nature of the

11



approach and the unrealistic assumption that ali cavities are at or near the center

(fixed control volume), the refinement of this approach would be mostly academic.

Another arbitrary assumption is the normal distribution for the number of

cavities in a given cell. This arbitrary approach is further influenced by truncating

the resulting number to the nearest integer. This point is illustrated in Fig. 4, wtdch

shows the cumulative number of potential cavities as a function of cavity radius

for two cases. For each case, the mean cavity radius, 10 _m, was kept constanL

When Nm = 1 and c_N= 0, the total cumulative number of cavities was estimated as

100. For the other case _at considered Nm =4 and aN = 2, because of the above

mentioned truncation, the total cumulative number of cavities was estimated as 91,

indicating that the normal probability function found no cavity for some of the

heater cells. It is worth noting that for the latter case, the cumulative number for

the smaller cavity radius was decreased, indicating the existence of larger cavities.

As will be mentioned later, the increase in the population of cavities with a larger

radius will increase the heat transfer coefficient and correspondingly decrease the

wall superheat. Perhaps a better approach would be to use a discrete Poisson

distribution. Sultan and Judd (1978) observed that the active site distribution on a

boiling surface follows a Poisson distribution. However, this observation is valid

for active sites only (consequently, it is a function of the thermal transport).

Furtherr_ore, Sultan and Judd (1978) showed that the claim of Poisson distribution

for the active sites is influenced by how we choose the size of subareas.

Consequently, we believe the current approach (considering the limitation imposed

by a fixed grid) is as good as any in terms of investigating the qualitative effects.

However, this is an area where further improvements are possible in the numerical

model.

12



IV. RESULTS AND DISCUSSIONS

Some of the results obtained from the numerical simulations are reported in

this section. As mentioned before, in ali the calculations reported in this paper, we

simulated a 1-mm-thick copper heater. A 2.4-x-2.4-cm boiling area is modeled,

which is divided into 10 x 10 computational cells (2.4 mm is the bubble departure

diameter and is equal to the cell size). The power is supplied to the heater as a

constant heat flux from the bottom boundary, and the boiling occurs on the top

surface. Sensitivity of the boiling curve on the heater material, heater thickness,

and the heating methods also are investigated during the course of this study.

However, including the results of all those calculations within a single paper was

impossible, and those subjects will be treated separately in subsequent papers.

In the first set of calculations, we allowed only one cavity per computational

cell (Nm = 1 and C_N= 0). The cavity radii are distributed exponentially where the

mean cavity radius is varied between I and 10 _m. Also, _he cone angle is assumed

constant for ali cavities fl3m= 20° and a_ = 0.0°). The contact angle is assumed as 60°;

thus, ali the cavities are potential cavities and can be activated if the thermal

conditions are favorable. The calculations are repeated for three heat flux levels:

100, 150, and 200 kW/m 2. The resulting boili_ curves are shown in Fig. 5. As

shown, the boiling curve shifts to the left with increasing Rc,m. In addition, the

boiling curves become steeper with increasing Rc,m. In general, within the range

investigated, we can approximate ali the curves by a curve-fit in the form

q = C1 (ATw)al ,

where C1 decreases with increasing Rc, m and al increases with increasing Rc,m.

As indicated before, in these calculations, one cavity per computational cell is

used. Thus, there are a total of 100 cavities on the surface. Because of such small

13



' population size, we investigated the sensitivity of the results to our Monte Carlo

model. We repeated the calculations seven different times using different seeds for

the random number generator. Ali the calculations shown in Fig. 5 are obtained

using the same seed number that resulted in maximum wall superheat within the

sample of seven calculations. The wall superheat range did not show very

significant sensitivity for higher values of Nm. The temperature variation owing to

different seed numbers became as high as 2°C when smaller Nm was used.

For the case of Rc,m = 1 _tm, we plotted the cumulative number of cavities as

a function of Rc in Fig. 3, for the two seed numbers, 10 and 55. Those seed numbers

resulted in the minimum and maximum wall superheats. The cumulative number

densities are quite similar. The uncertainties involved fit the experimental data to a

given statistical distribution (i.e., the exponential distribution in this case).

However, deviation in excess of 2°C in the wall superheat for a given heat flux is

observed with this small variation in the statistics. Note that, in the study of Yang

and Kim (1988), a sample of 50 cavities was used in determining the s'tatistics for the

cavity size. Those 50 cavities were observed over a 15 mm x 25 mm area of the

heater. Thus, the discrepancy between the postulated exponential distTibution and

the data was far greater than the difference between the two curves, as shown in

Fig. 3. Incidentally, the experimental mean cavity radius for the data of Yang and

Kim (1988) was a little greater than I _tm. Thus, it can be stated that our model is a

good representation of a mirror-finished surface for a mean cavity radius of I mm.

The results suggest that one has to be careful in using the statistical data. It appears

that even small variations in the statistical parameters (especially in cavity radii for

smooth surfaces) may result in noticeable differences in the boiling curve. Large

samples are required to obtain meaningful statistics in reference to the surface

topography effects on the boiling curve.

14



• We repeated the similar boiling curve calculations using Nm =2 (o_ = 1) and

Nm= 4 (c_N= 2). The resulting boiling curves are shown in Figs. 6 and 7. As shown,

increasing Nm squeezes the boiling curves together. Because the possibility of a

potential cavity with a larger radius increases with increasing Nm (see Fig. 4), the

boiling curve for a given Rc,mmoves to the left. This shift is more pronounced at a

lower value of mean cavity radius and becomes relatively insignificant at a higher

value of mean cavity radius. This is because when Nm is increased for a larger mean

cavity radius, the possibility of having a significant variation in larger cavity

population decreases. Thus, for a higher value of Rc,m= 10 _m, increasing Nm has

very little effect on the boiling curve because it is very likely that each cell

containing a potential site will show less variation in cavity radius and will be

relatively independent of Nm. Actually, because of one of our simplifying

assumptions, for the case of Rc,m= 10 _m, increasing N sometimes results in an

adverse effect where the wall superheat for a given heat flux increases with

increasing Nra. This feature is discussed further in the next paragraph. We must

note that, when we repeated the calculations for Nm = 4 using different seed

numbers for the random number generator, the difference between minimum and

maximum predicted superheats was less than 1°C.

Another way of plotting Figs. 5, 6, and 7 would be to plot the wall superheat as

a function of Rc,mfor a constant heat flux. Such plots are shown in Figs. 8 and 9 for

q = 100 kW/m 2 and q = 200 kW/m 2, respectively. These figures show that the wall

superheat decreases with increasing Rc,mapproaching an asymptote. This behavior

is very similar to the experimentally observed behavior reported by Corty and Foust

(1955), where the wall superheat is plotted as a function of RMS roughness for a

constant heat transfer coefficient (q/ATw). Unfortunately, it is difficult to

quantitatively compare the two results because of the difficulties of converting the

Rc,mvalue to RMS roughness, as discussed previously. On the other hand, we

15



. mentioned previously that Rc, m can be converted to the mean-peak-to-valley height

(Rz), which is a roughness measure commonly used in the German standards.

These results indicate that, while the heat transfer coefficient increases with Rz, Rz

alone is not sufficient to characterize the boiling curve. As shown in this figure,

within the narrow range investigated, Nm also has a strong influeroce, confirming

the observations of Chowdhury and Winterton (1985).

Figures 8 and 9 show some peculiar behavior for Rc,m = 10 mm. As shown in

both figures, the wall superheat for Nm = 2 is greater than the wall superheat for

Nm = 1, for Rc,m = 10 _m. As we mentioned before, when a normal probability

function is used to distribute the number of cavities for each cell, because of the

truncation of numbers, some cells could result in having no cavity. For these cases,

the cumulative number density is less than 100, as illustrated in Fig. 4. Thus, the

predicted wall superheat could deviate from the expected trend.

Figures 10 and 11 show the effect of the standard deviation in cone angle on

the boiling curve. As shown, increasing the standard deviation increases the cone

angle for some of the cavities. The cavities with l_rge cone angles are flooded and

consequently can not activate. Thus, the boiling curve shifts to the right with

increasing a S. The same trend is observed for Nm = I and Nm = 4. However,

increasing Nm increases the probability of a potential cavity with a relatively larger

radius in each cell. Consequently, the boiling curves are less sensitive to c_ for

Nm= 4 (Fig. 11) than they are for Nm = 1 (Fig. 10). Similar behavior is observed for

calculations repeated using different values of Rra. In these calculations, a contact

angle of 60° is assumed between the copper surface and water.

Another parameter that results in the same type of shifts for the boiling curve

is the contact angle. By changing the contact angle from 60° to 40°, the boiling

curves shift to the right, as shown in Fig. 12. As shown, the sensitivity increases

with decreasing number of cavities and with a decreasing mean cavity radius.

16



V. SUMMARY AND CONCLUSIONS

The effect of surface topology on the saturated pool nucleate boiling curve

was studied parametrically using a numerical simulation model. The numerical

simulation consisted of solving the three-dimensional transient heat conduction

equation within the heater subjected to nucleate boiling over its upper surface. A

finite-control volume approach with octagonal cells was considered to simulate a

single bubble.

The surface topography mcciel to distribute the cavities and cavity angles over

the boiling surface used a Monte Carlo scheme. Ali cavities were assumed to be

conical in shape. Each octagonal cell was considered to have a number of cavities

obtained from a normal distribution with a known standard deviation. However,

only one cavity with the largest cavity radii was assumed to be activated for each

octagonal cell. The cavity radius is obtained using a exponential probability density

function with a known mean value. The cavity cone angle for each cavity was

determined using a normal distribution and required the mean cavity angle and its

standard deviation to be specified. To determine the potential cavities for

activation, Bankoff's (1958) cavity flooding criterion is used.

Parametric results showed that the saturated nucleate boiling curve shifted

left and became steeper with an increase in the mean cavity radii when a constant

cavity angle and total number of cavities are considered. Calculated boiling curves

could be correlated with the classical approach q = C(AT)a. The coefficient C

decreased with increasing mean cavity radii, and the exponent a increased with

increasing mean cavity radii.

The boiling curve was found to be sensitive to the selection of the number

of cavities for each octagonal cell. A small variation in the statistical parameters,

especially cavity radii for smooth surfaces, resulted in noticeable differences in wall

17



• superheat for a given heat flux. This result indicated that while the heat transfer

coefficient increased with cavity radii, corresponding to cavity height (or roughness),

the cavity radii or height alone is not sufficient to characterize the boiling curve, as

previously suggested by Chowdhury and Winterton (1985). It also suggested that

statistical experimental data should consider large samples to characterize the

surface topology.

The boiling curve was shifted to the right when the cavity angle was obtained

using a normal distribution. This effect became less important when the number of

cavities for each cell was increasing owing to the fact that the probability of the

potential cavity with a larger cavity radii in each cell was increased. When the

contact angle of the fluid decreased for a given mean cavity radii, the boiling curve

shifted to the right. This shift was more pronounced at smaller mean cavity radii

and decreased with increasing mean cavity radii.

The paper illustrates that the simple numerical simulation model is capable

of predicting most of the parametric trends of the nucleate boiling curve. Obviously,

a finite control volume approach with a fixed grid has certain limitations in

simulating the real surface topography. In addition, the data comparison is difficult

because a single parameter roughness data CLA or RMS is difficult to convert to

topography (the parameters of interest are those such as cavity shape, angle, radii,

and number density needed).
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Fig. 1. The role of adjacent cavities in bubble nucleation.
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Fig. 2. Influence of the cavity shape on the boiling curve.
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