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Abstract

For many reniote sensing applications, land cover can
be determined by using spectral information alone.
Identilying urban areas, however, requires the use of
texture information since these iarcias nre not gener-
ally characterized by a unique spectral signature. We
have desigued a one-class classifier o discriininate be-
tween urban and non-urban data. ‘T'he advantage to
using our c'ssification techniyue is that principles of
both statisticni and adaptive pattern recognition nre
used mimultancously. ‘This prevents new date that is
completely disgimilar froin the training data from be-
ing incorreetly classified. At the same time it nllows
decinion boundary ndaptation to reduce clasification
error in overlap arens of the feature space. Results will
be illustrnted uging a LANDSAT seene of the city of
Albuguerque,

1 Introduction

Landsat ‘Thematie Mapper (TM) data consists of
seven dilferent bands of spectral information. It mnny
remote sensing applications, tand cover can bhe doter-
mined by the absorption and reflection of different
wavelengths of light. Each pixel for o seene, then, can
he elnsnified molely with respeet 1o the speetrnl vaie
nen nssociated with that pixel, A' hough this method
works well for wlentifving many ditferent geogeaphie
nrean (e, deciduous Toresta, coniferoun forests, bol.
ien of water, agricultural flelds, ete)), it does not work
well when attempting to locate urban arems.,

Uebnn arens do not, it general, hinve 8 unigue spee-
teal mignature, A single pixel in o Ladeat seene covers
an nren of WO agquare metees, Pixels loeated in heny-
ily populated downtown arens, therelore, wie. sontain
vweh dilferent, information than pixels loeated in eon.
identinl nrens. Another problem s that o pixel repre
septing n residentinl backyard may look the sanne ax

CHANNEL WAVELENGTII (um)
1 | Visible Blue 0.45-0.52
2 | Visible Green 0.52-0.60
3 | Visible Red 0.63-0.69
4 | Near Infrared 0.76-0.90
5 | Mid Infrared 1.55-1.75
6 | Thermal Infrared 104-125
7 | Mid Infrared 2.08-2.36

Table 1: Spectral Bands for T'M Data

u pixel representing o forested aren far from any city.
For these reasons, spectral information is insuflicient
to allow discrimination between urban and non-urban
data.

2 Feature Selection

For detecting urban areas, we used textural features
instead of spectral features. ‘Textural features are im-
portant for this problemn, because urban arcas lovk
“busy” compared to other nreas in a Lamlsat scene,
The features nelected for this problem were texture
energy measures developed by Laws [1. 2], ‘They have
the ndvantage of being able to allow disernmnation
hetween dilferent Ltypes of textures, whil: being guick
and onsy Lo compute,

The texture features were enleulated from the ‘I'M
Band 4 itage (near infrared) in 3 stepn. Step one con-
volved the imnage with a nmber of convolution kernels,
The second step performed an abrolute windowing op-
eration on the convolved images; each pixel value wns
replaced by the mun of the absolute values of the pixel
valurs in o wguare neighborhood mirrounding i
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Finally, related features were added together to pro-
vide features invariant to rotation.

5 = [ 1 4 6 4 1 |
ES = [ -1 -2 0 2 1 |
S = [ -1 0 2 0 -1 ]
Ws = [ -1 2 0 2 1 ]
R = [ 1 - 6 -4 1 ]

Table 2: Center-Weighted Vectors

Table 2 lists the 5 one-dimensional center-weighted
convolution masks which are nsed to ereate the 25 two-
dimensional 5-by-5 convolution masks. These 5-by-
5 mnsks are created by convolving a horizontal mask
with n vertical mask. For instance, an ES5L5 mask
is formed by convolving a vertical E5 mask with a
horizontal LY nask.

After convolving the base imnge with one of the 5-
hy-5 convolution kernels, the associated Texture En-
ergy Measure (TEM) for each pixel is calculated by
summing the absolute pixel values of the convolved
image within a 15x15 pixel window, A total of 25
T'EM _mnges were calculated during this stage of image
processing. "This set was then reduced by combining
related TEM images, such as the LHES and ESLS im-
ngew, Lhe SHISH and RH8H imnges, ete. All imnges were
divided hy the LALS image to normalize features for
contrast, after which the LSLH image was discarded.
I'he reault was noset of 14 images, each representing
some texture feature for the image. Fach pixel in the
image v now represented by a veetor of 14 features.

3 One-Class Classification

When training a pavtern clansilication system to dis-
eriminste hetween different classes of data, it w de-
sicnble to use training data representative of all input
which s expected to be elassilied by the system, Prob-
lenn exist, howsver, where representative tenining sets
are not casily obtainable. I eases kuch as these, it may
be desirable for mystems to claasify patteris only when
they are wimilar to the training data, and reject disgim-
ilar dnta, Otherwine, unfamiline dath mey be poorly
entegorized. 'atteen tejection techniques of this Kind
nre important for many applieations, especially those
where misehasibi-ations are very costly,

The wlea of ejecting potternn can also be viewed
an part of the one elasw elnastlior problem. This proi
lem nned somwe approaches o solving it are diseussed
in [3]  Consider the problem wheee patteens from
ningle closn of data need 10 be detected, Trvining datn
from other elwses ny or ay not be available whea
the classifler i to be desagined, A one-class clussilior

will attempt to define a “closed decision boundary” in
the feature space X around the in-class data. New
data is then classified as in-class or out-of-class data
depending on its location with respect to the decision
boundary.

In this paper, we use a one-class classifier 1o dis-
criminate between urban and non-urban data. This
is achieved by first creating a decision boundary that
surrounds the areas in X containing urban data. Next,
in finding an optimal decision bouwdary, all available
training data for both urban and non-urban data are
used by an adaptive algerithm to minimize classifica-
tion error.

4 Initialization

Qur classifier works as follows. Urban data is rep-
resented by a set of hypercllipsoidal clusters in the
feature space. Data falling inside ot least one hyper-
cllipsoid is considered in-class data (urban). A hyper-
ellipsoid is defined by a mean vector, g, a covarianee
matrix (symmetric and positive definite), X, and an
cffective radius, d. 'The mean vector determincs the
location of the hyperellipsoid, while the covariance ina-
trix determines its shape and orientation. The squared
Mahalanobis distance [4] is used to determine if a vec-
tor £ lies inside or outside of a given hyperellipsoid.
Vectors lying inside of a hyperellipsoid wntisfy:

(- z-p) < d (2)

An initial clustering of the urban traning data s
needed as the basis for this claasifier. ‘Thiere are nnimer
ous ways in which this might be aceomplished. We nse
the k-means clustering algorithm [4). ‘T'his algorithm,
however, uses the Euclidean distance metric for clus-
tering data, snd may not yield representative hyper-
ellipsoidal clusters. [n coses such aw these, the cluster
merging scheme proposed in (5] can be used.  After
cluster centers have been determined, elfective radii
are welected for each cluster. We choose the elfective
radius o for each eluster so that under the assumption
that the data is gaussian in nature, % of the dnta will
full inside the boundary (typically P=99%) For an V.
dimensional problem, the disteibution of the squared
Mahalanobin distances to each of the vectors within
a given cluster a7 distribntion with N degrees of
freedoni. IF pattern veetors conmint of 14 features, for
example, then an effective cluster cadius of 2.1 woukl
eaune the hyperelliproidal boundaries to contn 99,
of the datna,

5 Hyperellipsoid Modification

After clanifier mitinlization, urban d-tn w represented
by n number of hyperellipsoidal elusters e tee fea



ture space. An adaptive training algorithm is now em-
ployed Lo reduce classification error in arcas of known
overlap between different classes. During adaptation,
each hyperellipsoid in the classifier will maintain its
original orientation, although its position and shape
will be modified. The algorithm that we use is similar
o the LVQ algorithin [6], and thus is referred to as
the LVQ-MM algorithm (LVQ using the Mahalanobis
distance Metric).

Assume that we have a hyperellipsoidal decision
boundary, and a new vector which we would like to
include within the in-clnss data region (see Figure 1).
We are only going to allow the mean vector p and the
cizenvalues of the covariance matrix X to change. This
means that the orientation of the cluster will remain
fixed, although its position and shape may be modi-
fice. "The cluster will be modified in such a way that
the following are true: (1) the new point, g,,, lies on
the new eluster boundary; (2) the original boundary
point lying on the opposite side of the hyperellipsoid
from g, remaina on the cluster boundary; and (3) the
eigenvalues of ¥ are modified in such a way that the
hyperellipsoid is only stretched “towards” r,,.

Bufore Clustor Modification
: New Vevlor
. i . -
. . — [}
Oppoane Vector  ~ = - ., b
()nlm;l Cluster
Atter Clusier Moditication
New Vecior
< o - ] s >
Oppostte Vectar =~ ~— s A
Modified Cluster

Figure 1: Modifving a llyperellipsoidal Boundary

The new mean veetor for the eluster will lie i
rectly between g, and the point lying oppasite it on
the hyperelipsoidal bonndary, and is given hy:

D)ol

where o in the elfective cluster radius, and m,, v the
sqiares] Nahalanobis distanee Trowa the eluster to g,

Alter computing g we need to ndify Y Inodo
g, o, We ape --u_u.-nl.in“_\' poing (o stretel the decision
boundary towards the new pomnt, g, Note that il
the uew posnt hes along owe of the hyperelliprondal
axew, thnt anly ope efgenvalue for Y will need o be
chanpeml  Otherwiae, all (or ot least several) eigenval.
wea Will need 1o be odilied, For sumpheity, wo will

restrict our attention to modifying tae inverse of ¥.
Let us decompose £~! as follows:

Sl = MAMT (1)

where M is the orthonormal eigenvector maunx for
u-t 1 Ais the di al cigenvalue i 1
L= and A w5 Lhe diagonal eigenvalue jnalrix. Y
stretzh the cluster we will modily the eigenvalues of
v-!, and keep the cigenvectors fixed. 'Thus we wish
to lind a new inverse covariance matrix:

= MAMMT ()

where the “stretch matrix™, Ay, takes on the form:

1+ 68p 0 07
p=| O tHE o U ()
0 0 1+ éxp

The parameter p determines the totnl streteh, and
the parameters 8; determine the percentage streteh in
the direction of the i** principal component. The 8,
satisfy the following constraints:

0<a <1, Y si=1 (7

Our goal is to determine the parameters p and 8,
so that the hyperellipsoidal boundary i inoved to 2,

A=l

(Ln - E")T"‘" (I" - u") = ll (N)

u-l = MAAMT )

Let us define n new vector 2 to be:
a=ACMT (L, - ) (10)

T'h: components of this vector, &, i = 1,2,....V,
represent the strength of the projection of £, onto the
N principal components. With this, (8) can be rewrit

fen s
N

Sha=Y o =d (I
1=1
The percentagen, 8, nee chosen to be equal to the
relative magnitude of the projection of £, onto each
ol the principle componens:

O = (1
).,=| Iy
It ix enny to venfy that this chowee Jor &, satishes
(T) Substituting (12) into (11) and solving for p we
Aet:

Pd my) .‘N lul thh
Yo La !



In sumimary, the new inverse covariance matrix is
given by (5) where the components of As are computed
using (10), (12), and (13).

The cluster modification method discussed above
provides a foundation for the classifier adaptntion al-
gorithm, Using the cluster modification techniyue to
move clusters “toward” and “away from” Lraining vec-
tors, this algorithm will attempt to minimize classifica-
tion error in regions of known overlap belween classes.
We will restrict our attention to modifying clusters for
a single class of data only. This process is then used
independently for each class of data.

6 LVQ-MM Algorithm

Consider the two-dimensional problemn shown in Fig-
ure 2. The classifier has been initialized using the in-
clags training data, ani consists ol three hyperellip-
soids in the input spice. Notice that based on the
training data available to the lassifier, there i3 no
overlap in the region “below” the current hyperellip-
suids. The ouly conflicting areas lie on the upper por-
tion ol the closed decision region. ‘This suggests Lhat
hetter classifier performance can be achieved by allow-
ing the deeidion region to include all in-class vectors
lying below the current set, and by moving the up-
per boundary of the classifier to a position minimizing
tiselagnifications in that area,

. i} 0 .
“9 9 o o . a .
. o : o Y 4 "
. ..N R o’ /—.IT
\ "\\U a ke " ﬂu,ﬂ * .- )
N RS A
" . . 1\ At .. . LIS -~ »
. "-.l " d .
N
- e N B -

* in-¢Tsm Training Dela
(- (F-CTem Traming Dela

Figure 2: A Two-Dimensional System Before Adapta-
Lion

A single stepin the LYQ-MM algorthim will basi-
eally work as follows. Seleet a rnndom veetanr from the
temuing dota whicl is currently nusclassilied (correctly
clasnified namples do not affect the elassilior tenining).
Uningg the elnater adaptation equations previously de-
tivedd, move one of the hyperellipsoidal boundaries ei
ther toward or away from this veetor, depewding on
ita clans inembership, Note that ns the eluster wdap
tation equations currently stand, thiv step will nlways
enige the current. veetor to full direetly on the new
hyperellipsoidal bhoundnry,

The question to be nddressed now s, “Which of

N_‘
O

)

CASE 1

New Verws

Figure J: Selecting Desired Boundary

the hyperellipsoids should b » modified?™ Consider the
two cases illustrated in Figure 3. In Case | we want to
modify cluster 1 to include the new vector even though
the mean vector for cluster | s farther away from the
new vector than the mean vector for cluster 2 in terms
of Fuclidean distance. In terms of Mahalanobis «is-
tance, however, the opposite is true. In (‘ase 2, on the
other hand, the roles are reversed. We: wanut to modify
cluster 2 to include the new vector. The Euclidean
distance to cluster 2 is smaller than the Euclidean dis-
tance to cluster 1, and in terms of Mahnlanobis dis-
tance, cluster 1 is closer. Clearly, the cluster to be
madified should be the cluster whose houndary is clos-
o4t to the new vector (in terms of Euclidean distance;.
It can be shown that the distance from the boundary
to the new vector is given by

dist = |1~ \[E) ey -l ()

where d is the effective cluster radiug, and m is the
squared Mahelanobis distance to the new vector. The
adaptation loop, then, works ay follows.

LVQ-MM ALGORITHM

(1) Seleet notraining vector that is miseiassinicl
(2) Determine which cluster to modify

(4) Modify mean uning (3)

(1) Maodify inverse covariance matrix using (5)

Thiz algorithim in typically run for several passes
through the training data,

7 Cooling Algorithm

An with many adaptive pattern recognition techngues,
a cooling lechnigue enn be used with the LVQ RN al



Elfactive Cluter Radiug

Fiective Inner Raiius

Figure 1: False Effective Cluster Radii

gorithm to ensure convergence of the decision bound-
ary positions. As the LVQ-MM nalgorithin exccutes,
there will be continusus conltlict in the regions of the
feature space where urban and nonurban data overlap.
Boundaries will continually move outward to “catch”
mnre in-clnas data, and then move inward to reject out-
of-clnss data. The basic principle for cooling in this
algorithm will he that we will only move the decision
boundary "towards™ the vector in question, instend of
moving the boundary on top of it. As the algorithm
progresses, the nmount which the decision boundary
in allowed to move will decrease.

The cooling algorithn: for the LVQ-MM algorithm
will support n [alse set of effective cluster radii. For
any given cluster j Laving an effective cluster radius
of dj, wwo false radii will also be stored. One will be
an effective outer radius, denoted «lj*, and the sccond
will be an eff:ctive inner radius, denoted d7. Geomet-
rically speaking, the cluster bhourdaries generated by
the true effective cluster radius, dj, will lic between the
cluster boundaries generated by the false radii (see Fig-
ure 4). ‘These false effective radii will he used instead
of the actual effective eluater radii during adaptation.

When determining if an in-class vector currently
falls outside of a cluster, the false elfective radius d}
will be used as opposed to dy. The cluster modifica-
tion routine will then ndjust. the cluster so that the
(alse boundary generated by using 'Ii+ as the effective
cluster radion falls on top of the misclassiliod vector,
Note that the reue cluster houndary is moved townrd
the winelnsniliod veetor, hut it does not move all the
way up to it. The same idea holds for dealing with
misclngsified ont-of-class training vectors, except that
d} ix uned as the effective cluster rndius,

The astual caoling algorthm will be the algorithm
which determines how o nnd ! are modiied dur-
ing the execution of LVQ-MM. There are numerous
methods which may be used,  \Wo present only the
one nsed for obtaining the results presented in this
paper .\ conling parameter, eool, is selected where
0 = ool 1. (No cooling occurs when eool - 0),
Eneh elunter § in the claanifier has associnted with it
values for o and df . Roth of theae values are initially
sl to the actual effective eloster endius for cluster j,
dy. After chister j in adapted Lo inelude an outside

vector, its effective outer radius, d;‘. is increased by
multiplying it by (1 + cool). Similarly, aller cluster j
is adapted to reject an inside vector. d | is decreased
by multiplying it by (1 — cool). Using this technigue,
cach cluster’s movement ability is “caooled” hased only
on its own recent level of activity, and not that of the
entire system. Obvious modifications to this method
of “cooling” can be made to change the system behav-
ior.

8 Results

Urban and non-urban data sets were selecied from the
Albuquerque scene to train and test our classificaton
methods. The non-urban training data includes some
areas which, although they look different than urban
areas, are also highly textured. In selecting a set of test
data for this problem, urban areas which look sinilar
to the urban training data were chosen.

We first trained a linear classifier and a 1-hidden
layer neural network on the problem. Lincar classiliers,
by definition, do not define closed decision houndaries,
and multi-layer perceptron neural networks are not
guaranteed Lo form closed decision boundaries. T'a-
ble 3 showa the linear clagsification resnlts using the
[.MS algorithm, and Table 4 shows the reaults using
the neural network. When used to classify the en-
tire 1024x1280 Albuquerque teat iinnge, these classi-
liers categorized nbout 22% of the imnge as urhan.

URB NON Correct
Urban (train) 17763 3G 99.52% |
Nonurban (train) 322 156569 09.79%
Urban (test) 15459 7T OROK. |
Nonurban (test) 192 54048 99 65%

‘Tuble 3: Linear Classification Using the LMS Learnmg
Algorithm

URD NON Clorreet
Urban (train) 17845 A 00 OR%
Nunurban (1rain) AO8  I564R 09 TIA.
Urban (test) 154448 PTECERIES
Nonurban (Lest) HY  hdIRl 90N

‘Tnble 4: Classification Uning the Backpropagation
Learning Algorithm

Uning the one-clasn classification npproach for this
problem, the urban training data was clustered into 5
clusters. An effective cluster radius of 2.1 was chosen



for ench cluster. and this classifier was used to catego-
rize the data from the Albuquerque teet scene. Again,
this classifier catogorized about 22% of the iinage as
urban. Numerical results for this classifier are shown
in Table 5,

URB NON Correct
Urban (tram) | 17499 350  98.04%
Urban (test) 13390 2306 R5.31%
Nonurban 4394 2067IT  97.92%

"Table 5: Classification Using 5 Clusters (Before Adap-
Lation)

After using the LVQ-MM algorithm to modify the
decision Loundaries, only 17% of the test scene is cat-
egorized ns urban. These results are given in Table 6.
This clnusifier separates the training data well, and re-
Jeets ahout 6.63% of the urban west dnta. Results from
the adapted classifier using only 1 cluster are given in
Table 7.

URD NON  Currect
Urbun (train) 17848 1 99.99%
Nonurban (train) 7 156884 100.00%
Urban (test) 146hH6 1040 93.37%
Nonurban (test) 3 54237 99.99%

‘T'able 6: Classification Using LVQ-MM and 5 Clusters

URB NON  Correct
UUrban (train) 17848 1 99.99%
Nonurban (train) 1268 155623 !)!).l!l:}_{._
Urban (Lest) 15400 26 98.43%
Nonurban (test) T 5166 9D.86%

Pable 7 Classilication Using LNQ-MNM and 1 Clustoer

9 Conclusions

The concept of using closed decimion houndares for
pattern recogiition allows nosystem to be canmidered
tobust in the sense that anomalous input data will
nob generate a false “deteetion” of a given clww of in-
terest, The cinmgifier presented here does a good job
at rejecting anfamiliar data as being son-urban. Ad-
ditionally, the clawifier ean be crented by using only
in-class teaining data. Maay pattern recognition nlgo.
rithmn are unnbie to do this,

References

(1] K. Laws. Textured Image Scgmentation. Ph.D. dis-
sertation, Univ. of Southern Calif., January 1980.

[2] K. Laws. Rapid texture identification. In SPIE
Vol. 238 Image Processing for Mismile (uidance,
pages 376-380, 1980.

[3] M. Moya. A Constrained Second-(Ordcr Neiwork
with Mean Square Error Minimizalion and Bound.
ary Size Minimization for One-Class Classifica-
tion. ’hD Dissertation, University of New Mexico,
1991,

[4] R.O. Duda and P.E. Hart. Pattern (lussification
and Scene Analysis. Wiley, New York. NY. 1973.

[5] P.M. Kelly. A One-Class Classifier !!sing ilyperel-
lipsoidal Decision Surfaces. Manaters Thesis, Uni-
versity of New Mexico, 1991,

[6] 'T. Kohonen. Self-Organization and Associative
AMemory. Springer-Verlag, Berlin, Germany, 1988,



