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Abstract

Electronic factors that explain the relative stability of simple and complex phases in tran-
sition metals are examined within a realistic tight-binding model. A repulsive pairwise
interaction of the Born-Mayer type is added to the band energy term. The parameters of

this short-ranged repulsive term are determined by fitting the total energy to elastic prop-
erties of the bcc-based metal. The model is further simplified by introducing _he Linear
Green function Method. The study focuses on the properties of molybdenum, correctly
predicting bcc as the stable phase.

\Vork performed under the auspices of the U.S. Departn'lent of Energy b)the Lawrence
.No.Livermore National Laboratory under contract W-7405-E.NG--tS.



Introduction

The study of complex systems with realistic simulations techniques such as ._Iolecular
Dynamics or Monte Carlo has rapidly developed in the past few years. Meanwhile. the
application of these methods is limited by our knowledge of the interaction potentials or
forces among the atoms, To be useful tile working models should be computationally
efficient to treat a large number of atoms while providing a reliable representation of the

structural and energetic properties of the systems under study. Methods such as the Car-
Parrinello [1] scheme can treat the interatomic interactions accurately in the framework
of ab initio density-functional theory within the local density approximation. However, to

.study real systems this scheme has been rather limited by the large computational effort
which is required. A tight-binding approach seems to be still the most suitable method
for this kind of calculations in systems with localized electrons like transition metals and
their alloys, or in covalent systems (such as Si or C). The goal of the current work is to
explore the applicability of such a method at different levels of approximations. After
a brief description of the model, we present an application to the problem of structural
stability in the case of a transition metal, namely molybdenium.

Model

We start by describing the total energy of the system per atom as the sum of two contri-
butions,

ETot = Es,,,,e + Ea,p, ( 1)

where EB,,_e is the one-electron band energy calculated for a parametrized tight-binding

(TB) hamiltonian, and Ea¢p is a short-ranged repulsive energy to ensure crystal stability.
The TB hamihonian takes the usual form

Ho= _ [iA)e_(iA[+ ___Iia)/3i}"(3.l, (2)
iA ij

" Ap

where i,j are site indices, A,/_ are orbital indices, and the e and /3 refer to the on-site
t,

energies and hopping integrals, respectively.

The TB parameters are required to be both transferable and suitable to use in ex-tensive
.,Monte Carlo or Molecular Dynamics simulations. They are typically extracted fi'om ab
initio (or fitted to) band structure calculations. The band energy may be written as

EB,,,e = [_ En(E)dE, (:3)
J-c_,

where EF if the Fermi energy and n(E) the density of states. This last quantity can be
calculated using the familiar continued fraction expansion

1
7_(E) = -- lira ImTrG(E + i_) (4)

7( _0 +
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The coefficients a,, and b:,, associated with the n th level of continued fraction, are calculated
using the recursion method [4].

The repulsive term is usually built up from a sum of two-center potentials.

= ¢(,.,j), (6)
i<j

where rij is the distance between atoms i and j, with rij < ,'_ where re is a cut-off radius.
, The repulsive term is modeled via a Born-Mayer (BM) type potential,

@(rij) = Ae -p ,'ij/ro, (7)

where .4 and p are obtained by fitting the bulk modulus and the equilibrium lattice pa-
rameter, and ro is a reference distance.

Computation and Results

We exemplify the problem with molybdenum using the TB parameters suggested in the
work of Masuda et al [2]. The variation of the hopping integrals with distance is given by
the following power-law

= (s)

where ro is the first nearest neighbor distance in the bcc-based Mo lattice. The calculation is
lest.ricted to d-orbitals, and the hopping integrals extend up to the second nearest neighhor
shell. The parameters are given in Table I.

Table I: TB Parameters used in the present calculation.
-_,

dda (Ry) ddr, (ay) dd6 (RY) Q
-0.08594 0.06444 -0.02402 3.57

, , , . ,

A recursion calculation was performed to compute eleven levels (i.e.. 2'2 exact moments
of the density of states) for the continued fraction expansion of the Green function which
describes the electronic properties of the bcc, fcc, and A15 crystalline structures. For
this maximum number of levels of continued fraction, the band energies converge within
0.1 mR3 and they' will be taken as reference energies to which the results of further approx-
imations will be compared. Keeping in mind that we want a reliable still computationally
tractable method for obtaining the energetics of the system to use in _kiD simulations, we
further study the suitability of the Linearized Green function Method (LGXl). In the LGM

,.see i:3i for an extensive study of the method) the band energy differences s expanded
as a sum of "'universal': functions which are defined for a convenient ret'ereizce nledium.

mu]tiplied by fiuc_.uati,>r_s of continued fractic.n coefficients _which in turn a:e related to
:?:e differe::ce be;.ween tLe moments of the density of states i.



Table II: Computed energies as defined in Eq. 1 for tile three
different structures, and repulsive potential parameters.

" ....... Approximation .....

Struc. = (Energy in Ry) up to/_6 up to t_
" Es.... -01S 56 -0.8300

bcc En 0.2938 0.2962
ETot -0.5318 -0.5338
Es -0:7866 -0.7916

fcc En 0.2877 0.2901
ETot -0.4985 -0.5015
Es -0.8252 -0.8363 ....

A15 En 0.3129 0.3153
. ETot -0.5123 -0.5210

,..............

En A (Ry/atl.) 0.03155 0.03178
param, p 9.8159 9.7886

.... , ,, , ,

AE(p,q ) P qx-_ = _ o.'nSa,_+ 2 _ #.,m,Sb,.,,, (9)
n=l m=l

where q_, and _b,_refer to "universal" functions, and ai and bi are the coefficients of the
continued fraction. The quantities ¢_ and _b,, are calculated from the Green function
elements GI,, which characterize the average medium. The actual expressions for these

integrated quatities are

/_b,,(E) Im lim dt(t E) 2= - G,.(t + i ,7) (lO)
7;', _--,0 oo

and

//0,(E)= Im lira dt(t-E)G1n(t+i,1)G_,+_(t+iq). (11)
n ---_0 c_

The two parameters of the repulsive term were obtained by fitting the calculated equilib-
rium lattice parameter and bulk modulus (of the bcc structure) to the experimental values

given for Mo (B = 1.80Ry atom-l). The results for the three structures are shown in Table
II. \Ve can see that t,he error in t.he approximation is about l0 mRy or less which is within
the accuracy usually attributed to the determination of the elastic constants.

The next step is to use the LGM with the bcc structure taken as the reference nledi_m.
L-'(3'31 (see Eq. 9). Figure2o be consistent with the previous approxima, tion we consider _,.x,_y

1 shows the "exact" and the LGM approximation for the band energy differences between
the A15 and bcc structures as a function of the d-band filling. The LGXl curve follows the
"'exact" one qualitatively with differences of the same magnitude as in Table II.

Figures 2 (a) and (b) compare the energy differences between the three structu,:c_ obtaiiie, t
with the LG, I. Notice that only after including the repul._iv(_ collt,'ibutioi_ ,_,.- _1_' b,,
structure become more stable at the band filling value v,tlict_ correspol_d- ,_, .',1,., _i.,,..
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Figure 1" Band energy difference A15-bcc (Mo): full line, "exact" • dotted line. LG,.XI.

Table III: Shear Elastic Constant C44 for bcc-based Mo in

Ry atom -a calculated with different approximations. The exper-
imental value is taken from Ref. [5]

(744

Approx__ Band co_ P_p-

4.4). The two parameters used in this repulsive contribution are shown in the last row of
Table I[.

Finally, we present in Table III the values of the calculated and experimental elastic con-
.,taut C44 for bcc-based Mo. This allows to check the consistency of the BM potential

parameters. In order to compute this quantity we need to express the total energy as a
fdnction of the lattice strain. This strain can be chosen so that the energy is an even func-
tion of the strain, and at the same time, in the case of cubic phases, preserves the volume
of the unit cell [6]. Thc following (monoclinic) strain tensor was used in the calculation of

644.

(o o)
2

= _ 0 0 (12)
- r/2_
0 0 4-rl-

\k'ith this strain tensor the energy can be written as

E!_! = E(-_)= E(O)+ S C'_,_1/<,

. . _ : 0 f _ . ": , .... ,,

•,,.-Sere r, represenvs t:.e szra n ar:ct I, "he volume . t.e unil ce'.:. (- :to,.ice :.i-: ;. ;i;octo
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Figure 2: Band energy differences: full line , fcc-bcc; dotted line, A15-bcc; dashed line,
A15-fcc: (a) band energy only, (b) total energy (band energy plus repulsive contribution).
The sign convention is such that AE x-v < 0 implies that X is more stable than Y.

underestimates the value of this elastic constant. This can be attributed to the neglect of

hybridization in our TB model hamiltonian [2].

Conclusion.

An apphcation of the Linear Green function Method coupled wita a Born-Mayer potential
was presented to describe relative stability in transition metal systems. The need for a
repulsive contribution was demonstrated in order to stabilize the ground state crystalline
structure. A sixth-moment approximation of the density of states seems to be sufficient

to produce physically sound results. This time efficient and simple approach is particu-
larly stilted for describing the evolution of realistic systems during a molecular dynamics
s4mulation.
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