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ABSTRACT

The analytic solutions of Boulton (1954) and Neuman (1972)for transient flow to a well in an

unconfined aquifer are based on the assumption that the role of the unsaturated zone can be ade-

quately accounted for by restricting attention to the relea.Teof water from the zone through which

the water table moves. Both researchers mathematically treat this released water as a time-

dependent source term. The differences between the models of Boulton and Neuman are that the

former neglects vertical components of flow in the aquifer, but allows for an exponential process

for the release qf water as a function of time, whereas the latter assumes instantaneous release

from storage, but accounts for vertical components of flow. Given this set of assumptions, we

examine the applicability of these two methods using a general purpose numerical model through

a process of verification extension and comparison. The issues addressed include" the role of

well-bore storage in masking intermediate-time behavior, combined effects of exponential release

as well as vertical flow, logic for vertical averaging of drawdowns, and the sensitivity of system

response to the magnitude of specific yield. The issue of how good the assumptions of Boulton

and Newnan are in the context of the genecal theory of unsaturated flow is addressed in part 2 of

" this two-part series of reports (Zhu and Narasimhan, 1991).
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1.0 INTRODUCTION

Transient analysis of radial flow of water to a well has interested groundwater hydrologists

for more than half a century (Theis, 1935). Indeed Theis' classical paper applied ata exponential

integral solution to a water table aquifer rather than a confined aquifer, with which it was later

associated. Because of the complexity of an unconfined system due to its interface with the unsa-

turated zone and because of the difficulties inherent in solving the unsaturated flow problem

analytically, attempts have been made by many researchers to simplify the problem with ideal-

ized approximations of the effects of unsaturated zone ,and restrict the solution process to the

saturated domain. The key feature that these idealizations must account for is the inflection fre-

quently observed in the time-drawdown plot of unconfined aquifer pump tests. Two categories of

idealizations have been used conceming the release of water from the zone through which the

water table moves: (1) gradual release (Boulton, 1954) and (2) instantaneous release combined

with time-dependent vertical movement of water within the aquifer (Neuman, 1972). These two

widely used idealizations have been discussed by Neuman (1979).

The purpose of this paper is to investigate the applicability of these idealizations, given that

the underlying assumptions regarding the role of the unsaturated zone are valid. In part 2 of this

two-part series of reports (Zhu and Narasimhan, 1991), we will examine the validity of the

assumptions themselves in the general context of unsaturated flow theory. We restrict considera-

tion to the analytical models of Theis-Wenzel (Theis, 1935), Boulton (1954; 1963), and Neuman

(1972; 1974). We also limit ourselves to a fully penetrating well in an aquifer with single isotro-

pic material.

1.1 Background

A characteristic feature, of an unconfincd aquifer test is the inflection observed in the time-

drawdown curve at intermediate times. As seen from field data presented in Figure. 1, three dis-

tinct segments can be defined in the time-drawdown graph: an early-time portion coinciding with

the Theis solution associated with the specific storage (Ss) of the aquifer representing the elastic

component, an intermediate time portion characterized by a flattening of the curve resembling the

response of a leaky aquifer, and a final portion that conforms to the Theis curve associated with

the total storage (S + Sy), combining the effects of elastic storage and changes in saturation.

As a first approximation, one may simplify the analysis by restricting consideration to the

late-time behavior of the system and use the Theis equation to assess the total storage coefficicnt,

:i_l............,......._, ........_......, ......,................,_......, , ,,, ..............,,,.........,_.....,....., ,, ........,,,,,,,, .......,II,........_, ......,,
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S + Sy. Indeed, in his classical paper, Theis (1935) analyzed Wenzel's (1933) data this way. In

the present work we shall call the late time Theis curve associated with S + Sy the Theis-Wenzel

• curve.

Neglecting vertical components of flow, assuming initial hydrostatic state, and ignoring

temporal changes in aquifer thickness, b, the Theis-Wenzel goveming equation is given by,

Kr "_- + r -_r = (S + Sy) --_-, for large t , (1)

where K r is hydraulic conductivity in the radial direction, s is the drawdown, r is the radial dis-,

tahoe from the _is of the pumping weil, and t is time after the pumping started.

In order to interpret the drawdown behaviors at intermediate times, two categories of

simplified conceptual models have been proposed. Both these models seek to account for the

quantity of water that is drained vertically from the unsaturated zone to compensate for the fluid

withdrawn from the system. One model assumes that water is released from storage instantane-

ously from the zone through which the water table moves, to be added to the top of the saturated

zone and _at a finite time is needed for tile pressure transient effects of this addition to reach the

bottom of the aquifer (Neuman, 19'72; 1973; 1974; 1975). The other model assumes that water is

released gradually from storage from the same zone according to an exponentiaUy controlled

delayed drainage mechanism (Boulton, 1954; 1963; 1970; Boulton and Pontin, 1971). This

notion of "delayed yield" is not peculiar to unconfined aquifers. In any system (e.g., double-

porosity system) with coexisting materials of strongly differing diffilsivity, the low diffusivity

components will cause time-lag effects (delayed yield) in the propagation of perturbations.

Indeed, as pointed out by Neuman (1979), Boulton appears to have originally developed his idea

for a double porosity system controlled by elastic storage and later extended it to unconfined

aquifers. As a mathematically tractable approximation, Boulton suggested that the amount of

water released from storage within an unconfined aquifer due to an increase in drawdown As dur-

ing a time period from 'cto 'c+ Ax, consists of two components: (1) a volume of water instantane-

ously released from elastic storage per unit horizontal area, and (2) a delayed yield per unit hor-

izontal area from the unsaturated zone to the saturated zone which, at a later time, t, is equal to

Aso_Sye-_t-x). Here, Sy is specific yield of the aquifer, and ¢_is an empirical constant whose

reciprocal is known as the delay index. Boulton expressed the goveming equation involving

_I_, _'fll"'_rltIl',I, 'lI,,'.r,rwr,,r,,q',,,qlll_!Tirlf,.r,_,,n,_hit's''l!lr"I1[1_rl]l'T'"lIW'' Illet'll_lr...... _l,Tltrll,,', ,,........r'lt_lllt,,,,_r,,'.',.-', ,, 'lt'"lrr""'"q"q'""P"' _*'_'ql"el_qll""Irllli_,q,.H,,_.,,,,,,_,,,,,irl,llr,ltlt,''irl*l,r,_lrfi,"wP" ','_l'rll',llqIl_' ,,_..... _,lr,,',_'_,',',,,_,,",r,v,,,,...... .,,_,,,,.,,,,,,q_,
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delayed yield as follows (Boulton, 1954):

t

WL-_-+rTr =s +es, -_-e- X)dl: . (2) •

Although in the 1954 paper Boulton did not discuss mechanisms, in his 1963 paper he indi-

cated that delayed yield comes from above the water table. Boulton numerically estimated his

analytical solution only for the case where the compressibilities of water and of the aquifer are

negligible (i.e., Ss = 0).

Almost two decades later Neuman developed an analytical solution that could produce all

the three segments of the time-drawdown curve without recourse to delayed yield (Neuman,

1972; 1973; 1974; 1975). Neuman treated the unconfined aquifer as a compressible system and

the water table as a moving material boundary, thus restricting attention to drainage of fluid only

in the region over which the water table moves. Neuman showed that ar, inflection in the time-

drawdown curve can also occur as a consequence of instantaneous drainage of water followed by

a finite interval of time required for the drawdown perturbation to propagate from the top to the

bottom of the aquifer. This effect would of course be influenced by effects of anisotropy. In this

idealization, both S and Sy are constants. Later, Neuman (1974) extended his model to account

for the effect of partial penetration on drawdowns. Based on the assumption of a fully penetrat-

ing line source weil, N_,!umanexpressed the goveming equations as follows (Neuman, 1972):

The Saturated. zone:

[ 1_)2s 1 _)s . 32s _s

Kr -_--_-+ --r '_-r + K.,._-z2= S_-_-, 0 < z < H(r, t) , (3a)

where Kr and Kz are hydraulic conductivities in the radial and the horizontal directions, and H is

saturated thickness.

Initial conditions:

s(r, z, 0) = 0 , (3b)

I H(r, 0) = b . (3c) '

Condition on the lateral boundary:

s(,,*, z, t) = 0 . (3(1)

!_,_rqrl Iltt,,'r,' _l,mt,,iqr_l_II' .liFt, ,lit _ tt , wJ lrItll , 11_ ' ,l'q _"_lFlrll_, i1,, ,Pi ,lllll,_lllll,_l ...... el " IIg pl. IJkllTjl,,ql,,,tills I ,, ,pNlll , _gi,Hql_s_l,rlll,,l_lr n tl,'.lplllr,,nlq i,_, _'llltlI'dlr_r_l]lll"lt ':[lJr'rp,,r_ll n_plxr,,_r, ,._I_,,IT,_,,, _'ll'" q_l' ' I1_,,_,'' ,i,' r,,r, _ I_:ll"n_l_V_Sll" " 'lll_ fir ',, ....



-5-

Condition on the impervious bottom of the aquifer:

Os

. _--z(r, 0, t) = 0 . (3e)
,

Conditions on the free surface"

1K_-_-rnr4"Kz_zn,. = y--_-- nz, at(r,H,t), (30

H(r, t) = b - s(r, H, t) , (3g)

where nr and nz are unit vectors in the radial and vertical directions, and I is vertical infiltration

(recharge) rate at the water table.

Condition in the weil:

H

lim2_K fir asr--,o _r dz = Q , (3h)

where Q is volumetric pumping rate.

From an intuitive and qualitative view point, the Boulton idealization seems reasonable.

Considering the complexity of unsaturated zone processes, the constant o_parameter chosen by

Boulton (as he extended his oris,_nal concept) may be considered a preliminary approximation.

Neuman (1979), however, takes a more focussed view of Boulton's model. He advances several

arguments to show how a cannot be a constant either in space or in time. He therefore considers

Boulton's model less physically sound than his own. Neuman does point out that in a model-

fitting sense, either model can be used to obtain practically the same aquifer parameters except

when conditions of partial penetration or anisotropy exist or when piezometer observations at

specific locations within the aquifer are considered, lt is worth noting that gradual desaturation of

the zone through which the water table declines and gradual vertical propagation of pressure

effects from the top to the bottom of the aquifer are two independent physical processes. In prin-

ciple, both processes are likely to occur simultaneously within a dynamic unconfined aquifer.

s

1.2 Methodology

In the present study, we use a general purpose numerical model as a tool for verifying the

three analytic solutions (Theis-Wenzel; Boulton; Neuman) and to investigate their applicability•

The model chosen is TRUST (Narasimhan et al., 1978), an integral finite difference algorithm for
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solving multidimensional saturated-unsaturated flow problems in deformable media. To minim-

ize spatial discretization errors in the present work, we used concepts of geometry-imbedding

(Narasimhan, 1985) in discretizing the mesh in the radial direction.

a

2.0 SOME COMPUTATIONAL CONSIDERATIONS

2.1 Well-Bore Storage Effect

The unconfined aquifer solutions by Theis (1935), Boulton (1954), Neuman (1972) and oth-

ers are restricted to treating the well as a line source. However, it is known (van Everdingen and

Hurst,, 1949; Papadapulos and Cooper, 1967; Agarwal et al., 1970) that effects of well-bore

storage may have pronounced influence on early and intermediate time-drawdown behavior.

The computational logic for simulating the well-bore is simply to treat the well as a discrete

elemental volume with acapacitance, Mc.weil,defined by,

AM p rcrw2A_F

Mc.wen- AU - AU : p n rw2 , (4)

where AMwis the change in mass of water in the weil, rw is the well radius and AU is the change

in water level. We manipulate the TRUST input in such a way that the capacitance of the weil

node equals p n rw2.

The well-bore storage constant, C, was defined by van Everdingen and Hurst (1949) as

1 capacitance of well ]C = _ capacitance of a cylinder of aquifermaterial of volume n rw2 b

1 pnrw2 1 1

- 2 pnrw2Ssb 2S_b 2S (.5)

where S = S_H.

The well-bore storage constant in an unconfined aquifer decreases with time from its initial

value Ci = (2S) -1 to its final value Cf = [2(Sy + S)] -_. The larger the C, the stronger the well-bore

storage effect. Ranges of C of practical interests are provided in Agarwal et al. (1970). Note that

C defined in this manner is independent of rw. For a given well-bore storage constant, it is known

that the effect of well-bore storage on the confined aquifer drawdown history diminish_-s as the

distance from the pumping well or the duration of pumping increases.
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2.2 Bouiton's Time Convolution Integral

Consider a volume element 1 in a radial system which communicates with two other neigh-

' boring elements k and m. In the context of the integral finite difference method, the Boulton

equation for element 1 is a statement of mass conservation which takes the form:

_Sl01 Sy _Sl,'c a(_.t-x)

Ulk('ffk -- -fl) '4" Ulm(frm - "fro 4" 13GI -- 13V I s -_I 4- Ix y _ e- d% , (6)

where U is the conductance between two adjoining elemental volumes, ti+l is the final time at the

end of the current time step AtI, and Ast,i is the increase in drawdown over AtI. The bar over s

denotes time-averaged values and Gt represents a source term.

We now examine how the integral on the right hand side may be computationally handled.

The domain of integration is split into two pans: 0 to tI and tl to tl + Atl. By assuming that the

drawdown varies linearly with time during the interval At, the equation can be rearranged by

moving the integral over the domain 0 to tI to the left hand side. Thus,

[4 ,.

Ulk_k'--fl>+Ulm(-fm--fl)+13Gl 13V|Ix"_" I Osl'' e-(x('''-,)
-

ASI, I Sy C_Sl,x ct(t,., - 't)

=13V 1 .,-A----_II+ix--_-,,--_e- d

-13v, S*y '

In the numerical model, the capacitance term associated with time derivative on the right

hand side of the equation is easily handled by using an effective fluid mass "_Dacity Mc, effective =

13V1[Ss + Sy(1 -e- _At')/b], which is a function of time. The convolution integral on the left hand

side can be expressed in a discretized form by summing up the amounts of water remaining to be

drained at tr due to the incremental drawdowns that occurred over ali the previous time steps. Let

. ti denote the time at the beginning of an arbitrary time step and ti.l at the end. Assume that from ti

to ti+l the water table in elemental volume I declines Asl_ due to pumping. Then the total mass of

drainable water due to this increase in drawdown is AM1,i = p Al Sy Asi.i. By the Boulton assump-

tion, tMs amount of water is not completely released over this time interval. Instead, the actual

drainage during ti to ti+l is smaller and is given by:
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A_IIo i II-e-a(_+_- =pAiSyAsl, i I e-_(_''-_ . ' (8)

Hence, the mass of water remaining to be drained from AMI_is

AMI,i-AMI, i [1-e-C_(_"-O 1 =pAISyASl,ie -a_t_ . (9)

We now implement a compu!ationaUy efficient procedure for explicitly evaluating the con-

volution integral on the left hand side of (7) so as to treat it as a non-linear sink term. Note that

physically this quantity represents the mass of water remaining to be drained from node 1at the

instant q. Let us start with time step Atl, spanning the interval t = 0 to t = Atz. Let the incremen-

tal drawdown during this time step be Asl, 1. Let DMI, i denote the mass of water remaining to be

drained at the beginning of time step Ati, that is, at the instant ti. Then, in view of (9), the mass of

water remaining to be drained at the end of time step 1 (or equivalently at the beginning of time

step 2) is,

= e-O_tlDMI, 2 P AI Sy Asi, 1 • (10)

We now need to evaluate the mass of water remaining to be drained at the beginning of time step

3. Note that by the end of time step 2, a portion of the mass of water given in (10) would have

drained according to the exponential drainage process. Concurrently, a sm'ali amount of water

will be added to the quantity in (10) due to the incremental drawdown Asi,2 that is created during

time step 2. Therefore, the mass of water remaining to be drained at the beginning of time step 3

is given by:

DM1,3 = [DM,. 2+ p AISy Asi,21e- _t"xt2. (11)

The above equation provides a simple logic to update, at the end of each time step, the mass

of water that is waiting to be drained from each elemental volume in the system according to the

exponential decay process assumed by Boulton. Incorporating the logic contained in (11) into (7)

yields the mass conservation statement for node I during that time step:

+ +o,-o,,I
-PVI s+-ff 1-e "_ Asl'IAt' (12)

'elp' Ill,'¢l',", ,,11,, iIir_ ,1..... FI II,IIH i_l,lll, i1,1,, , iii,)[llll .... l[ll
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2.3 Neuman's Idealization

The main feature of the Neuman idealization is that water is instantaneously drained from

storage and is added at the top of the saturated zone. This water will migrate downwards as well

as radiaUy on its way to the weU bore. To numerically simulate this feature, we distinguish, in

writing the mass conservation equation, between an elemental volume that does not include the

water table and one that does. Thus, for the elemental volume that does not include the water

table, we have,

Asl

E Ulm(Sm--Sl ) + pGI "" p VISs _ " (13)
In

For volume elements that include water table we can write,

IS Sy J Asi
E U_in -gi) = p VI + (14).

In

where Ab' is the height of the elemental volume. Thus one may define an effective specific

storage coefficient of Ss + Sy/Ab' for these nodes. In the Neuman idealization, the saturated thick-

ness of such an element, Ab' is approximated by its initial value, Ab.

2.4 The Notion of Vertical Average

2.4.1 Mathematically Averaged Drawdown

The drawdown observed at a specific location within an unconfined aquifer is a function of

radial distance, time after the start of pumping, and elevation from the base. Boulton treated

drawdown to be independent of elevation, and assumed it to be only a function of r and t. Neu-

man, however, considered the existence of ve|tical flow components, and his general solution for
=

the drawdown is expressed as s = s(r, z, t). Nontheless, Neuman also presents drawdowns aver-

aged over the thickness of the aquifer so that s is treated as a function of r and t only. For this

purpose Neuman defined the average drawdown as,

b

. S'math(r, t) = _ s(r, z, t) dz . (15)
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And when multiplied by 4r¢K b/Q (15) takes a dimeiasionless form:

1

_D,ma_(_,tD)= ! sD(13'zD'tD)dzD" (16) '

We call this a mathematical average and point out that this average is not physically meaningful

because the integrand in (15) is not an additive quantity. In order that (15) be meaningful in a

mass conservation sense, the integrand may be multiplied by base area and storage coefficient to

yield mass of water released from storage.

2.4.2 Physic.ally Averaged Drawdown

To be corL_i_tentwith mass conservation, we may define an average drawdown on a physi-

cal basis. Intuitively one can define a physical average on the basis of capacitance as,

: b

Sy s(r, z =b, t) + Ss s (r, z, t) dz
0

S'-phy(r,t)- , Sy+ bS, ' (17)

and

S'-D,play(_, tD)= SD(_,ZD= 1, tD) + OSD,math (18)

where _ = S/Sy.

A question may now be raised as to which of these average drawdowns a fully penetrating

observation well will actually "see". Is it the mathematically averaged drawdown or the physi-

caUy averaged drawdown or some other average? lt appears that previous workers have assumed

implicitly that it is the mathematically averaged drawdown that the fully penetrating observation

well will "see". However, the reasonableness of this choice is not self-evident. Further studies are

needed before this assertion can be substantiated in a credible fashion.

!



3.0 MODEL VERIFICATION _

We use the phrase, "model verification," to denote the task of assuring internal mathemati-

• cal consistency of the nuuierical solution before using it to investigate the applicability of

unconfined aquifer analysis approaches. A well-accepted philosophy for model verification is to

match, using the numerical model, known analytical solutions of special problems of interest.

3.1 Theis-Wenzel Solution

Since the Theis-Wenzel solution differs from the well..known Theis solution only in that it

has an effective storage coefficient of S + Sy instead of S, to verify one solution is equivalent to

verifying the other. Narasirnhan and Witherspoon (1976) showed that the TRUST algorithm
ii I

,, reproduces the Theis solution (lhae-source solution) with acceptable accuracy.

An important extension of the line-source solution is tile incoxtx3ration of the weU-bore

,,I storage effect. Agarwal et al. (1970) developed analytical solutions giving consideration to

l_ well-bore storage effects in a well of finite diameter. Numerical results obtained for a well-bore
i
, storage constant of 100 are shown compared in Figure 2 with the analytical solution of Agarwal

i et al. (1970). lt can be seen that the agreement is excellent. The volume elements (or nodes)

were cylindrical shells, whose outer radii were twice the inner radii. We denote this to be a "fac-

tor 2" mesh•

3.2 Boulton Solution

The logic of treating delayed yield has been discussed in (8) through (12). In order to com-

pare with Boulton's tabulated results (Boulton, 1963), c = S/Sy is chosen to be 10-3. In the Boul-

ton problem, as in the well-bore storage problem, the same factor 2 mesh was used in the

1 verification exercise. Numerical l_sults of dimensionless drawdowns for [5 = 10-2 and c_= 10-4,

i 10'6, and 10-8 (corresponding to r/B = 1 0.1, and 0.01) are depicted in Figure 3. Agreement with_ '
,h

', the analytical solution can be considered very good. The slight differences noticed at early times

_J are attributable to minor well-bore storage effects.
i

!.
J

?

J
t

J

2 _
-I
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i

3.3 Neuman Solution

The main features of the Neuman idealization are: instantaneous drainage, line source weil,

existence of vertical flow components and constant thickness of the saturated zone. The role of
i

specific yield is modeled as a source term at the water table.

For purposes of verifying the numerical model, a hypothetical case, as first suggested by

Cooley (1971) and later used by Neuman (1972), was considered. The input parameters used are

given in Table 1.

Table 1. Input parameters for she Cooley problem*

b rw (well radius) K Ss I Sy I (J Q

(m) (m) (m/s) (m-l) _ m3/sec

18.14 0.128 7.073 x 10-4 1.969 x 10-3 10.2_.023 I 0.155 1.5 x 10-3

*Solutions am compared at r= 12.52 m, for which 13= 0.477.

Neuman's analytical solution was evaluated by a program, DELAY2 (Neuman, 1989). In

order to conform to the analytical solution, the well was treated as a line source. As suggested by

Narasimhan (1985), the line source well was simulated by locating the nodal point of the volume

element representing the weU at 0.60653 rw, where rw is the radius of the innermost node. A fac-

tor 2 mesh, as shown in Figure 4 was used. Vertical flow was considered by discretization in tile

vertical direction. From bottom to top, the aquifer was discretized into seven 2 m-thick layers,

two 1 m-thick layers, and one 2.14 m-thick la)'er. The 2.14 m thick uppermost layer was

specified to have an effective specific storage coefficient of (S, + Sy/2.14) in accordance with

(14). The pumping rate was chosen such that the water table will not fall below this layer. Other

layers of the aquifer were specified a constant specific storage coefficient of Ss.

Results obtained with the numerical simulator TRUST are compared with those from

DELAY2 for point drawdowns at zt) = 0 and ZD= 0.855 (Figure 5a) and for mathematically aver-

aged drawdowns of Neuman (Figure 5b). Note that at large times the effective storage coefficient

is inerely the sum of elastic storage coefficient (S) and specific yield (Sy), and all drawdowrts fall

on the Theis-Wenzel curve associated with (S + Sy). Good agreement between numerical and

analytical results for both point solutions and mathematical average drawdowns verifies the inter-

nal consistency of the TRUST code.

"!I,.I, ,,r I"'ITI I'l ....... ,l,r_, I_ll"llll_i .... rim' '
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4.0 APPLICABILITY OF MODELS

• 4.1 The Goal

The unconfined aquifer hydraulics topic has been discussed in detail by Neuman (1979) and

• Gambolati (1976). The purpose of this study is to provide some additional insights by starting

with the existing analytic solutions and going a little beyond, using a general purpose numerical

model. Specifically, we address the following issues which are relevant to evaluating the appUca-

bility of the models of Boulton and Neuman:

• How limiting is the line-source assumption? How much will the early time and inter-
mediate time behaviors be masked by well-bore storage effects?

o Are delayed dr'_nage and vertical flow mutually exclusive? If they can occur simul-
taneously, how will they influence pressure transient response?

® What rationale should one use in vertically averaging drawdowns in an unconfined
aquifer?.

® Because of the combined effects of well-bore storage and radial distance, how will the
duration of the intermediate, time _havior be abridged?

® How sensitive is the unconfined aquifer pressure transient behavior to the magnitude of
specific yield?

4.2 The Boulton Model

4.2.1 Well-bore Storage Effect

The results of numerical simulations including well-bore storage effect in the Boul:on

model are presented in Figures 6a and 6b. Figure 6a pertains to observations at the well-bore (r w

= 0.128 m) and Figure 6b pertains to a location somewhat further away at r = 0.2 m. The results

clearly demonstrate that the well-bore storage effect on drawdowns close to the well is strong.

Note that tbr an unconfined aquifer the well-bore storage parameter changes with time. The ini-

tial value of well-bore storage constant is Ci = (2 Ss b)-1 and the final value Cf = [2 (Ss b + Sy)]-1.

In this case Ci = 5006 and Ct = 5.i.

In general, the drawdown versus time curve at early times will be dictated by the well-bore

• storage effect, while at later times the curve will converge to the Theis-Wenzel solution. Figures

6a ,and 6b show that, in the presence of well-bore storage effect, the Boulton solution developed

for the intermediate range of times is so severely mast.cd that it is of little practical use.

._,m,r lll ..... ,,.,' ,_ .... 1, m_p_,_l,', ....... .,_w_ ..... I'll ilr ..... ,,11'_'' 'lq, ll]' ' II....... ,11,,._.... _qlIl'lH_',_lar' '_,rl, ,m,,,r', '"q,lrr,"_ ',m..... -ilI'lll r..... _1' , . ,.,_ .... pIr_ _,_:_,
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4.2.2 Delayed Yield in Conjunction with Vertical Flow

Although Boulton used the delayed yield concept and Neuman considered vertical flow

components, it stands to reason that these two processes are not mutually exclusive and that they

occur simultaneously in an unconfined aquifer. We therefore conduct a numerical experiment in

which these two effects are combined.

The combination of the Boulton delayed yield constant and vertical flow was realized by

using a two-dimensional mesh (Figure 4). The following input parameters were used: (_ = 10-3, 13

= 1.56 ,'<10'4, and (x = 10-4. The results, with and without the effect of vertical flow, are shown

compared in Figure 7.

lt is seen that the vertical flow components increase drawdown noticeably during intermedi-

ate times. For the particular set of parameters considered, consideration of vertical flow leads to

larger drawdowns than those obtained with Boulton solution for tD > 102'. Also, while the Boul-

ton model suggests that the Theis-Wenzel solution can be used for tD > 105' Figure 7 indicates

that consideration of vertical flow delays it significantly.

4.3 The Neuman Model

In investigating the applicability of the Neuman idealization, we look into the effects of

averaging process, the influence of radial distan_ on vertical flow components, effect of well-

bore storage, and effect of decreasing saturated thickness, sensitiviity of solutions to the value of

specific yield is also studied.

4.3.1 Effect of Well-bore Storage on Pumping Well Drawdown

The well-bore storage effect on drawdown observed in the pumping well is illustrated in

Figures 8a and 8b for two values of 6: c_= 10-l and _ = 10-4. The well radius is chosen to be

12.8 cre, a value reasonably typical of water wells and oil wells.

At early times the drawdown curve for the well is characterized by a unit slope and deviates

significantly from the Theis curve. At interrnediate times the well drawdown curve approaches,

but never coincides with the early Theis curve because of time-dependent storage coefficient.

The curve converges to the Theis-Wenzel solution after the delayed yield ceases to influence the

drawdowns and the unconfined aquifer behaves effectively like an aquifer with constant stora-

tivity. Comparison of Figures 8a and 8b indicates that this meeting point is delayed when a is

!11
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decreased. That is, the smaller the specific storage, the longer the time over which the

discrepancy between the well-bore storage solution and the line-_;ource solution is noticeable.

• The effect of well-bore storage in unconfined aquifer response has generally been neglected

in the groundwater literature. Our study suggests that this effect cannot be ignored in dealing

with unconfined aquifers because it could significantly mask a large part of the intermediate time

behavior predicted by the analytical solution, for example, up to to, w= 103 for a = 10-1 and up to

tD,w = 5 × 105for o = 10"4. In a recent paper, Ramey et al. (1989) have stressed the importance of

well-bore storage effects on unconfined aquifer flow (gravity-drained systems) based on data

from petroleum resewoirs.

4.3.2 Effects of Averaging Procedure

The physically averaged and the mathematically averaged drawdowns defined in section 2.4

are contrasted in Figure 9a for the case of c_= 10-1 and in Figure 9b for _ = 104. In both cases

the well radius is arbitrarily _et to be 10 mm to reasonably approximate a line source, the original

saturated thickness is 15.651 m, the hydraulic conductivity is 3.6 x 10.-4m/s, the specific yield is

0.23, and the pumping rate is 1.5 × 10.-3na3/s. The drawdowns at r = 0.1b (13 = 0.01) are

presented. In Figure 9a tale initial well-bore storage constant Ci is 21.7 and the final value Cf is

1.98, and in Figure 9b Ci = 2._7 x 104 and Cf= 2.17.

lt is seen that the curve for the physically averaged case is markedly different from that for

the mathematically averaged case. At early times the physically averaged drawdown deviates

from the Theis solution associated with Ss, while at late times it converges to the Theis-Wenzel

curve associated with (S + Sy). Con_paring the numerical with the analytical results of physically

averaged as well as mathematically averaged drawdowns, Figure 9a shows that when Ci is small

(21.7) the well-bore eft'ect is negligible, and that the numerical results agree very well with the

analytical results. However, when Ci is increased to 2.17 x 104 in Figure 9b, the well-bore effect

on the numerical results of mathematically averaged drawdown at early times becomes very

strong, whereas the physically averaged drawdowns (at later times) are not affected.

The remarkable difference between the mathematically averaged and the physically aver-

aged drawdowns as displayed in Figures 9a and 9b raises ,aninteresting question: Which averag-

ing procedure will provide drawdowns agreeing with the drawdowns "seen" by an observation

weil? We suspect that the use of mathematical average is an arbitrary choice, perhaps motivated

merely by computational simplicity, lt seems that some justifiable logic is needed to choose

rl_19,' "' nel, II1_1 ni r ,rs ,,
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between different averaging procedures.

4.3.3 The Role of Time-Dependent Saturated Thickness

As pumping continues and the water table declines, the saturated thickness of the aquifer

will diminish with time. In his analytical approach, Neuman (1972; 1974) ignored the effects

arising due to the time dependence of saturated thickness.

We investigated the reasonableness of this assumption by taking into account the change in

the saturated thickness and the associated change in the conductances between elemental

volumes. It is to be expected that this effect on drawdown will become more pronounced as

drawdown increases in relation to the total saturated thickness due to increased pumping rate. For

the same aquifer with o 10-l, the drawdown of water level in the pumping well is plotted

versus time in Figures 10a and 10b, respectively, for a pumping rate of 10-g and 2.5 x 10-2 m3/s.

It is seen that as the saturated thickness and the transmissivity decrease with increased

pumping, the drawdown in the pumping well is increased. For the particular combination of

parameters studied, when the pumping rate is 10-_ m3/s and the water table has only dropped by

some 15% of the initial saturated thickness, the numerically evaluated drawdown does not devi-

ate considerably from the analytical solution (Figure 10a). However, for the same well and the

same aquifer, when the pumping rate is 2.5 times higher and the water table has dropped by 3t3%

b, the effect becomes much stronger after tD _ 102 and the discrepancy between the analytical

and numerical results Ims increased to as much as 16%.

4.3.4 Effect of Radial Distance on Point Drawdowns

We have already seen that well-bore storage effects mask early time and intermediate time

responses, Now since ali solutions converge on to the Theis-Wenzel curve, it is clear that under

field conditions in which strong well-bore storage effects will be the rule rather than an exception,

the distinctive signatures in pressure transient response stemming from Neuman's solution will

be limited to a restricted band or window in the time domain. We now proceed to gain some
i

insights into the size of this time band.

Shown in Figures 1la, 1lb and 1lc are the drawdown-time plots for three radial distances:

13= 0.01, 0.16, and 0.64 (r = 0.03 b, 0.4 b, and 0.8 b). In each figure, well-bore solutions with

change in saturated thickness taken into account are contrasted against line-source solutions

based on the Neuman assumptions for two vertical locations: z D = 0 and 0.799. The following



-17-

parameters are used: cs= 10-'4,Sy= 0.23, Ss = 1.47 × 10-6 m-l, b = 15.651 m, K = 3.6 x 10--4m/s

and C¢= 2.17. For the particular combination of parameters, it is found that the "time-window"

, extending from the time the well-bore storage solution joins the Neuman solution to the time at

which the Neuman solution merges with the Theis-Wenzel solution, varies from about 1.8 log

' cycles forr= 0.1b (_ = 0.01) to 2;4 log cycles for r= 0.8b (13=0.64).

4.3.5 Sensitivity to Specific Yield

We now examine the effect of the magnitude of specific yield on the Neuman solution. In

order to study the sensitivity of drawdown to the value of specific yield, for the same set of

parameters we decreased the specific yield by a factor of 2 in one additional run. We also

decreased the specific storage coefficient by the same factor so that o remains constant. The

resultant drawdown-time plot is presented in Figure 1ld tb," radial distance r = 0.4b (13= 0.16).

Compared to Figure 1lb it is seen that Neuman's line-source solution is not changed (because

is constant), whereas the well-bore soll,.;.ionis changed. This is because in the numerical solution

the (final) well-bore storage constant Lsdirectly related to the specific yield as Cf = [2(Sy + S)]-! =

[2Sr(1 + o)] -x. When the specific yield is decreased by a factor of 2 (Figure 1ld), the final weU-

bore storage constant is increased by a factor of 2 to 4.34, the well-bore effect lasts longer than in

Figure 1lb, as also the time after which the Theis-Wenzel solution is valid. Thus, Figures 1lb
.i

and 1ld clearly show that as the specific yield decreases, well-bore storage effect lasts longer anti

the Neuman solution is useful for analysis only over about 1.1 log cycles of time as opposed to

2.0 log cycles for Sy = 0.23. Stated differently, it is clear from Figures 1la through 1ld that in

the presence of well-bore storage the Neuman solution is of practical interest only over a finite

"window" in the time domain. Table 2 summarizes the size oi these windows for Figures 1la

through 1ld. The width of this window noticeably decreases with decreasing the specific yield.

4.4 Comparison of the Bouiton Model ao_ the Neuman Model

The numerical results for the Boult,_n problem are shown compared with those of Neuman's

mathernatically averaged drawdowns for 13= 0.01 and 2.56 in Figures 12a and 12b, respectively.

Figure 12a shows the results for _ = 10-4 and 10-6 (corresponding to r/B = 1 and 0.1), and Figure,

12b shows for c_= 104 and 10-6 (r/B = 16 and 1.6). o is 0.001 in both figures.

lt is seen that Neuman's curve falls in an envelope bounded by Boulton's solution for a

range of {xvalues, which suggests that Neuman's solution can be matched to a particular case of
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Table 2. Size of window in the time domain over which

the Neuman solution is valid (o = 10-4).

Sy 13 AtD (log cycles)

0.23 0.01 1.8

0.23 0.16 2.0

0.23 0.64 2.4

0.115 0.16 1.1

Boulton's solutions. Indeed, Gambolati (1976) pointed out that the two analytical solutions can

be reconciled by defining cxas a function dependent in some complex way on r, b, Kr/K z,Sy, and

t. However, it is necessary to recognize that making such direct comparison of the two solutions

is merely a mathematical exercise lacking physical significance since one model is established by

assuming instantaneous drainage and the other assuming delayed yield, which are treated as

mutually exclusive. Furthermore, Figure 12a also indicates that at a given location (r/b = con-

stant), in order to let the Neuman solution agree with the Boulton solution, Ko = K.ZKr can be

adjusted in the Neuman solution so that the required value of 13= Ko(r/b) 2 can be obtained. In

other words, vertical anisotropy is a mathematical parameter available for adjustment in the Neu-

man model, whether anisotropy physically exists or not.

5.0 DISCUSSION

13oth Boulton and Neuman consider the zone through which the water table moves as the

source of drained water. They however differ on the mechanism by which the drained water finds

its way to the saturated zone. In this paper we address two issues related to the models of Boul-

ton and Neuman: their practical utility and their physical realism.

In practice, both models are capable of imitating the intermediate time behavior of draw-

down data from unconfined aquifer tests but with the help of very different model parameters. In

this sense, the advantage of the Neuman model over the Boulton model is _hat the former can

account for effects of partial penetration as a well as anisotropy.
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A serious limitation that is common to both models stems from the assumption of neglect-

ing well-bore storage effects. Open wells with a fluctuating water level, which are typical of

, wells in unconfined aquifers, contribute to large well-bore storage effects on pressure transients.

Simulations carried out as part of the present study involving parameters reasonably typical of

• unconfined aquifers suggest that all of the early-time effects and a significant portion of the inter-

mediate time signatures of Boulton' solution and Neuman's solutions will be masked by well-

bore storage effects. Specil_cally, it appears that when specific yield is large, the Neuman signa-

tures may be discemible ordy over about 2 log cycles of time for relatively large values of

specific yield. When specific yield is smaller, this time window may shrink to one log cycle of

time or less. We also found well-bore storage effects to be important for partially penetrating

wells.

In order to s_nplify the mathematical solution, it is common practic_e to average drawdowns

or potentials in the vertical direction. In heterogeneous media under transient conditions the task

of averaging drawdowns or pollentials must go hand in hand with the pu'rpose for which the

averaging is desired. The way' Neuman has formulated the problem, the capaci:ance of the

aquifer (i.e., storativity) is a function of elevation. At the upper surface of the aquifer storativity

includes the effects of specific yield, whereas Sy is zero elsewhere. In this sense the aquifer is

heterogeneous. Presumably, one would vertically average drawdown in aquifer under the

assumption that an observatiork well fully penetrating the well will in fact respond with the

defined predicted average. The manner in which Neuman averages drawdown vertically in the

aquifer ignores vertical variations in storativity and hence is not mass-conserving. Numerical

experiments with a ma.,_s-conse_rvingaveraging scheme suggest a very different drawdown pat-

tern. lt is suggested that averaging of potentials in a transient heterogeneous system requires

much additional study.

Granting the assumption that consideration of the zone through which the water table

moves is adequate to account fourthe effects of the unsaturated zone, the issue of physical realism

of either model is not well-assured. Delayed yield and vertk'al flow are not mutually exclusive

processes. They could indeed exist concurrently, lt seems likely that effects of delal/ed yieldm

could be parametrized with the help of anisotropy and vice versa. Consequently, it is perhaps

• more relevant to consider how either model could be practically used to analyze field problems in

a model-fitting sense and to use such parameters to make predictions with the self-same model

than to consider the relative merits of the physical processes.
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NOTATION

A base area, m2

b initial saturated thickness of aquifer, m

B -
C well-bore storage constant

,r

Ci initial well-bore storage constant of unconfined aquifer

Cf final well-bore storage constant of unconfined aquifer

H saturated thickness

k absolute permeability, m2

K hydraulic conductivity, m/s

KD = Kr]Kr, dimensionless hydraulic conductivity

Kr radial hydraulic conductivity, m/s

Kz vertical hydraulic conductivity, m/s

Mc fluid mass capacity or capacitance, kg/m

n porosity

Q volumetric pumping rate, ma/s

" radial distance from center of pumping weil, m

location of radial nodal point, m

s drawdown of hydraulic head, m

sD = 4_Kbs/Q, dimensionless drawdown

average drawdown, m

S-math mathematically averaged drawdown, m

S-'phy physically averaged drawdown, m

SD,math dimensionless mathematically averaged drawdown, m

_D,phy dimensionless physically averaged drawdown, m

S = S,b, storage coefficient

Sr residual saturation, dimensionless

S,_ specific (or elastic) storage, m-l

Sy = n (1 - Sr), specific yield
t time, s

tD = Kt/(S:2), dimensionless time with respect to S

ty = Kt/((Sy/b)r2), dimensionless time with respect to Sy

lr = Kt/((S, + Sy/b)r2), dimensionless time with respect to S + Sy

T = K b, transmissivity or transmissibility, m2/s

Ulm conductance of interface between I and m, kg/m-s

Vi fluid volume of aquifer subregion 1, ma

z vertical distance from bottom of aquifer, m

z o = z/b, dimensionless vertical distance

o_ reciprocal of Boulton's delay index, s-l
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V pressure head, m

p density of water, kg/m 3

o =s/sy
,j
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