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ABSTRACT

A tIamiltonian matrix diagonalization (HMD) method is applied to cal-

culate the lowest several bands in 23°'232'_234Th. Neutron pair trans-

fer strength distributions are calculated and compared between HMD

and cranked Hartree-Fock-Bogoliubov plus Random Phase Approximation

(CHFBTRPA). Sudden-approximation methods are applied to estimate pair

transfer population patterns in 2°6Pb+_3_Th reactions. Band-crossing, pair-

ing, and spin alignment properties are also discussed.

1. Introduction

The subject of transfer reactions among heavy ions is a vast topic, and we

must necessarily focus on a small niche area in this paper. We shall present neutron-

pair transfer calculations among the thorium nuclei of mass 235,232, and 234 with

collision partners some of the even isotopes of Zr and Pb. The enhancement of

ground-to-ground pair transfer by the pairing-force superflui4ity in nuclei has long
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been known 1. The even-even 232Th and its nearest neighboring isotopes are of special

interest in view of the extensive studies on heavy-ion neutron transfer by groups at

Heidelberg and Darmstadt 2.

The circumstances under which some pair-transfer strength also goes to ex-

cited states have been investigated, and the notion of pairing vibrational excitation is

associated with this subject 3. Much remains to be learned, despite extensive experi-

mental and theoretical work. Theory is lcss reliable for excited states than for ground,

since variational methods predominate in nuclear structure theory of the heavier nu-

clei, and variational theories tell us best about lowest energy levels of a given spin,

the yrast levels.

By going to transfer between heavy nuclei, where one nucleus is deformed and

has rotational bands, an extra complication (richness) enters in the form of multiple
, Coulomb, and nuclear, excitation on inward and outlvard paths of the collision. Thus,

transfer near closest approach involves excited rotational states as well as ground. It

has been a hope 4 that heavy-ion pair transfer might be a probe of the expected Coriolis

antipairing (CAP) effect, whereby the pairing correlation diminishes steadily with

increasing spin. The bandcrossing (backbending 5) of spin-aligned 6 bands has been

a complication to measuring CAP but is interesting in its ewn right. It is an open
question whether Berry-phase interference effects can be experimentally measured

by driving heavy-ion 2-neutron transfer paths through the ,vicinity of diabolic points,

where the energy sheets in the plane of chemica! potentia! and angular velocity touch _.

The sharpness of band crossing is known to depend sensitively on the position

of the chemical potential with respect to the Nilsson levels of the highest-j orbital s.

The sharpest band crossings occur when the chemical potential is slightly above one of

the levels with projection 3/2 through j- 1. Quasiparticle (CHFB) methods, without

RPA corrections, may have difficulty due to proximity to CHFB pairing collapse. The

RPA corrections, putting in fluctuations of the pairing field, improve the situation.

Very close to the band crossing CHFB+RPA still has problems, and this, coupled with

the need for accurate number-conserving, and angular-momentum conserving wave

functions for transfer calculations, prompted some of us to turn to exact diagonaliza-

tion of the Hamiltonian matrix (HMD) in a multiparticle-plus-rotor model. The main

deterrent to HMD is the explosion in the number of configurations as the number of

Nilsson basis states approaches a dozen. The random-phase-approximation methods

with deformed basis states and pairing force in a rotating field have the virtue that

they can span a much larger space of basis states than the HMD. The RPA meth-

ods are also conceptually useful, since they allow introducing the rotation of a static

deformation of the pair field and its vibrations around this mean value (dynamic

pairing), exploiting the close analogy to the nuclear shape degrees of freedom 9'1°.

Space limitations here do not allow a comprehensive review of developments

in this area, but the 1986 review of Broglia et al.9, covers developments to that

time very well. Somewhat away from the point of collapse of static pairing the

CHFB+RPA method is a relatively good approximation that is able to cover a realistic
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single-particle space. Thus, in this paper we present and compare results from HMD
and from CHFB+RPA. Engeland has reviewed Hamiltonian matrix diagonalization
methods and presented results a few years ago11. These HMD methods have a long
history, being the traditional approach to spherical shell-model structure calculations
close to closed shells, or in the case of the sd shell used comprehensively with very
large matrices 12. In the case of mid-shell spheroidal nuclei, though, we have the
combinatorial explosion in the number of configurations within a shell mentioned
above. Half-filled systems of six equally-spaced Nilsson orbitals were studied in the
60's to gain insight on the sharpness of pairing collapse with changing pairing strength
relative to level spacing 13. Half-filled systems with two sets of degenerate levels were
found to have exact solutions ai:d furnished further understanding of critical pairing
phenomena z4. Restriction of studies to 0+ levels of deformed nuclei kept matrices at
reasonable dimensions for systems of 9 Nilsson orbitals about the chemical potential
and 4 or 5 pairs is. These matrices have the dimension of the binomial coefficient
9!/(4! x5!), which is 126. In order to reproduce high spin and bandcrossing phenomena
our newer approach in the rare-earth studies was to keep the set of 9 Nilsson orbitals

but to allow broken pairs in the highest-j orbital, i_3/2, projections 1/2, 3/2, and 5/2.
By truncating states with K > 2 the dimension is 266. In contrast to Hara, Sun,
and Ring's angular-momentum projected Hartree-Fock-Bogoliubov calculations 16the
aligned band does not stay intact at spins well below the crossing. The aligned-spin
property appears to admix onto higher excited states, while the first excited (yrare)
band takes on a pairing-vibration character at low spins. Due to the severe truncation
of the basis in the H_JD calculations and the constraint against broken pairs in the
low j-orbitals, caution is in order regarding the pairing decrease at highest spins and
about magnitude of pair-transfer enhancement. Thus, it is important to compare
these properties with large-space models as we do in this paper.

The even-even 232Th and its nearest neighboring isotopes are of special interest
in view of the extensive studies on heavy-ion neutron transfer by groups at Heidelberg
and Darmstadt 2.

For the 2n transfer calculations of this paper we choose to work within the
sudden approximation (negligible nuclear rotation during the collision time) using and
extending tested Classical Limit S-matrix methods (CLSM) 17. The CLSM sudden
methods are expected to be quite valid for projectiles up to Zr and somewhat beyond,
incident on actinides, with their large moments of inertia.

2. Diagonalization Calculation for the Thorium Region

We shall not give a detailed discussion of the HMD method here, since it is
contained in the work of Engeland 11. The differences with that work are as follows:

• we use 12 orbitals, rather than his 13

• we allow broken pairs in the lowest 4 of the high-j j15/2 orbitals, rather than ali
of them

!I
pl ...... , iii ' ,,r II ' " " , HI,_ '" ' lt "l,tl,',,, ' 'H " , til 'li 'U t fl_ t f f , t, i¢



• the quadrupole-pairing term in our code is turned off

• the recoil energy terms are calculated only for the four lowest jls/2 orbitals.

The truncation to omit configurations with K > 2 is as before. For our calculation the
matrix dimension is 2646 for 232Th, with 12 active neutrons, and 2220 for 234Th and

23°Th, with 14 and 10 neutrons, respectively. Engeland did not deal with such large

matrices but separately diagonalized submatrices of given projection K values, then

did an overall diagonalization; his procedure involves some approximation compared

to our handling of the very large matrices directly. We omit quadrupole pairing in
order to facilitate the comparison with the earlier comprehensive structure calcula-

tions in the actinides by Egido and Ring is and with the CHFB+RPA calculations of
Shimizu and Frauendorf 19 on thorium nuclei presented below. There seems no clean

nuclear property by which to adjust the quadrupole pairing strength, and we defer

study of its effects to a later time. Thus, our Hamiltonian simplifies to

n = _-_ e,, at_ a_ - Gpt P + Hrot (1)
v

where

P = _ a_ au (2)
v>0

+ (3)Hrot = 2---_

where v is the index for the single particle level, the ev is the single particle energy,

the operators at_, and au are the particle creation and annihilation operators for level

v, G is the monopole pairing constant*, and the R is the rotor angular momentum

and x', y_, z _are the nucleus bodyfixed coordinates. Following the particles plus rotor

model, the rotor angular momentum is expressed in terms of total spin I and the

angular momentum from ali the valence particles, J, namely,

R = I- J (4)

J -- _ < v2 Ij[ul > atv2a_1 (5)
Ul U2

and the Hrot can be written as follows:

IHro = (I2- 12.,)- Z (I+ + I_ + Ji (6)
b,I V2

=ActuallythepairingtermintheHamiltonianshouldbesymmetricinorder(ptp+ ppt)/2.For
our232Thcase,wheretheneutronorbitalsystemisexactlyhMf-filled,theresultsareidentical.For
theothersystems,nothMf-filled,therearesmalldifferences,analogoustotheusualneglectofV4
termsintheCHFB formulations.By insertinga sum overcompletesetofstatesbetweenoperators,
i.e.(pr lA - 2, a >< A- 2,_IP q- P[A + 2, a >< A + 2, c_lPt)/2 one gets asum rule on pair
transfer strengths in relation to our calculated expectation values and off-diagonal elements of the
pairing term in the Hamiltonian.
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where

" (J±)_,2_,_ - <u21J_:lvl > - <u21J_:':l:iJ¢lvl > (7)

Hjj - _ _ ((J+)_,2_.(J-)_._,_+ (J+)_',_,(J-)-2_') a_a,.,

((J+)_,3_.2(J-)_.,_,,-(J+)_.,_(J-)_3v,) a_3a? aL,2a_1 (8)- _ + (J+)_. (J-)_3_ - (J+)_3_,(J-)_,tsl<_Z_2 Ul _2
u3 _ _4

Matrix diagonalization is done with the code using the Lanczos algorithm 2°,
and we calculate only the lowest eight eigenvalues and eigenvectors. Table 1 lists
the neutron single-particle energies used both in our HMD and CHFB+RPA calcula-
tions. These energies are from Bengtsson and Ragnarsson 21. The strength parameter
G for pairing needs to be renormalized to larger than the values used in traditional
CHFB calculations with two oscillator shells of orbitals active, since we have 12 or-
bitals in all. Since there is no gap parameter A in our calculation, we take the

Table 1. Relative neutron single-
particle energy (MEV)

Ft_: B & R* Bunched Nazarewicz ×
Table 2. Relative

1/2 -t -1.8460 -1.8460 -0.8951 $ proton single-particle
3/2 -1 .-1.0882 -1.0882 -0.5900 $ energy (MEV)

5/2 -t 0 0 0_ _+ Nazarewicz
7/2 -t 1.2276 1.2276 1.1230 _

5/2- -1.1918 1/2 +1 -0.5338
1/2- -0.8881 --0.05 3/2 +t 0

3/2 + -0.7413 -0.02 -0.26385 5/2 +? 1.1435
5/2 + -0.3465 0.02 0.13545 3/2 + -1.0881
1/2 + 0.4754 1.20 0.89345 3/2- -0.9501
5/2 + 0.6964 1.25 1.32885 1/2 + -0.8561
7/2 + 1.1440 1.27 1.87305 1/2- -0.5047
1/2- 1.9430 1.9430 5/2- 1.2051
9/2- 2.3461 3/2- 1.7363
7/2 + 1.9917 1.9917 2.5776

t These are i13/2 orbitals.
? These are jls/2 orbitals.

These neutron orbitals also used in grand combined calculations.
* Bengtsson _ Ragnarsson 21for deformation e2 = 0.2 and e = -.056
× Nazarewicz code SWGAMMA for deformation _2 = .208 and _4 = .105,

see Sec.8



expectation value < 0]ptp [0 > for the ground sta, te. lt can be shown for the ground

state that the l_roduct, of "_Ttimes the square root of this expectation value roughly

corresponds to A, the odd-even mass difference. The rotor moment-of-inertia is taken

as constant and adjusted separately for each of the three thorium nuclei so that the en-

ergy of the 12+ state of each is correct. As the non-linear region of proton alignment is

reached, the neutron calculation will be subject to corrections. In the theoretical cal-

culation of reference is the onset of proton a.lignment in the thoriums is rather abrupt,

occurring a,round spin 24, so the neutron-only calculation should be valid below this

spin. However, since Egido and Ring had a different Hamiltonian than Bengtsson

and R.agnarsson 21, the alignment behavior could well be due to small differences in

sillgle-pa.rticle level energies.

['-'igs.l-3 show results ot' the ItMI) method for 2a°'2a2'2a'lTll, respectively. The

insets a, (Ul)l)er Icl'l.) give the lowest, eight energy values as a. function of spin. Insets b

(upl)cr riglll,) a.rc traditional 1)a.clcbellding plots for the yrast levels, using the so-called

kinelnat.ic moment-ot'-inertia I ,]. lnsets c (lower le[t) are the expectation va,lues of
• , ,(-jthe monoi)ole pairing operator for yra,st (x), y_m. (+) a.nd the off-diagonal value

(-) connecting tl_e t,wo. Finally, insets d are shown the aligned angular momenta,

,,,I,icl_ a.re caleb,la.ted as t,l_e expecta.tion va.lue < la, 1I. J I In' >/_/I(I + 1), where
'" _ designates the additional qua,ntum numbers required toJ is defi_',e iii I_xl.o, and cn,

r-a
IllliClllely label tilt eigenstatc. I hc aligned a.nglllar momenta, are shown for yrast (x)

a.lld yra.re (+). l'_or none of these three nuclei is there a sharp band crossing between

yrast and yra.re, consistent with what is experimentally known. In contrast the work
p 'ot' ]_,gldo and lling Is shows an abrupt neutron a.lignment in 2a°Th where the chemical

potentia.l lies .ialst above the jls/2 5/2- orbital. It is important to point out tha.t
the sl_a.rpness oi' ha.hd crossing is very sensitive to the Nilsson-level energies near the

chenlical pot,entia.1. Our calculations (not shown here for lack of space) using single-

l_article Nilsson energies ca.lculated [rolla a. progrmn of Nazarewicz do show sha.rp ha.hd

_:rossing in _:*l_'l'hdue to neutron a.lignment, but our lluge-spa,ce calculations using both

1)rokell [)rot,on a.nd neutroll pairs in coupled mode, to be discussed later, show a soft
])a.ndcrossing, despite the use of the same Nazarewicz-code neutron energies. Thus,

a.grecment, witll experimellt on sha.rpness oi ba.cl<bending is not a, very fundamental

test ot' a. given theoretical al_proach or model; sharpness of band crossing can be

"tuned" in or out. merely by shifting one level near the Fermi surface.

In ali cases (Figs. lc, 2c, a.nd 3c) the ground band shows a. Coriolis antipairing

elfect. The first excited band shows a reduced pairing correlation at low spins and

cross-over effects near crossing sl)ins around 18-20. 'the corresponding d parts of the

ligures show at lowest spins a.lignment of the j_s/2 orbitals that a,t first go linearly

with spills, the yrare band always showing more a.lignment than the yrast,. This

linear a.lignment: region is where the j_s/2 contributes simply to renormalized the

moment-of-inertia. At higher sl)ins the alignment is non-linear and will be manifested

i_l rotational energy correction terms to the norma.l I(I + 1) spacing. The linear

alignment slope of the yra.re band is always inore than that of the yrast band. This

I_ll'' ' iri, III 'r_ ..... =_,, , ,, ,,, ' ' I1...... Iii
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Figure 1: Result of HMD calculations using 12 Nilsson neutron levels with Bengtsson-Ragnarsson
energies 21 (a) HMD energies for the yrast and lowest seven even-parity neutron-excitation bands
in 2a°Th. (b) Traditional yrast "backbending" plot, kinetic moment-of-inertia vs, angular veloc-
ity (MEV) (the dots are experimental values). (c) Expectation values of the pairing-operator for
yrast(x) and yrare (+) states. The dashed line is the off-diagonal value of the pairing operator, and
it is a measure of pairing vibration strength in the yrare state. There is evidently very little pairing
vibration strength in the 2a°Th yrare band. (d) neutron spin alignment for yrare and yrast bands.

greater contribution to moment-of-inertia and the reduced pairing correlation in the
low-spin yrare states can be trivially understood as characteristics of states with
components of two-quasiparticle K = 0 excitation of the correlated ground state.
i'hat the three thorium isotopes shown here have a good deal of similarity, except for

the sharper upbending and simpler crossing phenomena in 2a°Th, is a consequence of
a rather uniform single-particle level spacing in the Bengtsson and Ragnarsson level
set of Table 1. Other single-particle level schemes tend to show a neutron subshell at

f{{[ _I {1 {{1 ' l el l l , r, rip li rl I l
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Figure 2: Same as Fig.1 except for 2a2Th. Note in (c) the greater pairing vibration character of the
yrare for spins up to 14 and in (d) its neutron-spin-aligned character at higher spins.

2a2Th, and this results in qualitative differences among the subshell nucleus and its
neighbors.

Note that nowhere in the level schemes does an idealized aligned band ap-

pear with energy minimum at a spin equal to the Migned angular momentum. The
bandheads are always at the lowest spin in the band, unlike the aligned bands from
angular-momentum-projected uncranked UHFB solutions of Y. Sun et al.18Rather in
the HMD method the "aligned band" seems to be a kind of strength function that con-
centrates on different real bands in different regions of spin. Just below bandcrossing
the yrare band has most of the aligned band character, as the large plateaus of aligned
spin in Figs.1 d and 2d show. For 2a4Th in Fig.3 the situation is more complicated,
with two bands competing for yrare. The comparisons with experimental data in
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Figure 3: Same as Figs.1 and 2 except for 2a4Th. Note in (c) that pairing vibration character of
the yrare is small throughout.

the backbending plots do not seem very good, but we reiterate that the backbending
plot is extremely sensitive to small shifts in single-particle energy levels. Further-
more, the Figs.l-3 calculations are exclusively for neutron systems to facilitate the
HMD comparisons with CHFB+RPA, and it is well-known that proton alignment oc-
curs for thorium in the same spin region as neutron alignment. The complementary
model we will use here use a self-consistent cranked Hartree-Fock-Bogoliubov plus
Random-Phase Approximation (CHFB+RPA) spanning a much larger shell-model
space than HMD. The CHFB+RPA calculations were carried out by methods de-
scribed in refs9'x°. The energies of CHFB+RPA solutions are seen in Figs.4b and 5b,
to be discussed in the next section on pair transfer strengths. The Coriolis Anti-
Pairing in the CHFB calculation leads to static pairing collapse at a critical value of

mm_w_u_p_mu_lIlllu_l_M_III_I_l_l_ll_IInII_|__i___|_ill_|_|_|____I_|_|Ill__111



hw_ = 0.20 MeV (about I- 18). Above this hw_ only the dynamic RPA pairing cor-
relations remain. Near the end of this paper we show a calculation of HMD coupling

the neutron and proton systems. There we shall also show an idealized example of a

bunched single-particle level set, where structural features are more prominent, but

first we want to explore the pair-transfer strength distributions.

3. Pair-Transfer Strength Distributions

As mentioned in the introduction, the neutron-pair transfer properties con-

necting adjacent even-even isotopes have much intrinsic interest. The general yrast-

to-yrast enhancement by the pairing force has been measured and studied a great

deal. The conditions under which pair transfer strength may partially attach to ex-
cited bands are less understood. Some cases attributed to shape coexistence have

been proposed 22. Some tendency for strength to excited bands has been associated

with gaps in the single-particle level spacing, leading to concentrations of pairing

vibrational strength on excited bands. Some twenty years ago the principles of pair

transfer strength in regions of bunched levels near closed shells or subshells 23 were
elucidated. Recently C.Y. Wu ct al., 24 reviewed the subject of pairing correlations and

pair transfer between heavy nuclei, where excitation to high spin states is extensive.

We realize that pair transfer need not be confined to transfer of pairs cou-

pled to total angular momentum or even body-projected angular momentum zero.
However, for this work we restrict ourselves, as do most such transfer studies, to this

limit. We take the pair transfer operator of form ata i for addition of a pair and a a

for removal of a pair. In the case of the CHFB+RPA calculations here we just take

the expectation value of these operators between yrast and excited states at various

,1 " _ 'J _ ' I _ ' _ _ I _ '_ • ' ' ! I ' ' ' ' _ I ' _ ' ' I _ • ' ' ' ! '3

(b) -.
- .

o I

o
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0 ...... _..;..:.:.:m,,,.,;.;..i....,.....i_:_::.._..-----: II==============================================================================

0 lO ' 20 30 0.0 0.1 0.2 0.3
Spin co(MEV)

Figure 4: Gray-scale plots of neutron pair transfer strengths (I --+I transitions) from yrast levels.
(a) using HMD microscopic eigenvectors and (b) using CHFB+KPA methods. The reaction is
neutron-pair removal from 232Th.
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Figure 6: Same as Figs.4 and 5 except for neutron-pair addition to 23°Th.

values of the angular velocity w. In the case of our micro_,copic HMD calculations
we use the operators with appropriate < A + 2 1 or < A- 2[ and [A > states,
respectively. For the HMD we take these pair-transfer amplitudes here between yrast
level of given spin I in the initial nucleus and the first eight levels of that I in the final
nucleus. The pairing strengths and level energies can be examined for patterns in the
gray-scale plots of Figs.4-6 a and b. The a parts show the HMD calculations, and the
b parts show the CHFB+RPA. In the latter there is a discontinuity at the critical
angular velocity where static pairing vanishes. Below this critical value the RPA
calculations bring in the pairing fluctuations about a static pairing vacuum state,
and above the critical value the pairing fluctuations are about a zero-pairing vacuum

11
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state. Figs.4 are for pair removal from 232Th. For both methods we see at lower spin
that the predominant transfer strength is in the yrast-to-yrast. Both methods show
some strength settling in three places among the excited states between 1.5 and 2.5
MeV at lowest spins; the energies of these excited bands move down toward a cusp,
then up with increasing spin and the transfer strength may shift between bands. The
strength to excited states generally remains in three, sometimes four, solutions. Very
close-lying excited states may have greatly differing transfer strengths. The apparent
sporadic discontinuities in CHFB+RPA bands are because solutions with too low
transfer strength were not saved. The discontinuity at the pairing phase transiticns
result because of change of the vacuum, and the CHFB-I-RPA is not expected to be
valid close to this point• In comparing results for the two models it must be borne
in mind that the spin I and angular velocity w are not linearly proportional to each
other. From Fig.lb it can be seen that in the upbending region several successive
spin values from 16 to 24 have almost the same value of w of about 0.24. The
aligned band near crossing will have a lower w for a given spin than the ground band;
indeed, each excited band will have its own correspondence between I and w. One
can see some similarities in patterns between the two models for the other transfers
depicted in Figs.5 and 6. In Fig.5a a limitation on our particular HMD model is
seen, in contrast with CHFB-t-RPA in Fig.5b. The HMD here does not have sufficient
Coriolis AntiPairing at highest spins, since we do not allow broken pairs in any but
the jzs/2 orbitals. Hence, the ground-to-ground transfer in the HMD remains strong
even at the highest spins, whereas the CHFB-t-I:tPA falls off as it should.

Figs.5a and 6a show in the band crossing region that there is predominant
transfer strength between yrast and yrare. This is a consequence of the band crossings
in initial and final nuclei being at somewhat different spins.

4. Pair Transfer Cross Sections

To go beyond the calculation of transfer matrix elements and obtain theoretical
cross sections to compare with data is a challenging task. The Alder, Winther, deBoer
method 25has been adapted to explore the "diabolic" Berry-phase interference effects,
first taking into account just yrast bands 26and later taking both yrast and yrare bands
in a coupled-channel treatment 27. The above semiclassical treatments were restricted
to head-on collisions to simplify the computation. The inclusion of the second band
clearly was important, making the diabolic interference effects smaller.

Now when we look at the distribution of transfer strength among the eight
lowest bands, we may well surmise that inclusion of more than two bands is necessary.
Certainly, if theory is to confront the calorimetric data of the "HK" plots, total energy
vs. number of gamma rays (fold), obtained from 4_r gamma detector arrays, these
higher bands need to be taken into account.

For the actinides with their larger moments of inertia it is worth reconsidering
the sudden approximation approach, in which the spheroidal nucleus does not appre-
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• ciably rotate during the collision time• In this limit important simplifications can be
made in the treatment. Let us derive the necessary formulas.

5. Sudden Approximation Forraulas

Let the wavefunction from the HMD calculation be expressed as follows:

N
[ I, M, a, N >= Af, _'_ V_,K(_) b_,(I, vq K, N) _ _ (9)

_t

where normalization constant A/'z = ]I + 1/2/(2_r), the _ are the basis wavefunc-
tions for configuration with index _t, and bu(I , a; K, N) is its amplitude from the HMD
calculation. Then the amplitude for transition from the ground state [0M0, N > to
liMa, N + 2 > is given by

,Aoo,N--* Ia,N + 2

= __, _ <lMa, N+2ll_tlI1Ma2, N+2><I_Ma2,g+2lTxil, Ma,, N>
hal I2a2

x < I1Mal,N[H [OMO, N >

Hl,v,_K(n)dn
o' _Idl, Jl,,] _

b.(I,a;K,N + 2)b.(I_,a2;K,N + 2)

__, _ b_i(Ix,a2;K,N + 2) btd(Ia,oq,Ia;K,N ) < _o_,_+21Y_"tat,_v [_,_ >

+%,f_v t' "n ' o ,

bio(I,, a_; O,N) buo(0, O;O,N) (10)

Let us define some auxiliary matrices.

• The matrix X_(I1, aa; I2, a2) is the K component of the overlap of the intrinsic
wavefunctions between two states with (I_,c_) and (h, cr2) in the nucleus of
N neutrons. We can view this matrix X as a projection of the microstructure
wavefunction, from eigenstate (I_, ax) to eigenstate (I2, a2).

x,_(z,,_,; I_,_)= _ b.(I,,_; g',g)a_(_,_; K', N),,,,,K (_i)
P

• The transition matrix Y_"N+2(cn,t_2) is the overlap of intrinsic wavefunction
. before (in excitation state trx) and after 2n transfer (in excitation state a2) at

spin I.

y_'N+2(c_,; a2) =



y_ b,l(I, al;K1,N)b_,2(I, a2;K2, N =t=21

_N4-2

® The Coulomb excitation matrix Zl,

z, /
i oo dr) d_

which is the component of the Coulomb excitation in spin I at closest approach.

Now the transfer matrix elements can be expressed in a more compact form
as follows:

.A,o.o.N--.,_.N+2 = A/)oAf/ _ Af_i(212 + 1/(213 + llZ,,Z*r3
*r_,*r2,,ra Ko,K

-M M 0 -K0 K0 0 -M M 0 -K K 0

"_ . N.--* N :I:2 t _.
E X_¢o(Io, Cro;I', it') Y-r, iu'; c_) xN+2(I', c_2;I, c0 (14)

O_1 )_2

In particular, if the initial state is the zero spin ground state, then

,fl[OO,N'--* Ier ,N =I=2 --

,Afo.A f' EJ_f_21Zl, E(213 + 1)Z,3 0 0 0 -It" K 0
11 13

xE Xo (O,o;I,, Ev
¢_1 _2

6. Transfer and Rotational Inelastic Probabilities

For the sample numerical calculations shown here we took the reaction 2°CPb
on 232Th at 1180 MeV (lab). The microscopic HMD wave functions are with the
12 Nilsson orbitals at the Bengtsson-Ragnarsson single-particle energies, as for our
earlier figures. Space limitations preclude our showing also the calculations for a
9°Zr beam, but the heavier beam is considered of more interest, since it pumps ro-
tational population into the band mixing region at closest approach. Figs.Ta-d show
the results. Fig.7a plots the yrast rotational state population at closest approach
and before transfer. Fig.7b shows in gray scale the absolute value of the amplitudes
in the various spin states of the lowest eight bands. We see the familiar oscillating
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Figure 7: Theoretical HMD sudden-approximation amplitudes in reaction of 2°6Pb +2az Th. (a)
yrast band and (b) all-band population in _a2Th from Coulomb excitation at closest approach but
before transfer. (c) population in 2a°Th at closest approach immediately after pair transfer, and
(d) population in 2a°Th after collision partners have fully separated.

mterterence pattern dominated by a rainbow maximum at spins 16-18. There is a fair

• amount of population in the excited bands, a consequence of band-mixing. Fig.7c

shows in gray scale the absolute values of the complex amplitudes immediately after
the I _ 1 transfer. It is evident that most population is still in the yrast band
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with about the same spin distribution as before transfer. A considerable population
is in the yrare band, peaking at spin 18, and some population is spread into all the
other six higher bands. The transfer population to excited bands is enhanced by
the Q-window centering at the Q value of 2 MeV. In excited bands the intensity
oscillations with spin value seem nearly washed out compared to yrast. Fig.7d shows
the final amplitudes after the collision partners have widely separated. There is
further pumping of spin to higher values, the main population now being in the yrare
band, which is the continuation of the ground band past spin 18, where the aligned
band crosses under. There is good reason to distrust the sudden approximation in the
final stage of Coulomb excitation on the outward path. The system of Pb + Dy was
studied by Canto et al.,2_ using an Alder, Winther, deBoer semiclassical method, and
spin populations were found to change very little on the outward path. The sudden
approximation may be a little better for the actinide target, with its higher moment
of inertia, but the final spin distribution may be something between those shown in

- Figs.Tc, al.

7. Idealized Bunched Nilsson-level Case

It is instructive to repeat the above structure and transfer calculations for a
case where the Nilsson levels nearest the chemical potential are bunched, rather than
in the near-uniform distribution of the Bengtsson and Ragnarsson 21values used above.
Other calculations show something of a neutron subshell at 232Th. To accentuate this

tendency we carry out calculations where the odd-parity jls/2 levels retain their BR
values but the nearest three even-parity, lower-j orbitals are made nearly degenerate
with the 5/2- and with the 7/2- level. Figs.8 and 9 show the structure calculation
results for 23°Th and 232Th, respectively. In the former case the chemical potential

-" is within the cluster of four Nilsson levels around the 7/2-. The pairing force splits
tll out a ground band with large pairing and leaves a nearly degenerate triplet of bands!

_" at 1.5 MeV, as simple considerations would lead one to expect. The very small
off-diagonal pairing between yrast and yrare below spin 8 shows that the pairing
correlation completely concentrates on the lowest level for the system of degenerate
Nilsson orbitals, and there is no pairing vibrational character in the near-degenerate
set of excited states. Above spin 8 the character of the yrare band changes to a spin-
aligned band, which makes a sharp crossing with the ground band at spin 24. Fig.9
shows quite a different picture for 232Th, the nucleus at the subshell. Band mixing is
very diffuse, with yrast and yrare bands never getting very close. The eight Nilsson
levels equidistant from the Fermi energy (four above and four below) give rise under
the pairing force to a highly paired ground band and a moderately paired yrare band,
increasing in pairing correlation with spin and exceeding the yrast in pairing by spin
16. The large off-diagonal pairing matrix element between yrast and yrare below spin
16 shows the pairing-vibrational nature of the yrare. Above the two collective bands
is a cluster of 6 nearly degenerate bands. The blip in energy of the highest band at

16
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Figure 8: Same as Fig.1 (23°Th) except that Nilsson single particle levels have been artificially
bunched into two bunches of four each on either side of the Fermi energy (see text and Table 1).

spin 10 probably shows that the Lanczos algorithm broke down and missed a state,

where the degeneracy was high.

Figs.10a, b shows the 1 --+ 1 pair transfer matrix elements from yrast of 232Th

for this bunched-level idealized case. Fig.10c shows the corresponding values for 23°Th
going into the subshell of 232Th. The pattern is just what Bohr and Mottelson led

us to expect in their early treatment of pairing vibration. That is, pair transfer out

of the subshell (Fig.0) goes predominamtly to ground, while transfer into the subshell

(Fig.10) haz a fair fraction of strength going to the first-excited pairing-vibrational

state. Though we do not show a figure the calculations for 2n removal from 2_Th,

going into the subshell from the other side show much the same pattern as Fig.10c.

The 1986 work of Egido and Rasmussen 2s on 2n transfer strengths in the Dy
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Figure9:Same asFig.8,exceptfor232Th.

region showed a great deal of structure and fluctuation on up to the 10 MeV calcu-
lated. Only the strength to the yrast and yrare bands was systematically discussed.
With insights from our new calculations we would suggest that 2n addition(removal)
to(from) excited bands probes the non-uniformity of energy distribution of Nilsson
levels above(below) the Fermi energy.
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8. Interconnection of Proton and Neutron Alignment

To avoid greatly complicating nuclear structure calculations in heavier nuclei,
where neutrons and protons are filling different shells, a factorization is often assumed.
That is, neutron structure and proton structure are independently calculated. For
high-spin studies in the deformed rare earths that may be valid for many properties,
since neutron alignment always occurs at lower spin values than proton alignment.
For the actinide region, though, such factorization is less justified, since the protons
and neutrons undergo spin alignment in the same region. As a final illustration of the
potentialities of the HMD method with modern computers, we show two calculations
on 232Th. The first, shown in Fig.l l, is as before, with neutron structure alone. We
use 12 Nilsson orbitals but with orbital energies calculated with the SWGAMMA
code of Nazarewicz for /32 = 0.208 and /34 = 0.105 from the tables of Moller and
Nix. We use axial symmetry in the code SWGAMMA for Woods-Saxon potential.
These energies are shown in the last column of Table 1. Our earlier comments about
the sensitivity of sharpness of band crossing to the single particle level energies are
further illustrated. Even though the single particle energies for Fig. 11 are only slightly
changed from the Bengtsson and Ragnarsson energies of Fig.l, we now see sharp band
crossing in Fig. 11a.

Finally we go to an HMD calculation combining a 9-Nilsson-level neutron
system with a similar proton system. We do not add any explicit np force terms
to the Hamiltonian, but n-p coupling arises not only in our recoil-energy term but
also through the rotor-particle Coriolis coupling. Such effects are sassy to see in the
spin-alignment graphs of Egido and Ring is, where one type of nucleon may begin
gradually to align and the other suddenly aligns, with a concomitant decrease of
alignment of the first type. The sudden alignment has slowed the rotor and decreased
the alignment of the other type of nucleon.

Figs.12a-fshow the results of the combined calculation. The dimensionality of
the matrix has been decreased by an energy criterion that cuts out the less important
configurations. Even so, the Hamiltonian matrix here has dimensionality of 19,098.
The matrix is rather sparse, with 275,189 non-vanishing matrix elements. Parts of
the code with the Lanczos algorithm require quadruple precision in the Sparcstations
and double precision on the U.C Berkeley Cray in order to converge. The eight lowest
roots were taken for the 16 diagonalizations at the 16 different spin values. The CPU
time on the Sparcstation ELC was 73 hrs.

Note the differences between the pure neutron and the grand combined cal-
culations. The sharp backbending at spin 18-20 in the neutron case shift to spin 22
in the coupled case. From Figs.12c, d we see that the first two excited bands at spin
0-4 are neutron excitations and factorization is perfect, since the proton pairing is
unchanged. From Figs.12e,f it is evident that for intermediate spins 10-16 the first
excited band has neutron alignment character and the second excited band proton
alignment. Figs.12c, d show that the aligned bands have a low degree of pairing in the
type of nucleon that is aligned. Fig.13 shows the corresponding plots for the grand
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Figure 11: Same as Fig.1 for 2_°Th except with Nazarewicz-code for the 12 Nilsson energies instead
of Bengtsson and Ragnarsson energies (see Table 1.)

combined calculation on 2_2Th. Beyond a crossing of excited bands at spin 8 the yrare
band is mainly a proton-alignment bands. The neutron spin alignment does not as
cleanly concentrate on a single band.
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Figure 12: Grand combined HMD calculation for 23°Th with 9 neutron mad 9 proton Nilsson orbitals
and Nasarewiez energies (see Tables 1,2). This is like Fig.1 except that proton as well as neutron-
alignment and pairing is shown and for the lowest three bands, yrast()<), yrare(+), and second-
excited(.).
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9. Conclusion

We have presented here some samples of what can be done on nuclear rotational
band theory wit_ high-speed desktop computers. By straightforward Hamiltonian

matrix diagonalization (HMD) we calculate families of K = 0+, 1+, and 2+ bands
in spheroidal even-even nuclei, obtaining wave functions conserving particle number

and total angular momentum. With such wavefunctions, band mixing behavior can

readily be studied through spin alignment and pairing properties of various states.

Quadrupole pairing and quadrupole-quadrupole field terms in the Hamiltonian
were turned off in the actinide calculations shown here, since we wished to make direct

comparisons between HMD and CHFB+RPA calculations for neutron-pair transfer.

Comparing the two approaches we find remarkably similar patterns in the transfer

strength distributions. This gives us some confidence that the similar patterns may be
realistic, and with the two methods, one may guess the results in those regions, where

each of the approaches is weakest (HMD at high spin, where the CAP is strong and

CHFB+RPA near the transition point). The measurable population pattern is very
much dominated by the COULEX. Thus, to study the transfer pattern experimentally

one needs to study the impact energy and scattering angle dependence carefully, to
disentangle, as far as possible, the COULEX pattern from the transfer pattern.

We made exploratory studies of quadrupole pairing in the 90-neutron region,

and we note its importance in lowering the pairing vibrational band head. This

influence of downsloping (polar) and upsloping (equatorial) Nilsson orbitals near the
Fermi surface, and the region of thorium nuclei studied in this paper should be less

sensitive to quadrupole pairing.

Our HMD calculations to date have been constrained to fixed deformation, a

reasonable constraint for 232Th and its neighboring isotopes. However, if HMD is to be

extended to the very borders of stable deformation or into some of the sub rare-earth

regions with shape coexistence pioneered by Joe Hamilton and associates, we must
develop a measure of self-consistency in shape determination. It seems promising

to add quadrupole-quadrupole field interactions among the valence nucleons in the

9-12 Nilsson orbitals, thus, opening the approach to shape self-consistency and shape

coexistence phenomena.
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