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BACKPROPAGATIONARCHITECTUREOPTIMIZATIONANDAN APPLICATIONIN

" " " NUCLEARPOWERPLANT DIAGNOSTICS

I Anujit Basu rectify the problem, mitigate any possible damage, and save

Erie B. Bartlett the plant from an unnecessary shutdown.
This paper is part of an ongoing project at Iowa State

I University to develop ANN based fault diagnostic systems toDepartment of Mechanical Engineering detect and classify operational transients at nuclear power

Iowa State University plants. The project envisages the deployment of such an
adviser at Iowa Electric Light and Power Company's Duane

I Ames, Iowa 50011. Arnold Energy Center nuclear power plant located at Palo,IA. This adviser is expected to make status diagnosis in
real time, thus providing the operators with more time for

I corrective measures.
This paper presents a Dynamic Node Architecture Neural Networks

(DNA) scheme to optimize the architecture of backpropa-

I gation Artificial Neural Networks (ANNs). This network Neural networks are a novel and fast-emerging branchscheme is used to develop an ANN based diagnostic sd- of the science of artificial intelligence. Robert ttecht-Nielsen
riser capable of identifying the operating status of a nuclear [10] defined a neural network as a' "parallel, distributed in-
power plant. Specifically, a "root" network is trained to di- formation processing structure consisting of processing el-

l "' agnose if the plant is in a normal operating condition or ements interconnected together with unidirectional signalnot. In the event of an abnormal condition, another "classi- channels called connections". Each processing element has
tier" network is trained to recognize the particular transient a single output connection which "fans out" into as many
taking place. These networks are trained using plant in- collateral connections as desired. The processing element

I strumentation data gathered during simulations of the vari- output signal can be of any mathematical type desired.ous transients and normal operating conditions at the Iowa Neural networks draw interest because of the absence of
Electric Light and Power Company's Duane Arnold Energy a knowledge base which is the core of any expert system.

I Center (DAEC) operator training simulator. Expert systems require that knowledge be specifically in-
serted into them about every aspect of a system that needs

Introduction to be analyzed. This knowledge is stored as numerous 'if-
then' logic statements that assist the system in performing a

I The safe operation of a nuclear reactor in a power plant fault-tree type analysis. In the case of a nuclear power plant,is of utmost importance to the nuclear engineering commu- this requires that every possible scenario be investigated in
nity and quite vital to creating a positive attitude towards as much detail as possible, lt also requires that the person-
nuclear energy among the rest of the society. This paper nel developing tile system understand ali the processes and

I is an attempt to demonstrate how ANNs can increase the systems in the plant and know the significance of each sensoroperational safety of nuclear reactors by being the basis of reading in each of the scenarios being investigated. On the
a fault diagnostic system in a power plant. It is hoped that other hand, ANNs do not require knowledge to be explicitly
neurocomputing, as the science of neural networks is some- inserted into them. In fact, the designer need not have a

I times called, will provide a fast and reliable approach to very intimate understanding of the importance of each sen-recognizing and classifying operational transients at anu- sor reading. Ali he need to know is that certain sensors are
clear power plant, important indicators of the health of the plant. ANNs learn

I Most power generating stations currently employ auto- the correct response from the training set during the train-
marie safety systems that allow the plant to operate within ing process, and generalize this information. The training
a predefined normal operating parameter space. These sys- set is the collection of input-output patterns that is used
terns verify that the operating status conforms to the pre- by the network to infer the functional relationship between

I assigned safety limits of the various plant variables. As the the inputs and the outputs. Generalization is the ability toplant enters into an abnormal condition, indications of plant "quantitatively estimate certain characteristics or features
variables exceeding the normal range causes the safety sys- of a phenomenon never before encountered based on simi-
terns to either trigger a scram that automatically shuts down larities with things previously known" [4]. Neural networks,

I the reactor or notify the operators through some alarms or because of their parallel analog nature, are more noise tol-indicators. The sequence of events leading to the plant shut- erant than the conventional expert systems, and so. manage
down are analyzed later by technical support teams located to do a fairly credible job of classification under deteriorat-

I both on and off site. Use of the proposed adviser would be ing sensor conditions. Faced with the fact that a majority
helpful in better understanding these events in real time. of the anticipated transients at nuclear power plants have

Diagnostic systems being developed at this time almost never actually occurred and data for such scenarios are ob-
always rely on elaborate expert systems to evaluate the cur- rained through computer simulation, the generalization ca-

I rent plant status. Sometimes, these expert systems are pabilities of ANNs are especially useful for determining ainteractive with the operator. Also, they go through a solution for accident recognition [11]. If some physical as-
long, computation intensive, fault-tree type diagnosis rou- peers had been overlooked while constructing the models on
tine. This may make them slow to respond in an emergency which the simulations and expert systems are based, an ex-

I situation. The proposed adviser is expected to have quickest pert system would still function on the rules built into them.response, thus providing the operators with more time to" However, Bn ANN would be able to disregard this particular
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Figure 1 : A three-layered feed-forward Backpropagation neural network I
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mistake and work on the basis of other information garnered _ g
through the training process. _ OUTPUT

Artificial neural network models attempt to achieve go- /

od performance via dense interconnection of simple cpm- Ij 1

putational elements or nodes. Instead of performing a pro- / " TRANSFER I
gram of instructions sequentially as in a von Neumann com- FUNCTION

puter, neural networks "explore many competing hypothe- (SIGMOID) iises simultaneously using l,iassively parallel nets composed of iimany computational elements connected by links with vari-

able weights" [12]. The layered feed-forward ANN consists __ SUM OF I
of nodes arranged in layers, with the nodes of any layer being WEIGHTED
connected to the nodes in an adjacent layer through variable INPUTS
weigh ts (see Figure 1). The nodes of a layer are connected

to every node of the layers immediately above and below [-W-. ,na
them but not to any node in the same layer. In such feed- 4 |
forward layered networks, the first layer is the input layer W"-'_--
where the nodes are inactive, their outputs beir.g equal to
their inputs. The last layer is the output layer. The layers W 2 WEIGHTS I

in between consist of "hidden" nodes, so called because they l

are isolated from tile outside environment. The design of a _(_ INPUTS I

network architecture is rather arbitrary, only tile number
of nodes in tile input and output layers being fixed by the

problem at hand. The nodes used in ANNs are nonlinear ) (
,. and typically analog. Tile simplest node sums weighted in-

puts and passes the result through a nonliner.rity function,

sometimes also called the transfer function (see Figllre 2). i_

The publication of tile backpropagation technique by Figure 2 : A simple node detailed ii
Rumelhart et ai. [13] It,ts unquestionably been the most
influential development in the field of neulal networks in dam
tile past decade. The

learning procedure they _:uggested in- output vector and then compares this with the expected I
volved the presentation of a set of pairs of input and output or desired outFut vector. (This makes backpropagation a
patterns. The ANN uses the input vector to produce its own supervised learning method [6].) If there is no difference, no
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learning takes piace• Otherwise the weights are changed to rive systematically at a near-optimum architecture for any

I reduce the difference• This process utilizes the Delta and the problem. The scheme is detailed in the next section.Generalized Delta rules. For the output nodes the error is

easily calculated as the difference between the actual output Dynamic Node Architecture Theory

i and the desired output. But for the nodes in the hidden
layers, it is not possible to calculate the error in this way. The derivative Dynamic Node Architecture (DNA) sch-
The correct output of the hidden nodes are not known. To emc progresses in a systematic method to come up with
assign an error to tile hidden nodes we backpropagate the the appropriate architecture for tile problem. Training is

I error of the output nodes to the hidden nodes using the very commenced with a small network which won't be able tosame weights that were used to propagate the error to the solve the problem. Typically, training was started with just
output nodes in the first piace[7]. Tile Delta rule modified one hidden node. As training progresses, tile network soon
for the hidden nodes is called the Generalized Delta rule reaches a plateau and cannot reduce the RMS error beyond

I [7, 13]. a certain point. Now a node is added to the hidden layer.The weights connecting this node are assigned a very small
The Network Architecture Problem value so that the addition of this node does not disrupt the

network much. Training is now resumed until the network

I Backpropagation networks are layered and feed-forward; reaches another plateau. Now another node is added.
This

they always consist of at least three layers of nodes. The process is continued until the network reaches an RMS er-
middle layers, in between the input and the output layers, rot value below a preselected value. This indicates that the

i are isolated from the outside and are thus called hidden network has learned the problem to the desired level of accu-"" layers. The number of inputs and outputs are fixed by the racy. Now, not ali of these nodes may be necessary to recall
problem at hand. The only choice of network architecture is the problem. So the hidden node with the least importance
the number of hidden nodes. This choice needs to be care- is removed front the network. The resultant network would

i fully exercised. If the hidden layer is too large it will encour- require further training. If the deleted node had a very lowage the network to memorize the input patterns rather than level of importance, then the node had little contribution

generalize the input into features [7, 10]. This is because the to the performance of the network. Upon continued train-
large number of nodes and weights give the network more ing, the smaller network might be able to learn the problem.

I ways to distinguish features [1], resulting in the specifics be- Then, another node (with the least importance) is deleted.ing learned better than the generalities. This reduces the This process is continued until the network is too small to

network's ability to correctly classify unfamiliar patterns at'- learn the problem. Now nodes are added until the prob-

I ter training is complete. On the other hand, a hidden layer lem is relearnt. The process of deleting and adding nodes
too small will drastically increase the number of iterations, is continued until the algorithm starts oscillating about the
and thus the computer time, required to train the network optimum architecture. It is to be noted that the architecture

and will most likely reduce the accuracy of recall [7]. The given by this scheme may not be the optimum architecture

I problem of network architecture can be compared to finding but very close to it.
the interpolation polynomial between various points [4]. An

appropriate order polynomial gives a smooth curve. But as Importance of a Node
the order of the interpolating polynomial is increased, the

I interpolating curve tends to get chaotic, oscillating between While deleting nodes, we get rid of the node with thethe interpolating points, least importance• The importance of a node is a function

There are no hard and fast rules for determining the op- of the network outputs. If changes in the output of a par-
timum architecture; most rules in use at this time are em- ticular hidden node is instrumental in deciding the output

I pirical in nature, derived by heuristic methods. The usual of the network more than a similar change in the output ofapproach is to start with various guesses, train ali of them, another hidden node, it stands to reason that the former

and then retain the one with the best post-training char- node is more important to the "dynamic functioning of the

i acteristics [4]. This drastically increases the training time network" [4] than the later node. The importance of the jthrequired before a network can be used to solve a problem, hidden node with respect to the kth output no.de is defined
Problems of this ldnd have been instrumental in preventing as [4]

the widespread use of neural networks as effective tools in I(xjlz_ ) = E[l_xk,n/6xj,,,I] * dx']_ax (1)

I solving many intractable problems [4]. where E[...] is the expectation the entireThe problem addressed in this paper involves status di- and dx'_ _ is the maximum change°Verinthe outputtrainingofthe jth

set

agnostics in a nuclear power plant. The input data consisted hidden layer node also over the entire training set. This im-of ninety-seven variables and the output was a combination

I portance function is called the derivative importance func-of five booleans. The network needed to be trained a num- tion. The derivative in the above equation, which is the

ber of times with different training sets. If an appropriate change in the output of the kth output node due to a changearchitecture was needed for each trial, the problem would
have assumed mammoth proportions. A lot of guesswork in the output of the jth hidden node, can be evaluated by

I partial differentiation of the transfer function.would have been involved, the physical problem being not The above equation gives the partial importance of the
• so well understood. So it was imperative to come up with jth hidden node with respect to the kth output node. If the

some systematic method that would derive the optimum, or network were to consist of more than one hidden layer, the

I near optimum, architecture for any given problem, partial importance of any of these hidden nodes withThe derivative Dynamic Node Architecture (DNA) sch- to any output node can be found out using the chain rule.
respect

eme was developed to skirt ali the above problems and ar-
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Tile total importance of tile jth hidden node is the sum on the maximum and minimum values of each variable dur- mm
of the partial importances of that node with respect to ali ing the simulations of the transients of interest. The former 1
the output node:q. Mathematically, approach would make it unnecessary to renormalize data if

III

the tra.usients of interest increased at a future date.
krnax

I(=_) = _ /(_1_) (2) Tile Structure of the Adviser 1
k---l

where krnax in the number of output layer nodes. In the The earlier approach taken in this kind of work [2, 3, 5]
same way, the importance of a layer can be defined as tile involved trMning one network to output a p_rt.icular boolean I
sum of the importances of the nodes in that layer, if the plant were in a normal operating condition, and a dif- ii

ferent boolean for each of the transients being investigated.
Designing the Adviser But this approach burdens one network with too much work. i

The approach taken here is to have a "root" network rec- i
The specific problem investigated in this paper is the ognize if the plant is in a normal condition or not. If it is

design of an ANN based nuclear power plant status diag- not, then a second network, called the "cla.ssifit:r" network,
nostic adviser. This adviser is expected to correctly iden- is trained to look at the off-normal patterns and identify the li
tify and classify twenty-four distinct transients and the nor- particular transient in progress. |
mal operating conditions. For a meaningful conclusion, the The adviser is thus a collection of two networks. Both
transients investigated needed to be much varied in nature, networks have ninety-seven input nodes. Tire root network

ANNs which can recognize such a diverse range of tran- has only one output node which gives an output of '0' if ii
• sients need to be able to draw information from a lot of the plant is in a normal condition and '1' if it is not. The II

plant variables. The choice of accidents and variables were classifier network on the other har, d needs to be able to
thus very important for the project. Two major documents distinguish twenty-four different tra.nsients, and so needs to I

were consulted for the purpose. These were the Updated output as many different booleans. This can be done with III
Final Safety Analysis Report,Chapter 15 : Accident Analy- five binaries, and so, this network kad five output nodes.

sis [14] and the Malfunction Cause and Effects Report [9],
both by the Duane Arnold Energy Center (DAEC). These Training ml
documents describe most of tile power plant transients of |
interest. Intensive discussions between personnel at DAEC The values of the ninety-seven variables at any given

and fellow researchers at ISU [8] resulted in a preliminary time waz expected to contain enough information to make
list of transients to be simulated anti plant variables to be it possible to look at, them at any instance of time and di- •

monitored [I1]. From these transients, twenty-four distinct agnose the plant status [2, 3]. The training data for both II
ones were selected for this work. Some of these transients the networks were chosen in an iterative manner. For the
had severities associated with them. In order to have the root network, in tile first trial, one pattern at tile beginning

adviser detect a transient irrespective of the severity of the and one at tile end of each simulation were taken to form
problem, some of tl!ese transients were simulated at differ- the training set. Training waz initiated with one hidden II
ent severities. This resulted in the adviser being trained node. As the training progressed, the DNA scheme added
to recognize twenty-four distinct transients using data from more nodes and finally gave an optimum architecture with tlm
the simulation of thirty-seven scenarios. Tile data were ob- five hidden nodes for tile first trial. This first trial had Bi

tained from the DAEC operators training simulator, seventy-four (two from each scenario) training patterns and
Rg

was trained to an RMS error of 0.10. This trained network

Data Collection and Processing was now used to recall on the whole length of the thirty- Iii
seven simulations, and the RMS errors of the outputs for |

D_tia were collected for ninety-seven plant variables at each of the patterns waz plotted out. Obviously, the net-

intervals of one second as the simulated transients progre- work did not do a very good job of classifying ali the pat-
ssed. These variables were selected from the complet'e list terns. The patterns with the worst recall errors were added i
of computer points available on the simulator. They were to the training data set and tile network front the previous II
decided to be sufficient to diagnose the transients currently trial was trained further. This process was continued until
being investigated. These variables covered a wide variety of the network couhl detect the onset of a transient within a
plant instrumentation like pressure and temperature in the reasonable amount of time. B
various working systems and building areas of the plant, ra- A similar approach is used to train the classifier network,
diation monitors, in-core flux monitors, valve monitors etc. Here, the normal operating conditions are not used as this

The data consisted of the numerical values of these ninety- network will be called upon to classify only those patterns li
seven variables and the time corresponding to each set of that the root network had decided was abnormal. So the |values. The data also consisted of a boolean that indicated first training attempt had only thirty-seven (one from each
the onset of the transient. The data before the start of the scenario) patterns in it.

transient related to normal plant operating conditions. The lt is to be noted here that this problem is slightly differ- lm
raw data, off the simulator, was in a very unusable form. ent from conventional problems that are solved using neural II
Codes written at ISU were used to reformat the data in a networks. In most ca.ses, a training set is given, and a net-
ft)rm that could be used by neural networks. Neural net- work is trained based on that. The recall set is not known

works require normalized da_a as input. It was decided to beforehand, and the trained network is then used to recall
normalize the values of each variable based on the maximum on unseen patterns. But in this case, the recall set is known II
and minimum PoSsible values of that variable rather than from the simulations. We then try to define the training
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Table I: The twenty-four transients used to design the adviser, the total simulation time for each

I transient, and tile time required by tile root and classifier networks to detect and diagnose tlmtransient. Tile. diagnosis and classification times are since the initiation of the transient.

No. Scenario Description Simulation Root Diag- Cla.ssifiction

I Time nosis Time Time
(in sec) (in sec) (iu sec)

1 culO Reactor water clean-up coolant leakage 149 8 107

I 2 fw04a Condensate Filter demineralizer resin injection 200 25 403 fw09a Reactor feedwater pump trip 181 17 53
4 fwi2c0 Feedwater regulator valve controller failure 182 7 81

i 5 fwl7a Main feedwater line break inside primary containment 182 0 10l6 fwl8a Main feedwater line break outside primary containment 19'2 5 78
fwl8a_2 60% severity 184 8 80
fw 18a_3 30% severity 214 26 64

I 7 hp05_2 Iligh-pressure core injection steam supply line break 194 22 ,11(lligh pressure core injection room 60% severity)
hp05_3 30% severity 193 30 35

I 8 hp08_2 lligh-pressure core injection steam supply line break 321 35 72(Torus room) 60% severity
hp08_3 30% severity 365 39 I 11

i 9 ic20scr2 Spurious scram with effective operator action 243 2 51to avoid feedwater t)ump trip. Initial condition
lC20 ' 100% power, End of Cycle

10 ic20scrm Spurious scram with no operator action 125 2 77

I Initial condition IC20 • 100% power, End of Cycle11 ic23scrm Spurious scram with no operator action. Initial 1.26 2 81
condition IC23 : ,5% power, Beginning of Cyc!.e

I 12 ic24scrm Spurious scram with no operator acti:)n. Initial 125 !0 95condition 1C24 ' 100% power, Middle of Cycle
13 ms02 Steam leak inside primary containment 100% severity 188 4 84

ms02_2 60% severity 181 4 77

I ms02_3 30% severity 172 5 8l14 ms03a Main steam line rupture inside primary containment 166 0 88
100% severity

I ms03a_2 60% severity 182 0 112ms03a_3 30% severity 188 2 97

15 ms04a Main steam line rupture outside primary containment 154 0 45
100% severity

I severity 147 0 47
ms04a_2 60%

ms04a_3 30% severity 137 0 47

16 msl9ab Spurious group 1 isolation 182 20 83

I 17 ms32 Spurious group 7 isolation 193 10 10418 rp05tc01 Reactor protection system SCRAM circuit failure 424 5 90
(ATWS) with alternate rod injection

I 19 rp5actel Reactor protection system SCRAM circuit failure 520 5 115(ATWS) with failure of alternate rod injection
20 rrl0 Recirculation pump speed feedback signal failure 262 17 104

21 rrl5a Recirculation loop rupture (design basis Loss of 307 0 ll3

I Accident) severity
Coolant 100%

rrl5a_2 60% severity 301 0 113
rrl5a_3 30% severity 372 2 24

I 22 rr30 Coolant leakage inside primary containment 300 7 105100% severity
rr30_2 60% severity 201 21 1l0

I 23 rx01 Fuel cladding (5%) failure 185 11 1824 tc02 EHC system hydraulic pump failure 162 6 71
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