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ABSTRACT

Several software systems are available for implementing automatic differentiation of
i,

computer programs. The forward mode of automatic differentiation is limited by computational
intensity and computer memory. The reverse mode, or adjoint approach, is limited by computer

.. memory and disk storage. A modular technique for derivative computation that can significantly
reduce memory required to compute derivatives in a complex FORTRAN model using the
reverse mode of automatic differentiation is discussed and demonstrated.

m
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1. INTRODUCTION

• The calculation of derivatives necessary for sensitivity analysis, or for the optimal solution

of systems of nonlinear equations, continues to be an important research objective. Several

, software systems have been developed or proposed for implementing automatic differentiation

of computer programs. The forward mode of automatic differentiation is efficient for calculating

derivatives for a large number of dependent variables with respect to a few independent

variables. As the number of independent variables increases, the computational complexity, as

measured in execution time and memory, requirements, renders the forward mode impractical.

The reverse mode, or adjoint approach, is efficient for derivatives of a few dependent variables

with respect to thousands of independent variables; however, available memory and disk storage

generally limit the application of the reverse mode to problems with less than a few million

floating-point assignments. The fundamental problem with the reverse mode of automatic

differentiation is that the accumulation of derivatives for every floating-point assignment is

required. A code that uses 3 min of execution time to perform 50 million floating-point

assignments could easily need more than 1 gigabyte (GB) to store the accumulated derivatives,t'2

GRESS (the GRadient Enhanced Software System) was designed to apply automatic

differentiation to large-scale FORTRAN programs in the nuclear industry without rt:quiring

significant changes to the coding) "4 GRESS provides two methods of calculating and r,:porting

t derivatives. The CHAIN option implements the forward mode of automatic differentiation to

calculate the derivatives of a variable with respect to a user-selected subset of the input data.

The ADGEN option incorporates the reverse mode or adjoint sensitivity analysis methods to

calculate derivatives of selected variables with respect to thousands of input parameters. When

the ADGEN option is chosen, partial derivatives for every arithmetic assignment statement in

the model are stored in memory or output to a data set. Matrix-solving routines are then used

to calculate and report derivatives and sensitivities for selected results.

In this paper a modular differentiation technique (MDT) is presented that uses both

forward and reverse modes to restrict the growth of execution time and storage requirements,

thus extending the size of problems to which the reverse mode of automatic differentiation can

be applied. MDT is implemented using GRESS and provides a compromise b,_tween the

forward mode with its computational limitations and the reverse mode with its excessive memory

or storage requirements.

'The effectiveness of the MDT in propagating derivatives through a computer program

rests on the degree of modularity in the program. Most existing large-scale FORTRAN

. programs do not have the degree of modularity necessary to apply MDT in an automated

fashion. "lTaeapproach described in this paper is to provide the basic tools to allow one to

u
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implement MDT on a module-by-module basis in an existing code or in the development phase
for a new code.

A new GRESS option, GENSUB, that permits the processing of individual program

modules (i.e., a do loop, subroutine, function, or a sequence of subroutines) for calculating

derivatives is used to demonstrate MDT, GENSUB is designed to allow derivatives to be

propagated in either forward or reverse mode. The decision on whether to use forward or

reverse mode can be made by the user or by the software.

In Sect. 2 GRESS is described. In Sect. 3 MDT is presented. The GRESS GENSUB

option is described in Sect. 4. The application of MDT using the GENSUB option is
demonstrated in Sect. 5.

2. GRESS

tl

GRESS uses a method referred to as statement adjointing to process the arithmetic

assignment statements in a FORTRAN program. The first part of this section provides an

overview of the GRESS system. The remainder of the section describes statement adjointing

as implemented in GRESS.

2.1. OVERVIEW OF GRESS t

In a FORTRAN program, calculated variables are mathematical functions of previously "

defined variables and data. GRESS uses a precompiler to interpret FORTRAN statements and

determine the mathematical operations embodied in them. As each ar_hmetxc assignment

statement in a program is interpreted, information necessary to allow the calculation of

derivatives is generated. The result of the precompilation step is a new FORTRAN program

that can produce derivatives for any REAL (i.e., single- or double-precision) variable calculated

by the model. Consequently, GRESS enhances FORTRAN programs by adding the calculation

of derivatives along with the original output. GRESS accepts a majority of ANSI-X3.9

FORTRAN 77, including subroutines, common blocks, data statements, read statements, user

functions, intrinsic functions, block data subprograms, single-precision variables, double-precision

variables, and equivalence statements. GRESS does not process COMPLEX variable types or

statement functions. Specific limitations are discussed in ref. 3. GRESS is available from the

Radiation Shielding Information Center at Oak Ridge National Laboratory and is operational

on VAX/VMS computer systems. The author has implemented test versions of GRESS on

VAX/ULTRIX, CRAY/UNICOS, IBM RISC/6000 Workstations, and Sun Workstations;

however, GRESS ha_ only been rigorously tested in the VAX/VMS environment. .



The steps used to process a

code with GRESS are illustrated in [/'FORTRAN_ GRESaPmoompller

" Fig. 1. A FORTRAN model is [
input to the GRESS precompiler to " II

E.hanold

• create an enhanced program. The /r'OnTRA"

enhanced model is compiled in the / QREa, / .._ _OU__LEIusual manner and then linked with ._.t_.library

a library of GRESS utility routines. ,u_"i'N i
When the enhanced model is I Model Results

8enJdtlvltlss

for each arithmetic assignment

statement immediately before the _

statement is executed. Fig. 1. Processing steps for a GRESS application.
Derivatives from a GRESS-

enhanced model can be used internally (e.g., for iteration acceleration) or externally (e.g., for

sensitivity studies). In this paper, we focus on the calculation of derivatives of output variables

with respect to input parameters.

GRESS provides two methods for calculating derivatives. The CHAIN option calculates

the derivatives of a variable with respect to a user-selected subset of the input data by repeated

application of the chain rule in the forward mode. The CHAIN option calculates derivatives as

the model is executing and is the recommended option when the user is only concerned with a
lP

very small number of input parameters. The ADGEN option incorporates the adjoint methods

long used by nuclear engineers to calculate the derivatives of selected model responses with

respect to thousands of input parameters, s8 When the ADGEN option is chosen, partial

derivatives for every floating-point assignment statement in the model are output to a data set

or stored in memory. Matrix-solving routines are then used to calculate and report derivatives

for selected results. The ADGEN option provides the user with the capability to calculate and

report the derivatives of any calculated model result with respect to ali data input to the model.

An imb 3rtant advantage of the adjoint method over the chain rule method is that the derivatives

of selected model results can be calculated with respect to thousands of input parameters at a

cost comparable to that of executing only a few model runs. To approximate the same

information by direct parameter perturbations would require separate model runs for each input
parameter.



, i lr,;,,4'd,

2.2.STATEMENT ADJOINTING

An arithmetic assignment statement has one dependent variable (the term on the left of

the equal sign) and one or more independent variables (the terms on the right); therefore, it is

most efficient to calculate derivatives for an arithmetic assignment statement using the reverse

mode or adjoint method. This method will be referred to as statement adjointing.

Statement adjointing is seen as an improvement over other methods of automatic

differentiation because 'it reduces memory requirements and computational intensity during the

execution of the enhanced program. Many tools for automatic differentiation require storage

of 16 to 20 bytes per floating-point operation? Statement adjointing reduces that storage to 16

to 20 bytes per 3oating-point assignment. Not only does this reduce storage, but it also reduces

the number of calculations required to calculate derivatives during the execution of the enhanced
code.

To implement statement ad!:;inling, the GRESS precompiler creates and then solves an

adjoint matrix for each assignment statement as it is processed (Fig. 2). Once the adjoint matrix

for a statement is solved for the derivatives of the term on the left with respect to the variables

on the right, the FORTRAN statements necessary to calculate those derivatives during execution

are generated.

To compute:
Y(I) • X(I),A + X(I),B

Generate temporary terms=

TI • X(I),A
T2 - X(I),B
Y(I).T1. T2

Syrnbolio AdJolnts _,adjointmatrix of Y(I)
X(I) 1 0 0 A B 0 1 0 0 A B A,B
A 0 1 0 X(I) 0 0 0 1 0 X(I)0 X(I)

S 0 0 1 0 X(I)0 _ 0 0 1 0 X(I)X(O
TI 0 0 0 t 0 t.0 0 0 0 1 0 1.0
T2 0 0 0 0 1 1.0 0 0 0 0 1 1.0
Y(I) 0 0 0 0 0 1 0 0 G 0 0 1

Fig. 2. Creating and solving a statement adjoint ma,cix.
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During the precompilation step GRESS makes a single pa_s through a FORTRAN

program• Statements defining REAL variables are pz_rsed (1) to determine mathematical
- operations and (2) to solve the adjoint matrix for the statement. GRESS generates FORTRAN

statements that compute the partial derivatives of the term on the left with respect to the REALh

- variables on the right. The original statement is output, followed by a subroutine call for

processing the partial derivatives. The following sequence of FORTRAN is used to demonstrate

precompilation.

r

DC) 10 I=1,4
Y(I)=X(I)*A + X(I)*B "

10 CONTINUE

Though the program generated by the precompiler appears more complicated, the

partial derivatives that GRESS stores in the DX array are easy to find and verify.

' DO 90002 I= 1,4
DX(1)=A+B
DX(2)=X(I)
DXO)=X(I)
Y(I)=X(I)*A + X(I)*B
CALL LOCNXX(1,4,Y(I),X(I),A,B)

90002 CONTINUE

The partial derivatives are initially stored in the DX array. Subroutine LOCNXX is a GRESS

routine generated when the adjoint option is selc,._ea. When the adjoint option is selected,the

partial derivatives are moved into a buffer for later processing. The interested reader is referred

to the GRESS User's Manual for more information on the adjoint and CHAIN options. The

GENSUB option will be discussed l_ter in this text.



3. DESCRIFFION OF THE MODULAR DIFFERENTIATION TECHNIQUE (MDT)

A major limitation when considering the ADGEN option is problem size as measured

by execution time. Since the partial derivatives for every real assignment statement are

accumulated, the amount of data storage can be prohibitive. A program that performs 50 million

assignments may require as much as 1 GB of storage. 12

GRESS was designed to work with existing programs. GRESS treats a program as a

single unit or module. Previously, GRESS could not be used to solve for derivatives from a

subroutine or function independent of the rest of the program. GRESS was also limited in that

it could not apply the reverse mode to solve for derivatives after each pass in an iterative type

code. Solving for derivatives between iterations is of utmost importance in many appl:::ations

and is a means to reduce memory required to store accumulated derivatives. MDT and the

GENSUB option were developed to solve some of these problems.

To implement MDT it is necessary for a program to be thought of as a sequence of

modules that are linked. Initially we will consider the link to a module to be the argument lists

and return values. Later we will discuss the processing of variables provided to a module viar

common blocks.

A module can be considered to be any sequence of fORTRAN statements. Any module

can be represented by a computational graph. As an example, consider the following formula
for DIST: I_

o,s
A computational graph for this equation is shown in Fig. 3. The squares in t_:_ computational

graph represent arithmetic assignment statements. The reverse mode of automatic

differentiation requires the accumulation of derivatives for every floating-point assignment that

is dependent on a declared parameter.
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Fig. 3. Dependency graph for DIST.

In modular form, the DIST formula could be coded as a FORTRAN subroutine or

function with the Y array as input and DIST as the calculated result.

A computer program can be represented as a sequence of modules, each with its own

computational graph. Each module is assumed to have input and output. For simplicity we are

! ignoring global variables and _ommon blocks. For the purposes of this section we are requiring

input and output to be on argument lists to the module.

' Figure 4 shows a computational graph for a computer program with three modules, each

with its own computational structure.

Fig. 4. Computational graph for a three-module program.
lm



The digits on the links indicate the number of input and output variables for each module.

Module A has three inputs and one output, B has one input and three outputs, and C has three

inputs and two outputs.

With most reverse-mode implementations, modules A, B, and C would be run

sequentially with ali derivatives from ali floating-point operations stored in memory or on disk.

GRESS is somewhat improved in that only derivatives from floating-point assignments are stored;

however, for large-scale problems the amount of storage required renders the reverse mode

impractical.

MDT is designed to work with each module independently. Once a module is completed,

then either forward or reverse mode is used to calculate the derivatives of the output from the

module with respect to the input. Only the derivatives of the output with respect to the input
need to be sl "_red.

In most practical cases, a simple test can be used to determine whether to use forward

or reverse mode to calculate the derivatives for a module. If the number of input parameters

is greater than the number of output variables, reverse mode of automatic differentiation should

be used. If the number of o_'tput variables is greater, forward mode should be used. The

decision on whether to use forward or reverse mode does not have to be made a priori, it can

be determined when the module, is finished. For the example in Fig. 4, reverse mode would be

applied to module A, forward mode to module B, and reverse mode to module C.

Most large FORTRAN programs are modular in design; however, common blocks

provide a mechanism by which modules can share global variables that arenot provided on the

link to the module. It seems to be common practice to have thousands of common block

variables available to every subroutine in the program. When processing a module we only have

to be concerned with global variables that are accessed or stored during the execution of a

module. Though a single module may have thousands of common block variables, only a subset

, may actually be used as dependent or independent variables. Variables that are used can be

determined during execution of the module. Figure 5 shows the computational graph for a

computer program with global variables available to modules.



Independent Global Variables

===I>

A B C

r

Dependent Global Variables

Fig. 5. Computational graph for program with commonblock.

When determining whether to use forward or reverse methods for calculating the derivatives for

a module, the independent global variables are counted as input variables, and the dependent

global variables are counted as output variables. If global variables are included, module A
should use forward mode, and modules B and C should use reverse mode.

For MDT to be feasible, the number of variables on the links between modules must be

1 small compared with the number of variables within the modules. The more modular a code

sy:,_em, the more effectively one could implement MDT. A module can be as simple as a

subroutine or function; however, the composition of a module is arbitrary. For example, in a

code that does hundreds of iterations, each iteration could be treated as a module. Though in

the long term completely automating MDT is recommended, the intent in this paper is to test

MDT with existing technology.

4. GF_aNSUBSTRUCTURE AND DE,SIGN

The chain rule of differentiation has a natural linked-list structure. In designing

GENSUB we took advantage of this natural structure for storing derivatives in memory. A

linked-list structure can easily be traversed in forward or reverse directions, thus allowing the
forward or reverse method of automatic differentiation to be selected after the module is

completed.

The GRESS GENSUB option was developed to permit testing of MDT. GENSUB ish

used to process a subset of a program (i.e., a do loop, subroutine, function, a sequence of

subroutines, or a whole program) for calculating derivatives of dependent variables with respect

9



to independent variables. GENSUB allows the processing of program units as small as a do

loop, and as large as an entire program. GENSUB can use either forward or reverse chaining,

depending on which is most efficient for the given application.

GENSUB takes advantage of the modularity in many FORTRAN programs. A module

may be thought of as any sequence of FORTRAN statements with identifiable input and output.

A subroutine or function with input and output communicated via argument lists would be an

obvious example of a module. However, the input and output could also be in common blocks.

While a module is considered to be a sequence of statements, a program can be thought of as

a sequence of modules that are linked. The following section presents the linked-llst structure

used to store and calculate derivatives for a single module, followed by a discussion of the linking
of modules.

4.1. LINg, ING FLOATING-POINT ASSIGNMENT STATEMENI"S

GENSUB was designed to work efficiently for small- to medium-sized modules. The

strategy is to minimize work during the sequential processing assignment statements. Information

necessary to propagate derivatives is accumulated without reduction in a structure that allows

solving for derivatives in either the forward or reverse mode.

Each time an assignment statement is executed, a GRESS library routine will construct

a Statement Frame, as illustrated in Fig. 6. A sequence of Statement Frames contains ali the !

information necessary to apply the chain rule of differentiation in either forward or reverse mode

to calculate derivatives of selected dependent variables with respect to variables that are input "

to a module. Memory required to hold the Statement Frames and solve for derivatives is

allocated dynamically. ,_

As shown in Fig. 7, Statement Frames form a linked-list structure that can be traversed
in either the forward or reverse direction. The information stored in the linked-list structure can

be used to calculate the derivative of any calculated result with respect to any term on the right-

hand side of an assignment statement.

When a module is completed, derivatives are calculated for output variables with respect

to input variables. Input and output variables for a module are identified by the user through

the insertion of subroutine calls to the GRESS library. The user also inserts a call to a routine

that calculates the derivatives by application of the chain rule. The chain routine will determine

whether forward or reverse mode is best for a given application. The user can also specifically

request forward or reverse mode. Once the derivatives are calculated for the output variables

with respect to the input variables, the memory used to hold the Statement Frames is released.

10



Statement pointer (SP)
i ii i i i

Pointer to previous Statement Frame (PSF)
i i ii

Pointer to next Statement Frame (NSF)u
ii

Number of non-zero derivatives (NT)

Derivative value (DV)
ii

Pointer to right-hand-side term (RHS)

,J

DV and RHS are repeated NT times

Statement pointer is the address of a floating-
point variable defined by the statement.
Pointer to right-hand-side term is an address
of a variable on the right of an equal sign.

1 Fig. 6. Structure of a Statement Frame.

I

8P
PBF
NSF

NT SP l
DV PSF

RHS NSF

NT._ 8P _

" DV PBF
• RH8 NSF

- NT

DV
RH8

,SP - Statement Pointer
|

PBF - Previous Statement Frame

NSF - Next Statement Frame

NT - Number of derivatives

• DV - Derivative value

RH8 - Pointer to right-hand-side term

" Fig. 7. Statement Frames form a linked-list structure.
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4.2. LINKING MODULES

Linking modules is analogous to linking statements• To link statements we constructed

Statement Frames using a linked-list structure. Module Frames can also be stored in a linked.list
structure•

A sequence of statements define a module. When the Statement Frames within a

module are solved using the chain rule, in either forward or reverse mode, the information

necessary to construct a Module Frame is retained• A Module Frame contains the derivatives

of the dependent variables output from the module with respect to the independent variables

input to the module. The output from a module has three components: (1) derivatives, (2)

dependent variables, and (3) independent variables• Each dependent and independent variable

is assigned a row number. A row number is stored in a random access data structure using the

associated variable's address as a key for later retrieval.

When a Module Frame is constructed, dependent variables that are not dependent on

declared parameters are dropped. Parameters can be declared either by the user or

automatically, as any real variable input via a read statement. The row numbers for the

dependent variables can be determined by position; therefore, the row numbers for dependent
variables do not have to be saved in the Module Frame• The structure of a Module Frame is

shown in Fig. 8.
i 1'

Pointer to previous Module Frame (PMF) t

Pointer to next Module Frame (NMF)
i

Derivative values (output by input)

i i

Input Variable Row Numbers

Fig. 8. Structure of Module Frames with input variable row numbers only.

12



The Module Frames for a program contain ali the information necessary to propagate

derivatives by either forward or reverse mode. There is flexibility in how to process a Module

. Frame. For the demonstration problem, Module Frames are stored in memory until the program

is finished, and then the derivatives for the results of interest with respect to parameters are

, calculated. However, it should be possible to output the Module Frames to disk or to pipe them

to another process. When a module is defined as a sequence of modules, then the Module

Frames for the sequence can be resolved to a single Module Frame by forward or reverse mode
of automatic differentiation.

The amount of savings in terms of execution time and memory requirements will depend

on the application. For MDT to be effective, the size of the Module Frames must be small

compared with the size of the Statement Frames. In other words, the number of variables on

the links between modules must be kept at a minimum, For a program that could be

represented as a sequence of modules; a significant reduction in storage could be realized with

skillful implementation of MDT.

5. APPLICATION OF MDT USING THE GRESS GENSUB OPTION

An automated implementation of MDT would probably identify dependent and

independent variabies from argument lists and common blocks. GENSUB provides a mechanism

by which MDT can be tested; however, identification of input and output variables to a module,

as well as common block variables, must be made by the user through the insertion of subroutine

calls to the GRESS run-time library. This section describes the application of MDT to a

demonstration program. Results are presented and discussed.

If derivatives are to be calculated with the GENSUB option, independent variables must

be declared at the beginning of the section of code being processed. Independent variables must

have been assigned values before the section of code through which derivatives are to be

propagated is executed. For example, if GENSUB is used to calculate the derivatives of the

results from a subroutine with respect to the REAL variables provided as arguments into the

subroutine, those arguments will have to be identified as independent variables on entry to the
subroutine.

A run-time routine is also used to identify dependent variables. Dependent variables can

be any floating-point variable calculated in the subroutine or section of code through which the

derivatives are propagated.

• The user must supply a two-dimensional, single-precision array for storing the derivatives.

The array should be dimension N by M, where N is the number of dependent variables, and M

is the number of independent variables declared in the subsection of the program. At the endIt

13



of the subsection (e.g., function or subroutine)being processed with the GENSUB option, the

user should insert a call to a chain routine with the result array as an argument. The chain

routine will apply the chain tiale in either forward or reverse mode to solve for the derivatives

of the dependent variables with respect to the independent variables. The derivatives will be

returned to the calling program in the array provided by the user.

By default, the GENSUB option uses dynamic allocation, Depending on the application,

the operating system, and the computer resources available, pre-allocating memory may be more

efficient. The first time a section of code is processed, the chain routines provide information

about memory usage. This information can be used in subsequent executions to specify or

estimate the amount of memory to pre-allocate, GRESS routines are available for pre-allocating

mem'0ry. Upon return from the chain routines the memory allocated for storing and propagating

derivatives is released.

To demonstrate MDT, a sample problem with a main program and two subroutines was

selected. Each subroutine is called per iteration in the main program. The number of iterations

can be varied. Four parameters and one dependent variable are retained after each iteration.

Three m_.thods were used to process the sample problem: (1) the GRESS ADGEN option, used

to implement reverse mode on the entire program; (2) the GENSUB option, treating each

iteration as a module; and (3) the GENSUB option, treating each subroutine as a module. The

sample problem selected is the test program provided on the GRESS distribution diskette. Of

importance in this paper is that there are two subroutines and no global variables. Shown in

Fig. 9 is a plot of the maximum amount of memory required to store derivatives using each

method as a function of the number of iterations. Method 1 is provided for comparison because

ADGEN requires the accumulation of derivatives for every arithmetic assignment statement.

300
e,,,

J

250 Method I " _
Memory . -
(K-bytes) 200 ,._ -f

e-'

f

150
f

t

100 .-"_ -
" Method 3

1 ....... ,°-.""''"'""
¢" i

50 ...- .,,,..,,.,.,.,,,............................ -I
.............. Method 2.._l,,.,_ ..,

1 I I I

1 10 20 30
Number of Iterations

Fig. 9. Memory required to store derivatives using MDT vs reverse mode. Ii
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The results clearly demonstrate the fundamental problem with the reverse mode of

automatic differentiation; that is, the memory required to store derivatives Is proportional to

• execution time. Interestingly, Method 3 also shows a linear growth, though not as steep as

Method 1. For thts application, as the number of Iterations increases, Method 2 would be the

, most feasible in terms of memory requirements. Memory requirement using Method 2 increases

by 52 bytes per iteration. With an iterative code using Method 2, the ,expected increase per
iteration would be the size of the Module Frame used to link each iteratiom

The results in Fig. 9 demonstrate that MDT is both practical and feasible. Though the

sample problem is very lirnited in that it does not include common bloc,ksand does require hand
intervention in identifying modules, the results are very encouraging. Automating the procedure

so that common block variables and variables on argument lists are automatically included as

dependent or Independent varlables is conceptually straightforward. However, having the

flexibility of allowing the user to identify modules is also desirable.

The conclusion that Method 2 would be best can only be made for this application. The

comparison between two different implementations of MDT raises the question as to whether

it would be viable to automatically process a code to determine which method would be most

: appropriate. Much of the information required may not be available until execution of tile

model. It may be more feasible to develop tools to enable the user to implement MDT in a
semi-automated fashion.

' 6. CONCLUSIONS AND RECOMMENDATIONS

As implementedusingtheGRESS GENSUB option,MDT cansignificantlyreducethe

memoryrequiredtocomputederivativesinacomplexFORTRAN model,thusextendingthesize

ofproblemtowhichthereversemode canbeapplied.MDT providesacompromisebetween

the forward mode with its computational limitations and the reverse mode with its excessive

memory requirements.

The capability of automatically identifying modules and dependent and independent

variables should be implemented; however, the flexibilityof allowing the user to define modules
and variables should be maintained.

The GENSUB option is a valuable addition to GRESS in that it allows the processing

of individual program modules, as well as the testing of MDT. By using GENSUB it is possible

to implement MDT in an existing code on a module-by-module basis or during the development
of a new code.

di
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Fu_"therillvestigation is required to determine to what level MDT should be automated.

lt is recommended that MDT be applied to a large-scale application. The results from such an

application wOuld provide invaluable information for future development _,andapplications.
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APPENDIX A

• GENSUB SAMPLE PROBLEM

, The sample problem called jla.f provided with the GRESS distribution diskette was

selected for the examples in this paper. This sample program was used to obtain the results

shown in Fig. 9 for Method 1. The sample program was modified for implementation with the

gensub option for Methods 2 and 3. Calls to library routines to identify local and global variables

were inserted. A call to a routine to calculate the derivative of the final result with respect to

the input parameters was also inserted. Below is a listing of the program prepared for Method

2. Directives to the SYMG preeompiler and calls to GRESS library routines are shown in bold.

I

*gemub
C SYMG/GREss SAMPLE PROBLEM B.I.1
C

C Purpose: To test single precision real number mathematical
C operations supported by the GRESS run-time library.
C Comments denote operation code(s) that are tested
C in the next line of code.
C

I DIMENSION x(a),F(4,4,4 i
imalloc=0

C

_ PRINT*,'** GRESS SAMPLE PROBLEM B.I.1 **'

PRINT*,'* *'/ PRINT*,'* PLEASE ENTER: *'
\ PRINT*,'* 1.3 3.0 4.0 4.5 *'
, READ(5,*) (X(I),I = 1,4)
' C\, J

',, C Declare X array as global independent variables (locpgg)
C

t

do 99 i=1,4
call locpgg(x(i))

_' 99 continue

PRINT*,'X(I),I = 1,4)',X
LOOP1 = 4

C

C lsumo specifies the number of iterations,,
C

print*,' enter lsumo'
• read(5,*)lsumo

print*,' lsumo --',lsumo
d
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C
C TEST OPCODE # 2, 4
C

D=0.0
DO 1 I = 1,LSUMO

C

C DECLARE D and array x to be local independent variables /
C (i.e., input to module) l
C ): iii'

eaU genapxx(x,4)
IF(LGT.1) call genpxx(d)

C

C After first time through, pre-allocate memory
C

if(imalloc.ne.0) call allocgg(imalloc,icalloc)
CALL SUBI(I,A,B,X)
CALL SUB2(I,F,X,LOOP1)
FS = 0.0
DO 2 J = 1,LOOP1
DO 2 K = 1,LOOP1
DO 2 L = 1,LOOP1

C
C TEST OPCODE # 18
C

FS = FS + F(L,K,J)
2 CONTINUE ¢

L

BFS = B + FS
D=D+BFS

C

C DECLARE D to be a dependent variable to keep
C

call genresxx(d)
C
C Create a module link
C

call chainlink(dx, imalloc,icalloc)
C

C Record memory requirements. Imalloc is memory in bytes.
C Icalloc is memory in words preset to zero.
C

write(60,1000) imalloc,icalloc
1000 format(lx,2il0)

'_ 1 CONTINUE
WRITE(6,9) D

' 9 FORMAT(lH ,'D',IPE16.8)
C

C DECLARE D to be a global dependent variable (response)
C
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call potrgg(D)
C
C Solve for derivatives of D with respect to elements of x

" C and return the values in DX array.
C

. CALLso  Cd ),
print *,'dx = ',(dx(i),i=l,4)
STOP
END

SUBROUTINE SUBI(I,A,B,X)
DIMENSION X(4)

C
C TEST OPCODE # 24, 27
C

FX = X(1)/X(2) + X(3)*X(4)
RANN = 0.0
CALL GETRAN(RANN)
A= RANN * FX

C
C TEST OPCODE # 42, 39, 43, 40
C

[B = ATAN(AB_xA/(A+3.1))) - SIN(SQRT(A/X(4)))
C
C TEST OPCODE # 41, 38
C

C = ALOG(ABS(B)) + EXP(B/(B+2.5))
C

t C TEST OPCODE # 45, 44
C

B = A*B/C + ALOG10(ABS((C+A)/B)) + COS(ABS(C)/C**2)
C
C TEST OPCODE # 34, 33
C

B = A**2/ABS(B)**I.02 * B
RETURN
END
SUBROUTINE SUB2(I,F,X,LOOP1)
DIMENSION X(4),F(4,4,4)
DO 1 II = 1,LOOP1
DO 1J = 1,LOOP1
DO 1 K = 1,LOOP1
RANN = 0.0
CALL GETRAN(RANN)
FXR = X(3)**2/COS(RANN**2) - SQRT(RANN*X(4)*X(2))

C

C TEST OPCODE # 46
C

- FXR = FXR*X(4) + MAX(X(1),X(2),X(3),X(4))
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C
C TEST OPCODE # 47
C

FXR = FXR- MIN(X(1),X(2),X(3),X(4))
C
C TEST OPCODE # 10, 55, 54
C

FXR = FXR * FLOAT(MIN0(K,J,II))/FLOAT(MAX0(K,J,II))
FXR = FXR*X(1)*X(1)*RANN*RANN
F(K,J,II) = X(1)**RANN / EXP(RANN) + FXR*EXP(2.001*RANN)

1 CONTINUE
RETURN
END

2O

4
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APPENDIX B

, NEW GRESS RUN-TIME LIBRARY ROUTINES

, Shown in Table B.1 are new GRESS run-time library routines that were added to test

MDT. These routines have only undergone limited testing. Run-time library routines are used

to control the application of the enhanced code. The following pages provide a description of

each run-time library function. The format is one run-time library function per page. These
routines are in addition to routines described in ref. 3.

Table B.1. New GRESS run-time library routines for the GENSUB option
IIIII li III I i

Name Purpose
LOCPGG Defines a global independent variable
CHAINLINK Creates a Module Frame
POTRGG Defines a global dependent variable
SOLVGG Solves derivatives in Module Frames

I I

w
q
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GENSUB Library Routtne

Name: CHAINLINK(DERIVATIVE,MEM,ZMEM)

Function: To create a Module Frame

Arguments:

(1) DERIVATIVE - array to contain derivatives

(2) MEM - amount of memory used in bytes

_' (3) ZMEM - amount of memory preset to zero used in words

Argument type:

(1) A two-dimensional REAL array

(2) INTEGER

(3) INTEGER

Comment: CHAINLINK will apply the chain rule in either forward or reverse (adjoint) mode,

depending on whether there are more local responses or more local parameters.

How to use it: Insert CALL CHAINLINK at the end of the section identified as a module. The

derivatives of the responses declared using GENRESXX with respect to parameters ¢.
declared using GENPXX, GENAPXX, or GENDPXX for the module will be calculated,

and a Module Frame will be created. DERIVATIVE must be a two-dimensional array,

with the first dimension being the number of local dependent variables (responses) and

the second dimension being the number of local independent variables (parameters).

22



GENSUB Library Routine

Name: LOCPGG(VAR)

, Function: To declare VAR to be a global independent variable

Arguments:

(1) VAR. variable to be declared a global parameter

Argument type:

(1) REAL

How to use it: Insert CALL LOCPGG after the variable has been initialized or defined. Parameters

for a GENSUB application must be independent of the section of enhanced code

" through which derivatives are to be propagated. That means that the call to LOCPGG

must occur upon entering the subprogram or section of code that has been enhanced.

Also, parameters that appear on the left of assignment statements will automatically be

redefined as variables; therefore, the assignment statement that defines the parameter

must not be part of the enhanced code.

Example:

(1) Declare Y to be a global parameter for a GENSUB application.

*gensub

SUBROUTINE ALPHA(Y,R)

CALL LOCPGG(Y)
o
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GENSUB Library Routine
I

Name: POTRGG(VAR)

Function: To declare VAR to be a global dependent variable (response)

Arguments:

(1) VAR - variable to be declared a global response

Argument type:

(1) REAL

How to use it: Insert CALL POTRGG after the variable has been defined, Responses for a GENSUB

application should be dependent on the section of enhanced code through which

derivatives are to be propagated,

Exam.le:

(1) Declare Y to be a global response for a GENSUB application.

*gensub t_
SUBROUTINE ALPHA(Y,R)

' F

t

4

Y = B'R**2

CALLPOTaGa(Y)

6
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GENSUB Library Routine

., Name: SOLVGG(DERIVATIVE)

, Function: To calculate the derivatives for a GENSUB application by applying the chain rule in

reverse mode (adjoint mode) to Module Frames.

Arguments:

(1) DERIVATIVE - array to contain derivatives

Argument type:

(1) A two-dimensional REAL array

How to use it: Insert CALL SOLVGG at the end of the section of enhanced code through which

derivatives have been propagated. The derivatives of the responses declared using

POTRGG with respect to parameters declared using LOCPGG for the subsection of

code enhanced for GENSUB will be calculated and returned in the array

DERIVATIVE. DERIVATIVE must be a two-dimensional array with the first

dimension being the number of dependent variables (global responses) and the second

dimension being the number of independent variables (global parameters). A one-

dimensional array is sufficient if there is only one dependent variable or one parameter.

p
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