Engineering Physics and Mathematics Division # COMPILATION OF REQUESTS FOR NUCLEAR DATA Compiled by the Request List Subcommittee of the Cross Section Evaluation Working Group (CSEWG) Edited by Lawrence W. Weston and Duane C. Larson Date Published - February 1993 Prepared for the Office of Energy Research Division of Nuclear Physics Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U. S. DEPARTMENT OF ENERGY under contract DE-AC05-840R21400 #### 1. INTRODUCTION This compilation represents the current needs for nuclear data measurements and evaluations as expressed by interested fission and fusion reactor designers, medical users of nuclear data, nuclear data evaluators, CSEWG members and other interested parties. The requests and justifications are reviewed by the Data Request and Status Subcommittee of CSEWG as well as most of the general CSEWG membership. The basic format and computer programs for the Request List were produced by the National Nuclear Data Center(NNDC) at Brookhaven National Laboratory. The NNDC produced the Request List for many years. The Request List is compiled from a computerized data file. Each request has a unique isotope, reaction type, requestor and identifying number. The first two digits of the identifying number are the year in which the request was initiated. Every effort has been made to restrict the notations to those used in common nuclear physics textbooks. Most requests are for individual isotopes as are most ENDF evaluations, however, there are some requests for elemental measurements. Each request gives a priority rating which will be discussed in Section 2, the neutron energy range for which the request is made, the accuracy requested in terms of one standard deviation, and the requested energy resolution in terms of one standard deviation. Also given is the requestor with the comments which were furnished with the request. The addresses and telephone numbers of the requestors are given in Appendix 1. ENDF evaluators who may be contacted concerning evaluations are given in Appendix 2. Experimentalists contemplating making one of the requested measurements are encouraged to contact both the requestor and evaluator who may provide valuable information. This is a working document in that it will change with time. New requests or comments may be submitted to the editors or a regular CSEWG member at any time. ### 2. PRIORITY ASSIGNMENTS The exact meaning of priority is very difficult to assess since it tends to be different in each case. The following definitions are those adopted by DOE/CSEWG. - PRIORITY 1. Nuclear data which satisfy the criteria of Priority 2 and which have been selected by DOE/CSEWG for maximum practicable attention taking into account the urgency of program requirements. - PRIORITY 2. Nuclear data that will be required during the next few years in applied programs (for example, data needed to make the best use of reactor fuel and construction materials such as neutron moderators, absorbers, and radiation shields, space and bio-medical applications, data required for better understanding of some significant aspect of reactor behavior). - PRIORITY 3. Nuclear data of more general interest and data required to fill out the body of information needed for nuclear technology. | Isotope | Quantity | Priority | Energy | Range | Accuracy δ E Lab Requester No. | ٥. | |-------------------------|-------------|--------------------------|-----------------|---------|--|-------| | ¹ н <i>о</i> | (n,n) (E) | 1 | 10.0 MeV | to 0.2 | | 2045 | | ³ He o | r(d,p) (E) | 2 | 0.4 Me | 7 | 2 Z LLNL White 9. Shape of the cross section has been established, however, the data base is highly discrepant in absolute magnitude. An accurate measurement of the cross section near the peak of the resonance is needed for normalization. | 2001 | | ³ He o | r(n,p) (E) | 2 | 5.0 keV | to 3.0 | The state of s | 2040 | | ⁶ Li d | r(n,Xn) (E, | 9, E _n .) | 6.0 MeV | to 12.0 | | 2114 | | 6Li o | r(t,p) (E) | 2 | Thresh | to 4.0 | | 6054 | | ⁷ Li o | r(α,n) (E) | 1 | 4.4 MeV | to 6.0 | | 2097 | | ⁷ Li a | (n,Xn) (E, | 9,E _n .)
1 | 6.0 Me V | to 12.0 | | 9211 | | ⁷ Li d | r(n,n't) (E | 2 | Thresh | to 8.0 | | 92122 | | Isotope | Quantity | Priority | Energy | Range | Accuracy | δΕ Ι | ab | Requester | No. | ο. | |-------------------|--------------|----------------------|----------------|-------------|---|--|--|--|--|--------| | ⁹ Be ∂ | (p,n) (Ε,θ, | E _n) | | | | | | | | | | | | 2 | 25.0 MeV | to 75.0 | Double-dif
the optimicancer the
50 degrees
essential
ment be ma | zation o
rapy. A
and one
that at
de at 0
ng the s | l cros f neut minim back least degree ame de | White s sections are new ron source product um of 6 angles from angle is desired. One thick-target m s for each incider tector arrangement ents. | eded for
tion for
m 0 to
It is
measure-
nt proton | 2002 | | 9 _{Be} a | (n,Xn) (E, 0 | , E ₀ .) | | | | | | | | | | | | 1 | 6.0 MeV | to 12.0 | 107
Measuremen
Needed for
in a fusion | ts recom
the det
n blanke | ermina
t. Be | Cheng l at 6, 8, 10 and 1 tion of neutron sp ryllium is a very or fusion applicat | 12 MeV.
bectrum
import- | 2116 | | 9 _{Be} | (n,tot) (E) | | | , | | | | | | | | | | 2 | 1.0 MeV | to 10.0 | 1Z
Resolution | | be < 1 | Smith
.00 keV.
I space systems. | 8 | 6046 | | 9 _{Be} | γ(n,n) (E,θ) |) | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | , | 2 | 2.0 MeV | to 20.0 | 5% Accuracy s section to | 5%. Res | t to polution | Smith
provide non-elastic
on <100 keV.
I space systems. | | 3604 | | ⁹ Be o | 7(n,n') (E,6 | , E _n .) | | | | | | | | | | | | 2 | 2.0 MeV | to 10.0 | 5% accurac | y on dis | ectrum | Smith inelastic. | | 3604 | | ⁹ Be o | 7(n,2n) (E) | 1 | 14.0 MeV | to 15.0 | MeV
3%
Improved p | precision | TSI
needs | Cheng | 8 | 3609 | | ⁹ Be d | τ(t,α) (E) | | | | | | | | | ****** | | | | 2 | Thresh | to 4.0 | 10% | product | | White short half-life. sions. | 8 | 3605 | | ¹⁰ B | 7(n,α) (E) | 1 | 10.0 keV | to 5.0 | 2 to 5 % | (n,alph | | Weston
n,alphal) needed.
rrepant. | 9
Data | 9209 | | ¹⁰ B | r(n,tot) (E) | 1 | 1.0 keV | to 20.0 | MeV
0.5 to 1 % | | ORNL | Weston
d inadequate. | Ş | 9208 | | ¹⁰ B | σ(n, Xα) (E) | 2 | 20.0 keV | to 20.0 | 2 to 5 % | | ORNL | Weston | <u> </u> | 9209 | | Isotop | e Quantity | Priority | Energy Range | Accuracy δ E Lab Requester | No. | |-----------------|--------------|----------------------------|------------------|--|--------------| | ¹⁰ B | σ(n,Xn) (E,€ | 9, E _{n.})
1 | 6.0 MeV to 12.0 | MeV 207 TSI Cheng Measurements recommended at 6, 8, 10 and 12 MeV. Needed for better determination of the neutron spectrum in the shield of a fusion reactor. Boron is needed for radiation shielding in a fusion reactor. | 92117 | | ¹⁰ B | σ(n,α) (E) | 1 | 1.0 keV to 3.0 | MeV 17 NIST Carlson To improve accuracy of standard
cross section. Both n, 00 and n, 01 cross sections of interest. Measurements underway at LAMPF/WNR(Haight et al.) and at ORELA. | 86148 | | ¹⁰ B | σ(t,2n) (E) | 2 | Thresh to 4.0 | | 86056 | | ¹⁰ B | σ(t,p) (E) | 2 | Thresh to 4.0 | MeV 107 LLNL White Activation product with short half-life. For diagnosing ICF implosions. | 86057 | | ¹⁰ B | σ(O(,n) (E) | 1 | Thresh to 4.0 | MeV 10% LLNL White Activation product with short half-life. For diagnosing ICF implosions. | 8605 | | ¹¹ B | σ(p,n) (E, θ |),E _n)
2 | 25.0 MeV to 75.0 | MeV 5% 25MeV LLNL White Double-differential cross sections are needed for the optimization of neutron source production for cancer therapy. A minimum of 6 angles from 0 to 50 degrees and one back angle are desired. It is essential that at least one thick-target measurement be made at 0 degrees for each incident proto energy using the same detector arrangement as in the thin target measurements. | | | ¹¹ B | σ(n,Xn) (E, | θ, Ε _η ,)
1 | 6.0 MeV to 12.0 | MeV 10% TSI Cheng Measurements recommended at 6, 8, 10 and 12 MeV. Needed to determine more accurate neutron spect- rum. Boron is an essential shielding material in a fusion reactor. | 9211 | | natC | σ(n,n'3α) (| E) 2 | 20.0 MeV to 65.0 | 10 MeV 10 to 20% 1MeV ORNL Fu ENDF/B-VI for carbon has been extended to 32 MeV. Most reaction cross sections were based on estimates in the extension. Since (n,n'3a) appears to be the largest of all cross sections from 20 to 40 MeV, some measurements for this cross section would help constrain the estimates for other cross sections. Some data are availabl near 20 MeV, but the spread of them is a factor of two. There are medical needs for the kerma. | .е | | Isoto | pe Quantity | Priority | Energy Range | Accuracy &E Lab Requester | No. | |-----------------|---------------|--------------------------|------------------|--|-------| | ¹² C | σ(n, α) (E, E | (α))
2 | Thresh to 65.0 | MeV 107 57 NIST Caswell Improved charged-particle energy spectra are of interest. Measurement at 2-MeV intervals sufficent except 1-MeV intervals below 10 MeV. Needed to improve accuracy of dosimetry for neutron radiation therapy. | ļ. | | ¹² C | σ(n,n'3α) (l | E,E(α))
2 | Thresh to 65.0 | MeV 10% 5% NIST Caswell Improved alpha energy spectra are of interest. Measurement at 2-MeV indervals sufficient except 1-MeV intervals below 20 MeV. Needed to improve accuracy of dosimetry for neutron radiation therapy. | | | ¹² C | σ(n,Xn) (E,€ | 9,E _n ,)
1 | 6.0 MeV to 12.0 | MeV 107 TSI Cheng Measurements recommended at 6, 8, 10 and 12 MeV. Needed to determine the neutron spectrum in a loactivation (SiC) fusion blanket. SiC is an important low activation structural material for fusion. | W | | ¹³ C | σ(t,p) (E) | 2 | Thresh to 4.0 | MeV 107 LLNL White Activation product with short half-life. For diagnosing ICF implosions. | 86058 | | ¹³ C | σ(t,α) (E) | 2 | Thresh to 4.0 | MeV 10% LLNL White Activation product with short half-life. For diagnosing ICF implosions. | 86059 | | ¹⁴ N | σ(n,p) (E) | 1 | 10.0 MeV to 15.0 | 0 MeV
20% TSI Cheng
Long-lived radionuclide, C-14 (5730 yr),
produced. Data sparse above 10 MeV. | 86174 | | nato | σ(n,n') (E) | 2 | Thresh to 15.0 | MeV 10% NIST McGarry C/E discrepancies in thrashold dosimetry in power eactor benchmark experiments with thick water regions in front of iron suggest inelastic scattering cross section is in error. | | | Isotope | Quantity | Priority | Energy | Range | Accuracy | δΕ | Lab | Requester | | No. | |--------------------|-------------------------------|----------------------------|----------------|-------------|---|--|--|---|---|-----------------------------| | nat _O o | (n, Xn) (Ε, Θ |), E _n .) | · | | | | | | | | | | | 1 | 0.4 MeV | to 3. | 1 to 5% Measurement (MeV): .39 1.5, 1.88, 3.0 at the 0, 30, 60, to 3.0 MeV plus at 90 possible. ed power re | ts rec, .48, 1.94 follo 120, every degre Neede | .65, and at wing an 150, an 20 deg. es. As d for t s and f | Caro d at the follo 90, 1.10, 1.20 every .10 MeV gles: from .3 d 180 degrees rees starting good energy r hor the calcula ed critical as | , 1.27, 1.35 from 2.0 to 9 Mev to 1.5 from 1.88 Me at 0 degrees esolution as ater moderat tion of | ;;
;;
; v
; | | | | 1 | 6.0 MeV | to 15. | 0 MeV
10%
Measuremen | ts rec | TSI
ommende | Cheng
d at 6,8,10,12
50 keV and in | and 14 MeV | 84002 | | ¹⁶ 0 | $\sigma(n,\alpha)$ (E,E | (α)) | | | | | | | | | | | | ² . | Thresh t | .o 65.0 | 10%
Gamma-ray pare of intesufficient | erest.
excep
improv | Measu
t 1-MeV
e accur | Caswell d charged-part rement at 2-Me intervals bel acy of dosimet py. | V intervals
ow 10 MeV. | 92032
a | | ¹⁶ 0 | σ(n,n' α) (Ε | ,E(α)) | | | | | | | | | | | | 2 | Thresh t | .o 65.0 | 10%
Gamma-ray ;
are of int
sufficient | erest.
excep
improv | Measu
t 1-MeV
e accur | Caswell d charged-part rement at 2-Me intervals bel acy of dosimet py. | V intervals
ow 10 MeV. | 92033 | | ¹⁶ 0 | σ(n,n'4α) (| E) | | | | | | | | | | | | 2 | Thresh t | o 65.0 | 10%
Alpha ener
Measuremen
2-MeV inte | t at 5 | -MeV in
below 3 | Caswell
e of interest.
tervals suffic
O MeV. Needed
or neutron rad | ient except
to improve | 92034 | | ¹⁶ 0 | σ(n, α) (E) | | | | | | | | | | | | | 1 | 1.0 MeV | to 14. | 57
Needed for | bath | | Young
rection of neu
ments of Be-9 | | 92123 | | 19 _F | σ(n, γ) (E) | | | | | | | | | | | | | 2 | Thermal t | 20 15.0 | 20% | | TSI
needed | Cheng
for afterheat | and safety | 86099 | | ¹⁹ F | σ(n, X n) (E, € | 9, E _n ,)
2 | 6.0 MeV | to 12. | 10%
Double dif
port calcu | lation | 18. | Cheng
a needed for m | | 86094
5- | | Isoto | pe Quantity | Priority | Energy Range | Accuracy | δΕ | Lab | Requester | No. | |-------------------|-----------------------------|----------------------|-----------------|---|--------------------------------|----------------------------|---|-------------| | natSi | $\sigma(n,Xn)$ (E, Θ | , E _n .) | | | | | | | | | | 1 | 6.0 MeV to 12. | 10% | measure | TSI
ments | Cheng
at 6,8,10 and 12 MeV. | 8615 | | ^{nat} Si | σ(n,X) (E) | 1 | Thresh to 15.0 | All reacti
tion of th
determine
nuclide, A | e stabl
the pro-
1-26 vi | e nucl
ductio
a a 2- | Cheng ions leading to the gener ide Al-27. Needed to n of long-lived radio- step reaction with Si. ivation material for | 9212(
a- | | ²⁸ Si | σ(n,p) (E) | 1 | Thresh to 15.0 | 10% | | | White short half-life, osions. | 8605 | | nat _S | σ(n, abs) (E) | 2 | Thermal | energy ran
ately calc | ge which
ulate n
he them | h incl
eutron | Carlson e at thermal or for an udes thermal. To accur- absorption in manganese nstants can be determined | 92030 | | ³² S | σ(n,p) (E) | 2 | 5.0 MeV to 12. | 5%
Needed for | | | Griffin
transfer in radiation
electronics. | 9200 | | 40 _{Ar} | σ(n,2n) (E) | 2 | 10.0 MeV to 15. | 20% | activa | TSI
tion p | Cheng
roduct, Ar-39 (269 yr), | 8610 | | ³⁹ K | σ(n,p) (E) | 2 | 10.0 MeV to 15. | 20% | activa | TSI
tion p | Cheng
croduct, Ar-39 (269 yr), | 8610 | | ³⁹ K | σ(n,α) (E) | 2 | 0.1 MeV to 15. | 207 | | tion p | Cheng
product, C1-36 | 8610 | | ⁴² Ca | σ(n,2n) (E) | 2 | 12.0 MeV to 15. | 20% | | | Cheng
product, Ca-41 | 8610 | | ⁴² Ca | σ(n,α) (E) | 2 | 0.1 MeV to 15. | 20% | activa | TSI
tion p | Cheng
product, Ar-39 (269 yr), | 8610 | | Isotop | pe Quantity | Priority | Energy Range | Accuracy δ E Lab Requester | No. | |-------------------|-------------------------|---------------------------|------------------|---|-------| | 48 _{Ti} | σ(n, α) (E) | 1 | 3.0 MeV to 14.0 | MeV 207 TSI Cheng Important for analysis of long-lived Ar-42 production: Ti-48(n,\alpha)Ca-45(n,\alpha)Ar-42. | 86175 | | 50 _V | σ(n,2n) (E) | 1 | 10.0 MeV to 15.0 | MeV 20% TSI Cheng Medium-term activation product, V-49(330 day), produced. | 86114 | | ⁵¹ V | σ(n,Xn) (E,€ |), E _n .) | 6.0 MeV to 12.0 | MeV 10% TSI Cheng Recommend measurements at 6, 8, 10 and 12 MeV. | 86152 | | ^{nat} Cr | σ(n,Xn) (E,E, | .) 2 | Thresh to 20.0 | McV 207 ORNL Hetrick Model calculation used for ENDF/B-VI based on fit- ting data at 14.5 MeV. Need data at other energies for confirmation. | 92075 | | ^{nat} Cr | σ(n,Xn) (E,θ | , E _n .)
1 | 6.0 MeV to 15.0 | MeV 207 TSI Cheng Measurements recommended at 6,8,10,12 and 14 MeV. | 84007 | | ^{nat} Cr | σ(n,α) (E) | 2 | Thresh to 14.0 | MeV
20% ORNL Larson | 86080 | | ⁵⁰ Cr | σ(n,p) (E) | 3 | Thresh to 20.0 | MeV 20% ORNL Hetrick Large cross section, only one point available, evaluations disagree (i.e., BROND, ENDF/B-VI, JENDL-3). | 92066 | | ⁵⁰ Cr | σ(n,α) (E) | 3 | Thresh to 20.0 | MeV 20% ORNL Hetrick Data available disagree as do the shapes of the evaluations (ENDF/B-IV, BROND, JENDL-3). | 92067 | | ⁵⁰ Cr | σ(n,n'p) (E) | 3 | Thresh
to 20.0 | MeV 20% ORNL Hetrick Large cross section, only 1 data pt available, evaluations disagree(i.e., ENDF/B-VI, BROND, JENDL-3). | 92068 | | ⁵⁰ Cr | σ(n,tot) (E) | 3 | 10.0 eV to 20.0 | MeV 37 ORNL Larson Need high resolution resonance region data, ~0.27 energy resolution over resonance region. Needed for isotopic evaluation of this material. Available data are inadequate. | 92076 | | ⁵⁰ Cr | $\sigma(n, \gamma)$ (E) | 2 | 25.3 mV to 0.3 | MeV 10% ORNL Larson | 86081 | | ⁵² Cr | σ(n,p) (E) | 2 | 10.0 MeV to 35.0 | MeV 5% ORNL Hetrick No data available from 10-13 MeV and available data above 13 MeV disagree. To determine activa- tion and hydrogen production. | 92069 | | Isotope | Quantity | Priority | Energy Range | Accuracy &E Lab Requester | No. | |---------------------------|---------------------|----------------------|------------------|--|-------------------| | 52 _{Cr} o | γ(n, α) (E) | 2 | Thresh to 20.0 | MeV 10% ORNL Hetrick Evaluations for ENDF/B-VI, BROND, and JENDL-3 disagree. Only one total alpha emission data point available. | 92070 | | ⁵² Cr <i>o</i> | 7(n,n'p) (E) | 2 | Thresh to 20.0 | MeV 20Z ORNL Hetrick No data available and evaluations from ENDF/B-VI, BROND and JENDL-3 disagree. | 92071 | | ⁵² Cr 6 | σ(n,γ) (E) | 3 | Resonance Region | 10% ORNL Larson Resonance region. Need capture area of resonances to 10%. Capture cross sections may be up to 25% in error for structural materials, depending on decay properties of resonance. | 92077
5 | | ⁵² Cr (| r(n,tot) (E) | 1 | 10.0 eV to 20.0 | MeV 3Z ORNL Larson Need high resolution resonance region data ~0.02Z in resonance region. Needed for isotopic evaluation of major isotope of chromium. Available data are inadequate. | 92083
f | | ⁵³ Cr (| 7(n,2n) (E) | 2 | Thresh to 20.0 | MeV 10Z ORNL Hetrick Large cross section, no data available, evaluations from ENDF/B-IV, BROND, and JENDL-3 disagree | 9207 | | ⁵³ Cr (| σ(n, α) (E) | 3 | Thresh to 20.0 | MeV 20% ORNL Hetrick No data available and evaluations from ENDF/B-VI, BROND and JENDL-3 disagree | 9207 | | ⁵³ Cr | σ(n,tot) (E) | 2 | 10.0 eV to 20.0 | O MeV 3% ORNL Larson Need high resolution data, ~0.02% in resonance region. Needed for isotopic evaluation of second largest chromium isotope. Available data are inadequate. | 9207 | | 54Cr | σ(n,2n) (E) | 3 | Thresh to 20.0 | MeV 107 ORNL Hetrick Large cross section, no data available, evaluations from ENDF/B-VI, EROND and JENDL-3 disagree. | 9207 | | ⁵⁴ Cr | σ(n,tot) (E) | 3 | 10.0 eV to 20.0 | O MeV 3% ORNL Larson Need high resolution data, ~0.02% in resonance region. Needed for isotopic evaluation of chromium isotopes. Available data inadequate. | 9207 | | 55 _{Mm} | σ(n,Xn) (E,€ | 9, E _n .) | 6.0 MeV to 15.4 | 0 MeV 20% TSI Cheng Measurements recommended at 6, 8, 10, 12 and 14 MeV. More accurate data needed for fusion power reactor studies. | 8400 | | Isotop | e Quantity | Priority | Energy Range | Accuracy δ E Lab Requester | No. | |-------------------|-------------------------|-----------------------|------------------|--|-------------| | natFe | σ(n,n') (E) | 2 | Thresh to 3.0 | MeV 5% 5% 5% NIST McGarry C/E discrepancies in power reactor benchmark experiments for low-energy threshold detectors such as Np-237(n,f) suggest revisions in the iron inelastic cross section at energies below 3 MeV. | 92025 | | nat _{Fe} | σ(n, Kn) (E, Θ | 2, E _n .) | 5.0 MeV to 15.0 | MeV 5 to 10% 0.1MeV ORNL Fu ENDF/B-VI of requested item was based on model calculation fitting 14-MeV data. Measurements recommended at 5,6,8,10,12 and 14 MeV. | 92086 | | ⁵⁴ Fe | σ(n,n'p) (E) | 2 | Thresh to 20.0 | ORNL Hetrick Sparse data available, when added to (n,p) does not agree with available total proton emission. Evaluations from ENDF/B-VI, BROND AND JENDL-3 disagree. | 92047 | | ⁵⁴ Fe | σ(n,2n) (E) | 2 | Thresh to 20.0 | MeV 10% ORNL Hetrick Data available disagree over the whole energy range. | 92054 | | 56 _{Fe} | σ(n,n'p) (E | 2 | Thresh to 20.0 | MeV 107 ORNL Hetrick Evaluations from ENDF/B-VI, BROND, and JENDL-3 disagree. No data available. | 92048 | | 56 _{Fe} | $\sigma(n,\alpha)$ (E) | 2 | Thresh to 20.0 | MeV 10% ORNL Hetrick Evaluations from BROND, ENDF/B-VI and JENDL-3 disagree. Data available bdlow 10 MeV is discrepant. | 92049 | | 56 _{Fe} | σ(n,γ) (E) | 1 | Resonance Region | 5% ORNL Larson Especially the 1.15 keV resonance. Resonance region. Capture cross sections may be up to 25% wrong for structural materials, needed for confirmation of an upgraded evaluation. | 92080 | | 56 _{Fe} | σ(n,n') (E) | 1 | Thresh to 4.0 | MeV 2 to 5% 5keV ORNL Fu n,n' to the 847-keV level. Important reaction a energy range for reactor pressure vessel surveil lance dosimetry. Currently known to about 10%. Needed accuracy is less than 5%. | | | ⁵⁷ Fe | $\sigma(n, \alpha)$ (E) | 2 | Thresh to 20.0 | MeV 10Z ORNL Hetrick Two points available at 14.5 MeV disagree and al evaluations (ENDF/VI, BROND AND JENDL-3). | 92050
so | | Isotop | e Quantity | Priority | Energy Range | Accuracy | δΕ | Lab | Requester | No. | |-------------------|-------------------------|----------|------------------|--|------------------------------------|--------------------------------|---|---------------| | ⁵⁷ Fe | σ(n,p) (E) | 2 | Thresh to 20.0 | 10%
Data availa | | | Hetrick
disagree and the evalua-
JENDL-3) have different | 92051 | | 57 _{Fe} | σ(n,2n) (E) | 2 | Thresh to 20.0 | 107
Large cross | | | Hetrick
data available and evalua
JENDL-3) disagree. | 92052 | | 58 _{Fe} | σ(n,2n) (E) | 2 | Thresh to 20.0 | 10% | secti | ORNL | Hetrick
no data available. | 92053 | | ⁵⁸ Fe | Resonance Pa | rameters | | | | | | | | | | 1 | 1.0 keV to 0.4 | 5 to 10%
Fe-58(n,gan
dosimetry.
for ENDF/B- | ma) is
Howev
VI is
the lo | ver, the
very po
west 10 | Fu being used for reactor existing data base used or. High-quality data ar s-wave resonances, parti dths. | | | 58 _{Fe} | $\sigma(n, \gamma)$ (E) | | | | | | | | | | | 1 | 30.0 keV to 14.0 | 20%
Important : | radion | nuclide | Cheng ng toward production of Fe-60 (1.49+06 yr): 60. | 86177 | | 59 _{Fe} | σ(n,γ) (E) | | RADIOACTIV | E 44.5 DAY | | | (1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1 | | | | · | 1 | Thermal to 15.0 | 20%
Long-lived
(1.49+6 yr |), pro | oduced. | Cheng roduct, Fe-60 Fe-58(n, \gamma) | 86115 | | | | | | important | for th | ne asses | le reactions are
sment of waste disposal
materials. | | | ⁶⁰ Co | σ(n,p) (E) | 2 | RADI ACTIV | VE 5.27 YR
0 MeV | | | | | | | | | | 20%
Long-lived
(1.49+6 y | | | Cheng
product, Fe-60 | 86116 | | nat _{Ni} | σ(n,Xn) (E,E | 1 | 5.0 MeV to 20. | 107
Model calc | at En | = 14.5 M | Hetrick
for ENDF/B-VI based on fit
leV. Need data at other
on. | 92 053 | | natNi | σ(n,α) (E) | | | | | | ······································ | | | | , | 2 | Thermal to 20.0 | 10% | tion a | ORNL
nd model | Larson
testing purposes. | 8608 | | 58 _{Ni} | $\sigma(n,\alpha)$ (E) | • | C 0 M-W 4- 40 | 0 M-W | | | | | | | | 1 | 6.0 MeV to 10. | 10Z
Difference | read o | f ENDF/I | Fu
of Qaim and Graham is
3-VI, FFF-2, and
4eV. | 9205 | | Isotope | Quantity | Priority | Energy Range | Accuracy | δε | Lab | Requester | No. | |--------------------|--------------------------|-------------|------------------|----------------------|--------|--------------------|--|--------------| | ⁵⁸ Ni 6 | $\sigma(n,n'\alpha)$ (E) | | | | | | | | | | | 1 | Thresh to 20.0 | | | 02347 | ** - | 0005 | | | | | | Only one d | ata po | ORNL
int avail | Hetrick
lable and evaluations fr | 92057
om | | | | | | | | | NDL-3 all disagree. | | | ⁵⁸ Ni | σ(n, γ) (E) | | | | | | | | | | | 1 | Resonance Region | | | | _ | | | | | | | 5%
Resonance | region | ORNL
Need | Larson
5% accuracy in | 92081 | | | | | | capture ar | ea of | resonanc | es. Capture cross | | | | | | | | | | as 25% in error,
ctra from resonance. | | | 58 _{Ni} | σ(n,n'p) (E) | | ····· | | | | | | | | | 2 | Thresh to 20.0 | | | | _ | | | | | | | 15% | s sect | ORNL | Larson
ta exist around 14 MeV | 92121 | | | | | | but are di | | | ou oxioo urouna 14 no. | | | 58 _{Ni} | σ(n, γ) (E) | | | | | | | | | | | 2 | 2.0 MeV to 15.0 | | | | | 0047 | | | | | | 20%
Production | of lo | TSI
ng-lived | Cheng radionuclide, | 86178 | | | | | | NI-59 (7.5 | | | | | | 58 _{Ni} | σ(n,p) (E) | | | | | | | | | | | 2 | 2.0 MeV to 10.0 |) MeV
5% | 5% | NIST | McGarry | 82054 | | | | | | | | | ssure vessel dosimetry. | 0203 | | 60Ni | $\sigma(n,\alpha)$ (E) | | | | | "" " " | | ············ | | | | 2 | Thresh to 20.0 | MeV | | | | | | | | | | 10% | | ORNL | Hetrick
VI, BROND, and JENDL-3 | 92058 | | | | | | | | | pha emission available. | | | 60 _{Ni} | σ(n,n'p) (E) | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | 2 | Thresh to 20.0 | MeV
10% | | ORNL | Hetrick | 9205 | | | | | | | a poin | | ble; evaluations from | 8200 | | | | | | ENDF/B-VI, | BROND | , and JE | NDL-3 all disagree. | | | 60 _{Ni} | σ(n,2n) (E) | 2 | Threeh to 20 0 | Metr | | | | | | | | 2 | Thresh to 20.0 | MeV
10% | | ORNL | Hetrick | 9206 | | | | | | | | | data available; evalua- | | | | | | | above 1MeV | | | OND, and JENDL-3 disagre | е | | 60 _{Ni} | σ(n, γ) (E) | | | | | |
······································ | | | 214 | - (, / () | 1 | Resonance Region | | | | | | | | | - | | 5% | | ORNL | Larson | 9208 | | | | | | | | | re cross sections may be depending upon |) | | | | | | | | | rom resonance. | | | 61 _{Ni} | σ(n,2n) (E) | | | | | | | | | | | 3 | Thresh to 20.0 | MeV
107 | | ORNL | Hetrick | 9206 | | | | | | Large cros | | ions and | no data available. | 3200 | | | | | | Evaluation disagree. | s from | n ENDF/B- | VI, BROND, and JENDL-3 | | | 62 _{Ni} | σ(n,2n) (E) | | | | | | | | | 74 T | · (11, 211) (2) | 3 | Thresh to 20.0 | MeV | | | | | | | | 3 | 11116511 60 20.0 | 10% | | ORNL | | 9206 | | Isotop | e Quantity | Priority | Energy Range | Accuracy δ E Lab Requester | No. | |------------------|--------------|----------|--------------------------------|--|-------| | 62 _{Ni} | σ(n,γ) (E) | 1 | 1.0 keV to 1.0 | MeV 20% TSI Cheng Production of long-lived radionuclide, Ni-63 100.1 yr). | 86179 | | e3Ni | σ(n,α) (E) | 1 | RADIOACTIVE
0.1 MeV to 15.0 | | 86118 | | ⁶⁴ Ni | σ(n,2n) (E) | 1 | 10.0 MeV to 15.0 | MeV 20% TSI Cheng Long-lived activation product, Ni-63 (100.1 yr), produced. Needed for the assessement of allowable Ni level in structural alloys to qualify as low activation material. | 86119 | | ⁶³ Cu | σ(n,n'p) (E) | 2 | Thresh to 20.0 | MeV 107 ORNL Hetrick Large cross section, need additional data since only 3 discrepant points available. | 92064 | | ⁶³ Cu | σ(n,p) (E) | 2 | Thresh to 20.0 | MeV 10% ORNL Hetrick Only 1 pt available which disagrees drastically with calculation. | 92065 | | 65 _{Cu} | σ(n,n'p) (E) | 3 | Thresh to 20.0 | MeV 20% ORNL Hetrick Only 1 data point available at 14.5 MeV. | 92063 | | ⁶⁵ Cu | σ(n,t) (E) | 1 | 9.0 MeV to 15.0 | MeV 20% TSI Cheng Long-lived activation product, Ni-63 (100.1 yr), produced. Critical for justification for isotopic tailoring of copper to meet lower residual activa- tion criteria. | 86120 | | ⁶⁴ Zn | σ(n,p) (E) | 1 | 5.0 MeV to 15.0 | MeV 57 TSI Cheng Dosimetry cross section for fusion applications. | 84004 | | ⁶⁷ Zn | σ(n,p) (E) | 2 | 1.0 MeV to 10.0 | MeV 10 to 20% WHC Schenter A measurement at 14 MeV has been made by the Japanese. Cu-67 will have important future application in the treatment of cancer. It is currently involved in clinical trials associated with monoclonal antibodies. Integral data exists for production of Cu-67 in HFBR. Future integral results will be available from the OSU Triga reactor. Zn-67(n,p) data are important for medical isotope production optimization of Cu-67. No evaluation of this reaction exists on ENDF/B. | | and the second s | Isotope | e Quantity | Priority | Energy Range | Accuracy δE Lab Requester | No. | |---------------------|----------------------------|----------|--|---|---------------------| | ^{nat} Ga (| σ(n,Z) (E,E _z) | 1 | 0.1 MeV to 1. | 0 MeV 10% SAN Griffin Need charged particle production to determine radiation damage in semiconductor electronics. | 92004 | | nat _{Ge} | σ(n, Xγ) (E) | | | | | | | | 2 | Thresh to 10.0 | MeV 10% ORNL Roussin Photon production needed to properly interpret detector response above the inelastic threshold. | 86034 | | nat _{As} | σ(n,Z) (E,E _z) | 1 | 0.1 MeV to 1. | .0 MeV 107 SAN Griffin Need charged particle production to determine radiation damage in semiconductor electronics. | 92005 | | ⁷⁴ Se | σ(n,γ) (E) | | | | , | | | | 2 | 1.0 mV to 0. | 1 MeV 20 to 40% WHC Schenter Se-75 has been used extensively for medical research (e.g., studies in cancer research at NIH). Integral data exist. Se-74(n,gamma) data are important for medical isotope production opti mization of Se-75. No evaluations of this reaction exist on ENDF/B. | 92010
i- | | ⁷⁸ Kr | σ(n,p) (E) | | 44.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4 | | | | | | 2 | 10.0 MeV to 15. | 10% LLNL White Activation product with short half-life. For diagnosing ICF implosions. | 86053 | | 80 _{Kr} | σ(n,2n) (E) | | | | | | | | 1 | Thresh to 15.0 | MeV 10% LLNL White Activation product with short half-life. For diagnosing ICF implosions. | 86051 | | 82 _{Kr} | σ(n,2n) (E) | _ | | | ···· | | | | 2 | 11.0 MeV to 15. | .0 MeV 20% TSI Cheng Long-lived activation product, Kr-81 (2.1+5 yr), produced. | 86123 | | ⁸² Kr | $\sigma(n,\alpha)$ (E) | | | | | | | | 2 | 0.1 MeV to 15. | .0 MeV 20% TSI Cheng Long-lived activation product, Se-79 (<65000 yr), produced. | 86124 | | 90 _{Sr} | $\sigma(n, \gamma)$ (E) | | RADIOACTI | VE 29 years | | | | | 2 | 10.0 mV to 1 | .0 MeV WHC Mann Need 20% accuracy in thermal region and resonance parameters. Average cross sections accurate to 20% over decade energy regions. Important for waste burning, conflicting thermal values; no other data. | 9210 <i>:</i>
ng | | 89 _Y | σ(n,tot) (E) | 3 | 14.0 MeV to 20 | .0 MeV 1% 500keV ANL Smith Important fission product. | 86024 | | Isotope | e Quantity | Priority | Energy Range | Accuracy | δε : | Lab | Requester | No. | |-------------------|-----------------------------|-----------------------|------------------|---|---------------------------------|---------------------------|--|-------------| | ⁸⁹ Y | σ(n,γ) (E) | 2 | 0.1 MeV to 0.5 | 10%
Energy-ave | | | Smith
o 10%.
ant values. | 86028 | | 89Y | σ(n,Xn) (E,€ | 9, E _n .) | | ~~~~~~~ | | | , quagi and 40 (a) (b) and an are are <u>are parties all 40 (0) all 10 (0) and are are are a</u> | | | | | 3 | 5.0 MeV to 20.0 | 10% | angle-er | ANL
sergy s | Smith
spectra at 2 MeV inciden | 86025
t- | | 89 _Y | σ(n,p) (E) | 2 | Thresh to 20.0 | 5% | cy shoul | ANL | Smith sought to threshold. | 86026 | | 89 _Y | σ(n,α) (E) | | | | | | | | | | | 3 | Thresh to 20.0 | MeV
10%
Important | | ANL
produc | Smith | 86027 | | ^{nat} Zr | $\sigma(n,Xn)$ (E, Θ | , E _n .) | | | | | | | | | | 1 | Thermal to 1.0 | 1 to 5% From 0 to degrees. 0 to 180 das good as benchmark | From .1 egrees. possibl testing | to 1 h
The c
e. The | Knox
40 degrees from 0 to 180
MeV, every 20 degrees from
energy resolution should
nese data are needed for
clear data and for use in
calculations. | be | | ⁹⁴ Zr | σ(n,2n) (E) | 2 | 7.0 MeV to 15.0 | 207 | | | Cheng
roduct, Zr-93 | 86128 | | ⁹⁴ Zr | σ(n,n' α) (Ε | 2 | 4.0 MeV to 15.0 | 207 | l activat | TSI
cion p | Cheng
roduct, Sr-90, (28.6 yr) | 86129 | | 93 _{Nb} | $\sigma(n,n)$ (E, Θ | | | | | | | | | | | 3 | 10.0 MeV to 20.0 | 5%
Resolution
Sufficient | accurac
5% (i.e | y to p | Smith
ith optical model.
provide non-elastic cros
angle-integrated | 86032
s | | 93 _{Nb} | σ(n,n') (E) | | | | | | | | | | | 2 | 0.5 MeV to 15.0 | 107 | 107 | NIST | McGarry
sure vessel dosimetry. | 82056 | | 93 _{Nb} | σ(n, Xγ) (E, | Ε(γ))
3 | Thermal to 20.0 | MeV
10%
Broad resc | olution a | ANL
samma :
suffi | Smith spectrum measurements cient to confirm energy | 86030 | | 93 _{Nb} | σ(n, Xn) (E, | 9,E _n .) | | | *********** | | | | | | , | 3 | 5.0 MeV to 20.0 | 10% | | ANL
nergy | Smith
spectra at 2 MeV inciden | 86029
t- | | Isotop | e Quantity | Priority | Energy | Range | Accuracy δE Lab Requester | No. | |-------------------|--------------|---------------------------|----------------|---------|---|------------| | ^{nat} Mo | σ(n,tot) (E) | 2 | 1.0 keV | to 20.0 | MeV 17 ANL Smith Resolution should be consistent with optical model. For high-temperature and space systems. | 86042 | | nat _{Mo} | σ(n,n) (E,θ) | 2 | 0.3 MeV | to 20.0 | MeV 10Z ANL Smith Angle-integrated accuracy <10Z. For high-temperature and space systems. | 86ú43 | | ^{nat} Mo | σ(n,n') (E,θ | , E _n .)
2 | 0,3 MeV | to 20.0 | MeV 107 ANL Smith Include discrete neutron groups below 3.0 MeV. Include continuum spectra above 3 MeV. For high-temperature and space systems. | 86044 | | ^{nat} Mo | σ(n,γ) (E) | 2 | 1.0 keV | to 1.5 | MeV 10% ANL Smith 10% accuracy in energy-averaged values. For high-temperature and space systems. | 86045 | | ⁹⁴ Mo | σ(n,p) (E) | 1 | 2.0 MeV | to 15.0 | MeV 20% TSI Cheng Production of long-lived radionuclide, Nb-94 (2.03+04 yr). | 86182 | | 95 _M o | σ(n,n'p) (E) | 2 | 9.0 MeV | to 15.0 | MeV 20% TSI Cheng Long-lived activation product, Nb-94 (2.03+4 yr) produced. This reaction cross section is needed to assess the allowable level of Mo in structural alloys to qualify it as a low activation material. | 86130
f | | 95 _{Mo} | σ(n,d) (E) | 2 | 7.0 MeV | to 15.0 | MeV 20% TSI Cheng Production of long-lived radionuclide, Nb-94 (2.03+04 yr). | 86181 | | ^{nat} Rh |
σ(n,n') (E) | 2 | 0.5 MeV | to 10.0 | MeV 10% 10% NIST McGarry Needed for reactor pressure vessel dosimetry. | 92026 | | ¹⁰⁷ Ag | σ(n,γ) (E) | 2 | 1.0 mV | to 0.1 | MeV 10 to 20% WHC Schenter Integral data exists for the production of Cd-109 in FFTF and HFIR from Ag-107 targets. Ag-107 (n,gamma) data are important for the medical isotope production optimization of Cd-109. | 92011 | | ¹⁰⁸ Cd | σ(n,γ) (E) | 1 | 1.0 mV | to 0.1 | MeV 10 to 20% WHC Schenter Needs a "keV" capture measurement. Integral data exists for production in FFTF, MURR and HFIR. Cd-109 evaluation used in ENDF/B-VI. Cd-108 is a very minor fission product isotope so that very little time was available in the past for its capture evaluation. Data important for medical isotope production of Cd-109. | | | Isotop | e Quantity | Priority | Energy Range | Accuracy δE Lab Requester | No. | |-------------------|----------------------------|----------|-------------------------------|---|------------| | ¹⁰⁹ Cd | σ(n, γ) (E) | | METASTABLE | 462 DAY | | | | | 2 | 1.0 mV to 0.1 | MeV 20 to 40% WHC Schenter Cd-109(n,gamma) data are important for medical isotope production of Cd-109. Burnout of Cd-109 needs to be determined. | 92013 | | ^{nat} Sb | σ(n,Z) (E,E,) | 2 | 0.1 MeV to 1.0 | MeV 10% SAN Griffin Need charged particle production to determine radiation damage in semiconductor electronics. | 92007 | | ^{nat} Te | σ(n,Z) (E,E _z) | 2 | 0.1 MeV to 1.0 | MeV 107 SAN Griffin Need charged particle production to determine radiation damage in semiconductor electronics. | 92006 | | 127 _I | σ(n, Xγ) (E) | 2 | Thermal to 10.0 | MeV 10% ORNL Roussin Photon production needed to properly interpret Na detector response. | 86035
I | | 129 _I | σ(n,γ) (E) | 2 | RADIOACTIVE | • | 92106 | | ¹³³ Cs | σ(n, Xγ) (E) | 2 | Thermal to 10.0 | MeV 10% ORNL Roussin Photon production needed to properly interpret Cs detector response. | 86033
I | | 135 _{Cs} | σ(n,γ) (E) | 2 | RADIOACTIVE
10.0 mV to 1.0 | • | 92107 | | 137 _{Cs} | σ(n,γ) (E) | 2 | RADIOACTIVE
10.0 mV to 1.0 | • | 92108 | | 137 _{Ba} | σ(n,p) (E) | 2 | 0.4 MeV to 15.0 | MeV 20% TSI Cheng Long-lived activation product Cs-137 (30.17 yr), produced. | 86134 | | ¹³⁸ Ba | σ(n,n'p) (E) | 2 | 9.0 MeV to 15.0 | MeV 20% TSI Cheng Long-lived activation product Cs-137 (30.17 yr), produced. | 86135 | | Isotope Quantity | Priority | Energy Range | Accuracy δ E Lab Requester | No. | |---|----------|----------------------------|---|-------| | ¹⁴³ Nd $\sigma(n,\gamma)$ (E) | 2 | 0.5 eV to 1. | 0 keV 107 BET Dei Resonance integral wanted. Improved precision needed. For calculation of fission product poisons. | 86002 | | ¹⁴⁵ Nd $\sigma(n, \gamma)$ (E) | 2 | 0.5 eV to 1. | 0 keV 15% BET Dei Resonance integral wanted. Improved precision needed. For calculation of fission product poisons. | 86003 | | ¹⁴⁸ Pm σ(n,γ) (E) | 2 | METASTABLE
1.0 mV to 1. | | 86004 | | ¹⁴⁹ Pm $\sigma(n, \gamma)$ (E) | 2 | RADIOACTIV
1.0 mV to 1. | | 86005 | | 144Sm $\sigma(n,\gamma)$ (E) | 2 | 1.0 mV to 0. | 1 MeV 10 to 20% WHC Schenter Sm-145 is being used for research studies at BNL on the treatment of brain cancer. Integral data exist for results in MURR and HFIR. Sm-144(n,gamma) data are important for medical isotope production optimization of Sm-145 Only integral data exist for thermal reactor system. | | | 145 Sm $\sigma(n,\gamma)$ (E) | 2 | RADIOACTIV | | 9201 | | ¹⁵² Gd $\sigma(n,\gamma)$ (E) | 2 | 1.0 mV to 0. | 1 MeV 10 to 20% WHC Schenter Integral data exist for results in FFTF, HFIR, and ATR. 152-Gd(n,gamma) data are important for medical isotope production optimization of Gd-153 Gd-153 is used as a dual photon source for the diagnosis and treatment of osteoporosis. | 92010 | | Isotop | e Quantity | Priority | Energy | Range | Accuracy | δΕ | Lab | Requester | No. | |-------------------|------------------------------|----------------------|---------------|---------------------|--|---|---|--|------------------------------| | ¹⁵³ Gd | σ(n, γ) (E) | 2 | RAI
1.0 mV | OIUACTIVE
to 0.1 | | | | | | | | | | | | and ATR. (section (4) has not bee activity repithermal | ata ex:
Gd-153
0,000 l
en dire
esults
spect: | has a vob). Gd-
ectly me
can be
rum to t | Schenter results in FFTF, HFIR very large thermal cro- 153's resonance integ sasured. High specifi obtained depending on thermal spectrum enhan | ss
ral
c
the
ce- | | | | | | | medical iso
Gd-153 is t | otope j | product: | data are important for
ion optimization of Gd
. photon source for th
of osteoporosis. | -153. | | ¹⁸¹ Ta | σ(n,tot) (E) | 2 | 1.0 keV | to 20.0 | MeV | | ANL | Smith | 86039 | | | | | | | Resolution | | d be cor | nsistent with optical ature and space system | | | ¹⁸¹ Ta | $\sigma(n,n)$ (E, Θ) | | 0 1 14-17 | | | | | | | | | | 2 | U.I MeV | to 20.0 | 10%
Angle-integ | | | Smith
cy <10%,
i space systems. | 86040 | | ¹⁸¹ Ta | σ(n,n') (E,θ | _ | | | | | | | | | | | 2 | 0.1 MeV | to 20.0 | 10%
Include dis | | | Smith n groups below 3.0 are and space systems. | 86041 | | nat _W | σ(n,n') (E) | 2 | Thresh t | ·o 15.0.1 | | | | | | | | | - | | | 10%
Transport of
devices sug
inelastic of | ggest :
scatte:
/E disc | uncertai | McGarry
brough casing of Hiros
inties in tungsten
less sections as an exp
les in observed Co-60 | | | natw | $\sigma(n,Xn)$ (E, Θ | , E _n .) | 6 0 MaV | to 12.0 | M-37 | | | | | | | | • | O.U Mev | to 12.0 | 10%
Double dif: | lation | s. Meas | Cheng
a needed for neutron t
surements recommended | | | 182 _W | $\sigma(n,n'\alpha)$ (E) | | | | | | | | | | | | 1 | 0.1 MeV | to 15.0 | 20%
Activation | | | Cheng
to production of meta
(31 yr), are needed. | 86139 | | 186 _W | σ(n,γ) (E) | | | | | | | | | | | | 2 | 1.0 mV | to 0.1 | 10 to 20% W-188 has 1 FFTF so the differential parent nucleus will be use treatment. | been pat into al meas leus in ed for W-186 | egral da
surement
n a W-18
a monoc
data a | Schenter in HFIR, MURR, OSTR, tta are available to t ts. W-188 will be the 38/Re-188 operator whi clonal antibody cancer re important for medic mization of W-188. | est
ch | | | e Quantity | Priority | Energy | Range | Accuracy | δΕ | Lab | Requester | No. | |-------------------|---|--|--|---------------------------------------|---|--|---|---|------------------------| | 186 _W | σ(n,n'α) (E) | ************************************** | ······································ | · · · · · · · · · · · · · · · · · · · | ************************************** | | | | | | | | 1 | 0.1 MeV | to 15.0 | | | | _ | | | | | | | | 20%
Long-lived | activ | TSI
ration : | Cheng
product, Hf-182 | 8614 | | | | | | | (9.0+06 yr | | | | | | 187 _W | $\sigma(n,\gamma)$ (E) | | RAI | IOACTIVE | 23.9 h | | | | | | | | 1 | 1.0 mV | to 0.1 | | | | | | | | | | | | life is she
path to mai
HFIR, ODTR
available in
W-188 will
generator in
antibody co
W-187 data
production
measurement
integral re | ort, to the work of the the which ancer are in optimate sults | he capt 88. W- FFTF, s t diffe e parer will be treatme mportar ization its (~18 | Schenter assurement. Even thoughter reaction is the oritish has been produced to that integral data prential measurements. In the nucleus in a W-188/e used for monoclonal ent. In the formedical isotopen of W-188. Only one 959, Igamma). Recent of and OSU Triga show pancy with 1959 value. | nly in are Re-188 | | 188 _W | σ(n,γ) (E) | | DAT | DIOACTIVE | · | | | | | | ••• | V(II,) / (L) | 2 | 1.0 mV | to 0.1 | | | | | | | | | • | 1.0 mv | 55 0.1 | 20 to 50%
W-188 has l
FFTF, so the
differential | nat in
al mea
leus i | tegral
suremen
n a W-1 | Schenter i in HFIR, MURR, OSTR data are available to nt. W-188 will be the 188 / Re-188 generator | test | | | | | | | treatment. | W-18 | 8 data | lonal antibodies cance
are important for med
timization of W-188. | r | | ^{nat} Re | σ(n,tot) (E) | | ************************************** | | treatment. | W-18 | 8 data | are important for med | r | | ^{nat} Re | σ(n,tot) (E) | 2 | 1.0 •V | to 0.1 | treatment. isotopes p | W-18
roduct | 8 data | are important for med
timization of W-188. | or
ical | | ^{nat} Re | σ(n,tot) (E) | 2 | 1.0 •V | to 0.1 | keV 1 to 5 % | W-18
roduct | 8 data
ion opt | are important for
med
timization of W-188. | or
ical | | nat _{Re} | σ(n,tot) (E) | 2 | 1.0 •V | to 0.1 | keV 1 to 5 % To determin The scate 21 low-energy tent with p | W-18 roduct 0.1% ne sca ring r trans previo | ORNL stering adius of mission | are important for med
timization of W-188. | er
dical
9209 | | nat _{Re} | σ(n,tot) (E) | 2 | | to 0.1 | keV 1 to 5 % To determing the scate at low-energy tent with pressurement MeV | W-18 roduct 0.1% ne sca ring r trans previo | ORNL
attering
addus of
mission
ous high | weston aradius. ietermined from previon measurements are inc | 9209 | | ^{nat} Re | σ(n,tot) (E) | | | | keV 1 to 5 % To determing The scate with a low-energy tent with a measurement MeV 1% | W-18 roduct 0.1% ne sca ring r trans previous. | ORNL sttering cadius comission us high | weston gradius. ietermined from previon measurements are incompensation Smith | 9209 | | ^{nat} Re | σ(n,tot) (E) | | | | keV 1 to 5 % To determine The scate 2: low-energy tent with 1 measurement MeV 1% Resolution | W-18 roduct 0.1% ne sca ring r trans previous. consi | ORNL ttering adius (mission us high | Weston g radius. ietermined from previon measurements are inchaemergy transmission | 9209 | | | $\sigma(n, tot)$ (E) $\sigma(n,n)$ (E, Θ) | | | | keV 1 to 5 % To determine The scate 2: low-energy tent with 1 measurement MeV 1% Resolution | W-18 roduct 0.1% ne sca ring r trans previous. consi | ORNL ttering adius (mission us high | weston gradius. idetermined from previon measurements are incompensation. Smith with optical model. | 9209
sus | | | | | 1.0 keV | | keV 1 to 5 % To determin The scate by tent with peasurement MeV 1% Resolution For high-t | W-18 roduct 0.1% ne sca ring r trans previous. consi | ORNL ttering adius comission us high | weston gradius. idetermined from previon measurements are incompensation. Smith with optical model. | 9209
ous | | | | 2 | 1.0 keV | to 20.0 | keV 1 to 5 % To determine The scate with pressurement with pressurement MeV 1% Resolution For high-t MeV 10% Angle-integrates | W-18 roduct 0.1% ne sca ring r trans previo ts. consi empers | ORNL stering adius of mission ous high | weston gradius. ietermined from previon measurements are incommencements are incomments are incomments are incomments are incomments. Smith Smith Smith Smith | 9209
ous
consis- | | nat _{Re} | | 2 | 1.0 keV | to 20.0 | keV 1 to 5 % To determine The scate with pressurement with pressurement MeV 1% Resolution For high-t MeV 10% Angle-integrates | W-18 roduct 0.1% ne sca ring r trans previo ts. consi empers | ORNL stering addus comission ous high | weston gradius. letermined from previon measurements are incompenersy transmission Smith with optical model. and space systems. Smith acy < 10%. | 9209
ous
consis- | | nat _{Re} | σ(n,n) (E, 0) | 2 | 1.0 keV | to 20.0 | keV 1 to 5 % To determin The scate to 10 wenergy tent with pressurement MeV 1% Resolution For high-t MeV 10% Angle-inte For high-t | W-18 roduct 0.1% ne sca ring r trans previo ts. consi empers | ORNL stering addus comission ous high | weston gradius. letermined from previon measurements are incompenersy transmission Smith with optical model. and space systems. Smith acy < 10%. | er
dical
9209 | | Isotope Quantit | y Priority | Energy Rang | g e | Accuracy &E Lab Requester No |), | |----------------------------------|-----------------------|-------------|------------|------------------------------|------| | ¹⁸⁵ Re σ(n, γ) (F | 2 | 1.0 mV to | 0.1 | | 2021 | | 190 _{Os} σ(n,γ) (I | 2
2 | 1.0 mV to | 0.1 | | 2023 | | ¹⁹¹ 0s σ(n,γ) (1 | 2 | RADIOA | 0.1 | MeV | 2022 | | natpt σ(n,n) (E | 2 | 1.0 mV to | 10.0 | | 204 | | 197 Au $\sigma(n,\gamma)$ (| E)
1 | 0.2 MeV to | 2.5 | | 204 | | $natpb \sigma(n,2n)$ (| E) 1 | 14.0 MeV to | 15.0 | | 609 | | natp _b σ(n, Xn) (| E,θ,E _n .) | 6.0 MeV to | 12.0 | | 616 | | Isotope | Quantity | Priority | Energy Range | Accuracy δE Lab Requester No | ٠. | |---------------------|-----------------------------|----------|--------------------------------|---|------| | ²⁰⁴ Pb c | σ(n,p) (E) | 1 | 0.1 MeV to 15.0 | | 6142 | | ²⁰⁶ Pb c | σ(n,Xn) (E,E _n | .) 2 | 10.0 MeV | 10 to 20% 0.1MeV ORNL Fu 92
ENDF/B-VI of requested item was based on model
calculation fitting 14-MeV data. Need 10-MeV data
for confirmation. Isotopic data are needed
because (n,2n) thresholds of the three major
isotopes are significantly different. | 2088 | | ²⁰⁶ Pb 6 | σ(n,t) (E) | 1 | 7.0 MeV to 15.0 | | 6143 | | 207 _{Pb} , | σ(n, Xn) (E, E _n | .) 2 | 10.0 MeV | 10 to 20% 0.1MeV ORNL Fu 92
ENDF/B-VI of requested item was based on model
calculation fitting 14-MeV data. Need 10-MeV data
for confirmation. Isotopic data are needed
because (n,2n) thresholds of the three major
isotopes are significantly different. | 2089 | | 208 _{Pb} | σ(n,Xn) (E,E _n | .) 2 | 10.0 MeV | 10 to 20% 0.1MeV ORNL Fu 92
ENDF/B-VI of requested item was based on model
calculation fitting 14-MeV data. Need 10-MeV data
for confirmation. Isotopic data are needed
because (n,2n) thresholds of the three major
isotopes are significantly different. | 2090 | | ²⁰⁸ Bi (| σ(n,2n) (E) | 2 | RADIOACTIVE
7.0 MeV to 15.0 | | 614 | | 233 _U , | σ(n,n) (E) | 2 | RADIOACTIVI
1.0 mV to 1.0 | | 2031 | | 234 _U (| σ(n, γ) (E) | 2 | 1.0 mV to 1.0 | | 609 | | Isotop | e Quantity | Priority | Energy Range | Accuracy 6 | E Lab | Requester | No. | |-------------------|-------------------|----------|-------------------------------|--|---|--|-------------| | 235 _U | σ(n,n) (E) | _ | | 7.04+08 yr | | | | | | | 2 | 1.0 mV to 1.0 | 5%
Suitable meas
able. Well-c
Extinction ef | haracteriz
fects must | Carlson it thermal may be accept- ed samples must be used. be determined. To ne the thermal constants. | 92037 | | 235 _U | $\sigma(n,f)$ (E) | | | 7.04+08 yr | | | | | | | 1 | 0.2 MeV to 20.0 | 0,5% | | Carlson
standard cross section an | 92043
d | | | | 1 | 20.0 MeV to 0.2 | GeV
1 to 2% | NIST
curacy of | Carlson
standard cross section an | 92044
d | | 235 _U | Eta (E) | | | 7.04+08 y | r | | | | | | 1 | 1.0 mV to 10.0 | 0.2 to 0.5%
Determination | ies is of | Weston hape of eta at very low extreme importance for | 92093 | | 235 _U | Alpha (E) | 2 | RADIOACTI
1.0 keV to 1.0 | VE 7.038+05Y
MeV
5 to 10%
Discrepancies | ANL | Smith | 8606 | | 236 _U | Resonance Pa | rameters | 1.0 •V to 10.0 | 2.34+07 y | r | ************************************** | | | | | | | appreciably 1
New improved | ower than measurement in contant | Carlson prived by Macklin are previous measurements. tts are needed. calculation of higher | 9212 | | ²³⁷ Np | Half-life | 2 | RADIOACT | IVE 2.14+06 y | | | | | | , | | | 0.5%
For mass dete | NIST
rmination | Gilliam of fissionable deposits. | 9202 | | ²³⁷ Np | σ(n,f) (E) | 1 | RADIOACTIV
50.0 keV to 7.0 | 27
Needed for ma | imetry ste | Gilliam simetry. It is an undard for measurements in ceactors. | 9202 | | ²³⁷ Np | σ(n, f) (E) | 1 | 3.0 MeV to 15.0 | 2 to 3%
Precise data | settle di | Young
ergies needed for ENDF/B
iscrepancy in recent | 9211 | | ²³⁹ Pu | σ(n,n) (E) | 2 | RADIOACTIV | 5% Suitable meanable. Well-cextinction en | characteri:
Efects musi | Carlson at thermal may be accept- zed samples must be used. t be determined. For nermal constants. | 9203 | | Isotope | Quantity | Priority | Energy | Range | Accuracy | δΕ |
Lab | Requester | No. | |----------------------------|--------------|----------|--------------|----------------------|---|-----------------|------------------------|---|-------| | ²³⁹ Pu E | Sta (E) | 1 | 1.0 mV | to 10.0 | 0.2 to0.5%
Determinat | ion of | | Weston pe of eta at very low rtant for reactor physics | 92091 | | ²³⁹ Pu <i>o</i> | r(n,f) (E) | 1 | 10.0 eV | to 1.5 | 0.5%
Need good
determine | backgr | ound leve | Weston
the resonance region to
el and want accurate
the 1 to 500 keV neutron | 92092 | | ²³⁹ Pu A | Alpha (E) | 2 | 10.0 mV | RADIOACTI
to 1.0 | | /R | ORNL | Weston | 86172 | | ²⁴⁰ Pu F | Resonance Pa | rameters | | RADIOACTI | VE 6570 YI | ₹ | | | | | | | 2 | 1.0 eV | | section ev | aluati | on. There | Hemmig
ences thermal cross
e is a discrepancy
integral data. | 82021 | | ²⁴¹ Pu <i>o</i> | r(n,n) (E) | 2 | RA
1.0 mV | DIOACTIVE
to 1.0 | 5% Suitable mable. Wel Extinction | l-char
effec | acterized
ts must 1 | Carlson thermal may be accept- d samples must be used. be determined. To e the thermal constants. | 92038 | | ²⁴¹ Pu A | Alpha (E) | 2 | 10.0 mV | | VE 14.4 YI
keV
4. to 8%
2% accurac | | ORNL
red from | Weston | 8617: | | ²⁴² Am o | v(n,X) (E) | 2 | | TASTABLE
to 20.0 | Evaluation since ENDF | /B-V. | Importan | Mann
proporate new measurements
nt for actinide burning,
ENDF/B-VI. | 92099 | | ²⁴³ Am o | r(n,f) (E) | 3 | | DIOACTIVE
to 14.0 | 10 to 157 | easure | | Carlson
e not consistent. For | 9204 | | 242 _{Cm} o | 7(n,γ) (E) | 2 | | to 1.0 | MeV
10 to 20% | | ANL
cycle ca | Smith
lculations. | 8606 | | ²⁴³ Cm o | (n,X) (E) | 2 | | DIOACTIVE
to 20.0 | MeV
Evaluation
since ENDF | `/B-V. | Importan | Mann
orporate new measurements
nt for actinide burning,
r ENDF/B-VI. | 9210 | | ²⁴⁴ Cm o | 7(n,X) (E) | 2 | | DIOACTIVE
to 20.0 | MeV
Evaluation
since ENDF | '/B-V. | Importan | Mann
orporate new measurements
nt for actinide burning,
r ENDF/B-VI. | 9210 | | Isotope Quantity | Priority | Energy Range | Accuracy | δ E Lab | Requester | No. | |---|----------|----------------|--------------|-----------------|---|-------| | ²⁴⁴ Cm $\sigma(n, \gamma)$ (E) | 2 | RADIOACTIV | E 18.1 YR | | | | | | • | 10.0 KBV D- 1. | 10 to 20% | AN
fuel cycl | L Smith
e calculations. | 86068 | | ²⁴⁶ Cm σ(n, X) (E) | | RADIOACTI | VE 5000 yr | | | | | | 2 | 10.0 µV to 20. | 0 MeV | | | | | | | | since ENDF/ | B-V. Imp | C Mann incorporate new measu.ceme ortant for actinide buznin) for ENDF/B-VI. | | | 247 Cm $\sigma(n,X)$ (E) | | RADIOACTI | VE 1.6+07 yr | | | | | | 2 | 10.0 µV to 20. | 0 MeV | | | | | | | | since ENDF/ | B-V. Imp | C Mann incorporate new measureme ortant for actinide burnin) for ENDF/B-VI. | | | ²⁴⁸ Cm $\sigma(n,X)$ (E) | | RADIOACTI | VE 3.7+05 yr | | | | | | 2 | 10.0 µV to 20. | 0 MeV | | | | | | | | since ENDF/ | B-V. Imp | C Mann incorporate new measureme ortant for actinide burnin) for ENDF/B-VI. | | ## APPENDIX 1 ### NAMES AND ADDRESSES OF REQUESTORS | | NAMES AND ADDRESSES OF REQUESTORS | | |------------------------|-----------------------------------|---| | NAME | PHONE | ADDRESS | | Dr. Allan D. Carlson | 301-975-5570 | National Institute of Standards and Technology
RADP C311
Gaithersburg, MD 20878 | | Dr. Ed Caro | 518-395-7038 | Knolls Atomic Power Laboratory P. O. Box 1072 Schenectady, NY 12301 | | Dr. Randall S. Caswell | 301-975-5525 | National Institute of Standards and Technology
Bldg. 245, Rm B102
Gaithersburg, MD 20878 | | Dr. Edward T. Cheng | 619-793-3567 | TSI Research Corp.
Suite 110, 225 Stevens Ave.
Solana Beach, CA 92075 | | Dr. D. E. Dei | 412-476-5139 | Bettis Atomic Power Laboratory
P. O. Box 79, Zap 34-F
West Mifflin, PA 15122 | | Dr. C. Y. Fu | 615-574-6116 | Oak Ridge National Laboratory
Building 6010, MS 6356
P. O. Box 2008
Oak Ridge, TN 37831 | | Dr. D. M. Gilliam | 301-975-6206 | National Institute of Standards and Technology
Reactor Building 235, A-106
Gaithersburg, MD 20878 | | Dr. Pat J. Griffin | 505-845-9121 | Sandia National Laboratory
Radiation Effects and Reactor Design, 6452
Albuquerque, NM 87185 | | Dr. Gerry M. Hale | 505-667-7738 | Los Alamos National Lab.
T-2, MS B243
Los Alamos, NM 87545 | | Mr. Dave M. Hetrick | 615-574-6131 | Oak Ridge National Laboratory
Building 6010, MS 6356
P. O. Box 2008
Oak Ridge, TN 37831 | | Mr. Phillip B. Hemmig | 301-903-3579 | U. S. Department of Energy
Advanced Reactor Technology
NE-542, GTN
Washington, DC 20585 | | Dr. Harold D. Knox | 518-395-7752 | Knolls Atomic Power Laboratory
P. O. Box 1072
Schenectady, NY 12301 | | Dr. Duane C. Larson | 615-574-6119 | Oak Ridge National Laboratory
Building 6010, MS 6354
P. O. Box 2008
Oak Ridge, TN 37831 | | Dr. Fred M. Mann | 509-376-5728 | Hanford Engineering Development Laboratory, HO-36
P. O. Box 1970
Richland, WA 99352 | | Dr. E. Dale McGarry | 301-975-6205 | National Institute of Standards
and Technology
Reactor Bldg 235, A-106
Gaithersburg, MD 20899 | |------------------------|--------------|--| | Dr. Robert W. Roussin | 615-574-6176 | Oak Ridge National Laboratory
RSIC, Bldg. 6025, MS 6362
P. O. Box 2008
Oak Ridge, TN 37831 | | Dr. Robert E. Schenter | 509-376-3935 | Hanford Engineering Development
Laboratory, HO-36
P. O. Box 1970
Richland, WA 99352 | | Dr. Alan B. Smith | 708-252-6084 | Argonne National Laboratory
APD-316, 9700 S. Cass Ave.
Argonne, IL 60439 | | Dr. Lawrence W. Weston | 615-574-6129 | Oak Ridge National Laboratory
Building 6010, MS6354
P. O. Box 2008
Oak Ridge, TN 37831 | | Dr. Roger M. White | 510-422-9668 | Lawrence Livermore National Lab.
Dept. of Physics, MS L-298
Livermore, CA 94551 | | Dr. Phillip G. Young | 505-667-7670 | Los Alamos National Lab.
Group T-2, MS B-243
Los Alamos, NM 87545 | APPENDIX 2 ENDF/B-VI EVALUATOR CONTACTS | <u>Material</u> | Evaluator to Contact | <u>Lab</u> | Telephone | |-----------------------------|----------------------|------------|--------------| | ¹ H | G. M. Hale | LANL | 505 667 7738 | | 2H | R. E. MacFarlane | LANL | 505 667 7742 | | ³ He | G. M. Hale | LANL | 505 667 7738 | | ⁶ Li | G. M. Hale | LANL | 505 667 7738 | | 7Li | P. G. Young | LANL | 505 667 7670 | | | 21 01 11 11 11 | | | | ⁹ Be | S. T. Perkins | LLNL | 510 422 4061 | | ¹⁰ B | G. M. Hale | LANL | 505 667 7738 | | ¹¹ B | P. G. Young | LANL | 505 667 7670 | | NATC | C. Y. Fu | ORNL | 615 574 6116 | | ¹⁴ N | P. G. Young | LANL | 505 667 7670 | | ¹⁵ N | E. D. Arthur | LANL | 505 667 1708 | | ¹⁶ O | G. M. Hale | LANL | 505 667 7738 | | 19 _F | C. Y. Fu | ORNL | 615 574 6116 | | $NAT^\mathbf{T}_\mathbf{V}$ | A. B. Smith | ANL | 708 252 6084 | | 50Cr | D. M. Hetrick | ORNL | 615 574 6131 | | OI. | D. H. Hetrick | Oldin | 015 574 0151 | | ⁵² Cr | D. M. Hetrick | ORNL | 615 574 6131 | | ⁵³ Cr | D. M. Hetrick | ORNL | 615 574 6131 | | ⁵⁴ Cr | D. M. Hetrick | ORNL | 615 574 6131 | | ⁵⁵ Mn | K. Shibata | JAERI | | | ⁵⁴ Fe | C. Y. Fu | ORNL | 615 574 6116 | | | | | | | ⁵⁶ Fe | C. Y. Fu | ORNL | 615 574 6116 | | ⁵⁷ Fe | C. Y. Fu | ORNL | 615 574 6116 | | ⁵⁸ Fe | C. Y. Fu | ORNL | 615 574 6116 | | ⁵⁹ Co | A. B. Smith | ANL | 708 252 6084 | | ⁵⁸ Ni | D. C. Larson | ORNL | 615 574 6119 | | ⁵⁹ Ni | l'. M. Mann | WHC | 509 376 5728 | | 60Ni | D. C. Larson | ORNL | 615 574 6119 | | ⁶¹ Ni | D. C. Larson | ORNL | 615 574 6119 | | 62Ni | D. C. Larson | ORNL | 615 574 6119 | | ⁶⁴ Ni | D. C. Larson | ORNL | 615 574 6119 | | | | • | | | ⁶³ Cu | D. M. Hetrick | ORNL | 615 574 6131 | | ⁶⁵ Cu | D. M. Hetrick | ORNL | 615 574 6131 | | ⁸⁹ Y | A. B. Smith | ANL | 708 252 6084 | | ⁹³ Nb | A. B. Smith | ANL | 708 252 6084 | | ¹⁰⁵ Pd | R. Q. Wright | ORNL | 615 574 5279 | | ¹⁰⁷ Pd
^{NAT} In | R. Q. Wright A. B. Smith | ORNL
ANL | 615 574 5279
708 252 6084 | |--|--------------------------|-------------|------------------------------| | ¹¹⁵ In | R. E. Schenter | WHC | 509 376 3935 | | ¹³⁴ Cs | R. Q. Wright | ORNL | 615 574 5279 | | ¹³⁴ Ba | R. Q. Wright | ORNL | 615 574 5279 | | ¹³⁵ Ba | R. Q. Wright | ORNL | 615 574 5279
615 574 5279 | | ¹³⁶ Ba | R. Q. Wright | ORNL | 615 574 5279 | | ¹³⁷ Ba | R. Q. Wright | ORNL | 615 574 5279 | | ¹⁴⁷ Nd | R. Q. Wright | ORNL | 615 574 5279 | | ¹⁴⁷ Pm | R. Q. Wright | ORNL | 613 374 3279 | | ¹⁴⁷ Sm | R. Q. Wright | ORNL | 615 574 5279 | | ¹⁵¹ Sm | R. Q. Wright | ORNL | 615 574 5279 | | ¹⁵¹ Eu | P. G. Young | LANL | 505 667 7670 | | ¹⁵² Eu | R. Q. Wright | ORNL | 615 574 5279 | | ¹⁵³ Eu | P. G. Young | LANL | 505 667 7670 | | ¹⁵⁴ Eu | R. Q. Wright | ORNL | 615 574 5279 | | ¹⁵⁵ Eu | R. Q. Wright | ORNL | 615 574 5279 | | ¹⁶⁵ Ho | P. G. Young | LANL | 505 667 7670 | | ¹⁶⁶ Er | R. Q. Wright | ORNL | 615 574 5279 | | ¹⁶⁷ Er | R. Q. Wright | ORNL | 615 574 5279 | | ¹⁸⁵ Re | L. W. Weston | ORNL | 615 574 6129 | | ¹⁸⁷ Re | L. W. Weston | ORNL | 615 574 6129 | | ¹⁹⁷ Au | P. G. Young | LANL | 505 667 7670 | | ²⁰⁶ Pb | C. Y. Fu | ORNL | 615 574 6116 | | ²⁰⁷ Pb | C. Y. Fu | ORNL | 615 574 6116 | | ²⁰⁸ Pb | C. Y. Fu | ORNL | 615 574 6116 | | ²⁰⁹ Bi | A. B. Smith | ANL | 708 252 6084 | | 235 _U | L. W. Weston | ORNL | 615 574 6129 | | 236U | F. M. Mann | WHC | 509 376 5728 | | ²³⁸ U | L. W. Weston | ORNL | 615 574 6129 | | ²³⁷ Np | P. G. Young | LANL | 505 667 7670 | | ²³⁹ Np | R. Q. Wright | ORNL | 615 574 5279 | | ²³⁹ Pu | P. G. Young | LANL | 505 667 7670 | | ²⁴⁰ Pu | L. W. Weston |
ORNL | 615 574 6129 | | ²⁴¹ Pu | L. W. Weston | ORNL | 615 574 6129 | | ²⁴¹ Am | Zhou Delin | CHINA | | | ²⁴³ Am | L. W. Weston | ORNL | 615 574 6129 | | ²⁴⁹ Bk | Zhou Delin | CHINA | | | ²⁴⁹ Cf | Zhou Delin | CHINA | | ### INTERNAL DISTRIBUTION - 1. B. R. Appleton - 2. J. K. Dickens - 3. F. C. Difilippo - 4. C. Y. Fu - 5. R. Gwin - 6. J. A. Harvey - 7. D. M. Hetrick - 8. N. W. Hill - 9. D. T. Ingersoll - 10-14. D. C. Larson - 15. M. J. Martin - 16. R. W. Peelle - 17. S. A. Raby - 18. S. Raman - 19. R. W. Roussin - 20. R. R. Spencer - 21. R. C. Ward - 22. R. M. Westfall - 23-32. L. W. Weston - 33. John White - 34. G. E. Whitesides - 35. R. Q. Wright - 36. R. W. Brockett(consultant) - 37. J. J. Dorning (consultant) - 38. J. E. Leiss (consultant) - 39. N. Moray (consultant) - 40. M. F. Wheeler(consulant) - 41-43. Laboratory Records Dept. - 44. Laboratory Records, ORNL-RC - 45. Documents Reference Section - 46. Central Research Library - 47. ORNL Patent Section ### EXTERNAL DISTRIBUTION - 48. Office of the Assistant Manager for Energy Research and Development, U.S. Department of Energy, Oak Ridge Operations, P.O.Box 2008, Oak Ridge, TN 37831 - 49. S. L. Whetstone, Division of Nuclear Physics, ER 23/GTN, U. S. Department of Energy, Washington, D.C. 20585. - 50. R. A. Meyer, Division of Nuclear Physics, ER 23/GTN, U. S. Department of Energy, Washington, D.C. 20585. - 51. S. E. Berk, Office of Energy Research, Reactors and Systems Radiation, U.S. Department of Energy, Washington, D.C. 20585. - 52. P. B. Hemmig, Advanced Reactor Technology, NE-542, GTN, U.S. Department of Energy, Washington, DC 20585. - 53. L. J. Agee, System Safety and Licensing Analysis, EPRI, 3412 Hillview Ave., P. O. Box 10412, Palo Alto, CA 94303. - 54. A. M. Baxter, Reactor Engineering, General Atomics, 3550 General Atomics Court, P.O. Box 85608, San Diego, CA 92138-5608. - 55. M. J. Berger, Photon and Charged Particle Data Center, National Institute of Standards and Technology, Gaithersburg, MD 20878. - 56. R. C. Block, Dept. of Nuc. Eng., Rensselaer Polytechnic Inst., Troy, NY 12180. - 57. Robert Breen, Bldg. 3, EPRI, P. O. Box 10412, Palo Alto, CA 94303. - 58. A. D. Carlson, RADP C311, NIST, Gaithersburg, MD 20878. - 59. Ed Caro, Knolls Atomic Power Lab., P. O. Box 1072, Schenectady, NY 12301. - 60. R. S. Caswell, NIST, Bldg. 245, Rm Bl02, Gaithersburg, MD 20878. - 61. E. T. Cheng, Suite 110, TSI Research Corp., 225 Stevens Ave., Solana Beach, CA 92075. - 62. P. J. Collins, Argonne National Lab., P.O. Box 2528, Idaho Falls, ID 83403 2528. - 63. F. Corvi, CEC, JRC, CBNM, Steenweg naar Retie, B-2440, Geel, Belgium. - 64. Charles Cowan, MS S15, Advanced Nuclear Technology, General Electric Co., 6835 Visa Del Oro, San Jose, CA 95119. - 65. D. E. Cullen, MS L-298, Lawrence Livermore Nat. Lab., Livermore, CA 94551. - 66. Ulrich Decher, GC-28, Combustion Engineering, Inc., 1000 Prospect Hill Rd., P.O. Box 500, Windsor, CT 06095. - 67. D. E. Dei, Bettis Atomic Power Lab., P.O. Box 79, Zap 34-F, West Mifflin, PA 15122. - 68. C. L. Dunford, NNDC, Building 197-D, Brookhaven National Laboratory, Upton, NY 11973. - 69. Colin Durston, S. Levy Inc. 3425 S. Boscom Ave., Campbell, CA 95008-7006. - 70. T. R. England, T2, MS B-243, Los Alamos Nat. Lab., Los Alamos, NM 87545. - 71. R. B. Firestone, Bldg. 50-A, Rm. 6102, Lawrence Berkeley Lab., Berkeley, Ca 94720. - 72. E. Fort, C.E.A., C.E.N. de Cadarache, B.P.No. 1, F-13115 St. Paul-lez-Durance, France. - 73. F. H. Froehner, Institute fur Neutronenphysik und Reaktortechnik, Kernforschungszentrum, Karlsruhe, Postfach 3640, D-7500, Karlsruhe, Germany. - 74. D. G. Gardner, MS L-234, Lawrence Livermore Nat. Lab., Livermore, CA 94551. - 75. C. R. Gould, Physics Dept. North Carolina State Univ., Box 8202, Raleigh, NC 27695-8202. - 76. S. M. Grimes, Dept. of Physics, Ohio Univ, Athens, OH 45701. - 77. H. Gruppelaar, Netherlands Energy Research Foundation (ECN), Postbus 1, NL-1755 Zg Petten, THE NETHERLANDS. - 78. M. Gundy, Nuclear Reactor Production Div., Westinghouse Savannah River Comp., P.O. Box 616, Aiken, SC 29802. - 79. R. C. Haight, P-3, MS D449, Los Alamos Nat. Lab., Los Alamos, NM 87545. - 80. G. M. Hale, T-2, MS B243, Los Alamos Nat. Lab., Los Alamos, NM 87185. - 81. J. M. Harris, Livermore Div. 8233, Sandia Nat. Lab., Livermore, CA 94550. - 82. J. Helm, Dept. of Applied Physics, 202 Mudd Bldg., Columbia University, 520 W. 120th Street, New York, NY 10027. - 83. D. M. Gilliam, NIST, Reactor Bldg. 235, A-106, Gaithersburg, MD 20878. - 84. P. J. Griffin, Sandia Nat. Lab., Radiation Effects and Reactor Design, 6452, Albuquerque, NM 87185. - 85. U. Jenquin, Bldg. Sigma-3, Battelle Pacific Northwest Lab., P.O. Box 999, Richland, WA 99352. - 86. Alf Jonsson, Dept. 5318-02403, Combustion Engineering, 1000 Prospect Hill Rd., P.O. Box 500, Windsor, CT 06095. - 87. Albert Kahler, MS ZAP 34-F, Bettis Atomic Power Lab., P. O. Box 79, West Mifflin, PA 15122. - 88. H. D. Knox, Knolls Atomic Power Lab., P. O. Box 1072, Schenectady, NY 12301. - 89. Glen Knoll, University of Michigan, Ann Arbor, MI 48109. - 90. N. P. Kocherov, Nuclear Data Section, IAEA, P. O. Box 100, A-1400 Vienna, Austria. - 91. G. P. Lamaze, NIST, Bldg. 235, Gaithersburg, MD 20899. - 92. P. W. Lisowski, P-3, MS D449, Los Alamos Nat. Lab., Los Alamos, NM 87545. - 93. C. R. Lubitz, Bldg. F-16, KAPL, P.O. Box 1072, Schenectady, NY 12301. - 94. R. Mac Farlane, T2, MS B-243, Los Alamos Nat. Lab., Los Alamos, NM 87545. - 95. F. M. Mann, L7-29 Hanford Eng. Dev. Lab., P.O. Box 1970, Richland, WA 99352. - 96. E. D. McGarry, NIST, Reactor Bldg 235, A-106, Gaithersburg, MD 20899. - 97. F. J. McCrosson, Bldg. 773-41A, Savannah River Lab., Aiken, SC 29808. - 98. Victoria McLane, NNDC, Bldg. 197-D, Brookhaven Nat. Lab., Upton, NY 11973. - 99. R. D. McKnight, Bldg. 208, Argonne Nat. Lab., 9700 S Cass Ave., Argonne, IL 60439. - 100. M. S. Milgram, Dept. of Reactor Physics, Chalk River Nuclear Lab., Atomic Energy of Canada Ltd., Chalk River, Ontario, KOJ 1JO CANADA. - 101. D. W. Muir, Los Alamos National Lab., T2, MS-B243, Los Alamos, NM 87545. - 102. M. N. Nikolaev, Centr Po Jadern Dannym (CJD), Fiziko-Energeticheskij Inst., Ploschad Bondarenko, Kaluga Region, SU-249 020 Obninsk, RUSSIA. - 103. Claes Nordborg, OEDC/NEA Data Bank, Batiment 445, F-91191 Gif/Yvette, Cedex, France. - 104. S. T. Perkins, MS L-298, Lawrence Livermore Nat. Lab., Livermore, CA 94551. - 105. S. Pearlstein, Suite 700, Defense Nuclear Facilities Safety Board, 625 Indiana Ave. NW, Washington, DC 20004. - 106. W. P. Poenitz, Argonne National Laboratory-West, P.O. Box 2528, Idaho Falls, ID 83403. - 107. C. W. Reich, 2837 Snowflake Drive, Boise, ID 83706. - 108. D. A. Resler, Dept. of Physics, MS L-298, Lawrence Livermore National Lab., Livermore, CA 94551. - 109. G. Rohr, CEC, JRC, CBNM, Steenweg naar Retie, B-2440 Geel, Belgium. - 110. J. M. Ryskamp, Engineering Lab., MS 3515, EG&G Idaho, P.O. Box 1625, Idaho Falls, ID 83415. - 111. M. Salvatores, Centre d'Etudes Nucleaires de Cadarache, 13108 Saint-Paul-Lez-Durance Cedex, France. - 112. Joseph Sapir, MS B-220, Los Alamos National Lab., Los Alamos, NM 87545. - 113. R. E. Schenter, L7-29, Hanford Engineering Dev. Lab., P.O. Box 1970, Richland, WA 99352. - 114. R. A. Schrack, RADP B119, NIST, Gaithersburg, MD 20899. - 115. R. E. Seamon, X-6, MS B-226, Los Alamos Nat. Lab., Los Alamos, NM 87545. - 116. A. B. Smith, APD-316, Argonne Nat. Lab., Argonne, IL 60439. - 117. D. L. Smith, Building 314, Argonne National Lab., Argonne, IL 60439. - 118. Eugene Specht, MS HB23, Rockwell Int. Corp., 6633 Canoga Park, CA 91303. - 119. H. K. Vonach, Institute Fuer Radiumforschung und Kernphysik, Boltzmanngasse 3, A-1090, Wien, Austria. - 120. R. L. Walter, Dept. of Physics, Duke University, Durham, NC 27706. - 121. O. A. Wasson, RADP B109, NIST, Gaithersburg, MD 20899. - 122. C. Wagemans, CBNM, Steenweg naar Retie, B-2550 Geel, Belgium. - 123. H. Weigmann, CBNM, Steenweg naar Retie, B-2440 Geel, Belgium. - 124. S. A. Wender, P-3, MS D449, Los Alamos Nat. Lab., Los Alamos, NM 87545. - 125. R. M. White, Physics Dept., MS L-298, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550. - 126. R. R. Winters, Dept. of Physics, Denison Univ., Granville, OH 43023. - 127. Mark Williams, Nuclear Science Center, Louisiana State University, Baton Rouge, LA 70803. - 128. W. A. Wittkopf, Div. of Fuel Eng., Babcock & Wilcox Co., P.O. Box 10935, 3315 Old Forest Rd., Lynchburg, VA 24506. - 129. P. G. Young, T-2, MS-B243, Los Alamos Nat. Lab., Los Alamos, NM 87543. - 130. M. Youssef, School of Engineering and Applied Science, 6288 Boelter Hall, University of California, Los Angeles, CA 90024. - 131-140. Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831 أتمينا التنيينا التنايات and the same of the