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Abstract

We show that a steep plasma pressure gradient can lead to radially localized Alfvdn modes,
which are damped through coupling to filed line resonances. These have been called drift Alfvdn
balloning modes (DABM) by [3] and are the prime candidates to explain Pc4-Pc5 geomagnetic
pulsations observed during storms. A strong dependence of the damping rate on the azimuthal
wave number m is established, as well as on the equilibrium profile. A minimum azimuthal mode
number can be found for the DABM to be radially trapped. We find that higher m DABMs are
better localized, which is consistent with high-m observations.

Introduction

Magnetospheric pulsations of the Pc4 and Pc5 types have periods on the order of 100 sec, and

are often observed during a geomagnetic storm. Theoretical studies such as those by Chen and

Hasegawa [3] etc. have identified the pulsations as drift Alfvdn balloning mode instabilities excited

via wave-particle interactions with resonant highly energetic protons. It was found that their growth

rate is maximized for azimuthal numbers m _ 100 [1] and for a field-aligned structure that is odd

with respect to the equator. These results fit quite well with satellite observations such as those

of Takahashi [4]. However, to the authors' knowledge, previous studies of these instabilitie_ have

been restricted to the one dimensional eigenvalue problem along the field line, i.e. no attempt was

made to characterize the radial structure of these modes. It is obvious, that for the DABM to be

a realistic instability candidate, it must be radially localized in the magnetosphere. This paper,
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to the best of our knowledge, is the first that deals with these matters. As it will be shown, a

plasma pressure gradient, like the one suggested by data in [5], could create a potential well in

the radial direction which localizes the global Alfv_n-ballooning mode. In the picture developed

here, the global mode suffers a small but finite damping due to absorption of the wave energy at

the flux surface whose file line resonant frequency matches the global mode eigenfrequency. Both

radial localization and damping depend on rn as well as the steepness of the pressure gradient. The

damping rate is negligible for moderately high m. [

/Theoretical framework
i

i

In this paper we will be using a model equilibrium that is axisymmetric. The rnagnetohydrodynamic

(MHD) momentum equations for the components r/¢,r/¢ of the perturbed perpendicular vector po-

tential, were expressed in magnetic coordinates (¢,X,¢) for the cold plasma case in [2, 6]. For the

hot plasma case they are the following:

DCTI¢-- S'-_o(P_ + PlI) - (_'-_ - _l)(Sx + P-L/B_o), (1)

cO(B×+ p.L/Bo) (2)
D¢0¢ = 0¢ '

and

B× = 071¢ Orl¢_ (3)0¢ 0¢ '

where /_ V¢ × V¢ is the equilibrium magnetic field,/3, = 2-_/B o, the perturbed electric field-- ¢

is if_, = -OtrlcV¢- OtrlCV¢, ¢ is the azimuthal angle, ¢ the equilibrium flux function, ): is the

coordinatc along Bo ( dx = Bodl ), 1 is the arc length on a flux surface, B× is the perturbed parallel

magnetic field, p± and Pll perturbed perpendicular and parallel pressures, x¢]V_/,I 2 = g. V_/, with g

the curvature of fro, P0 is the equilibrium pressure which is assumed to be isotropic in this analysis,

and
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1 I ¢lUa 21¢12
De = _0O_ + 2 2 (4)" vA Bo '

1o 1 ¢12 _2JV¢12
De = -_oU,---_o u, + v_B_ " (5)

In general, p± and Pll can contain contributions from trapped particles, wave-particle interactions

and hydrodynamic terms as in [3]. We will include wave-particle interactions in a future and more

detailed article, but for now we will assume an isotropic and incompressible MHD fluid, which leads

to p± = Pll = -rl¢O'_P°"

Also we define the following operator:

OPo _g,

E¢ = De + 2 O"-_-S-"_' (6)

De as well as E¢ act only on the /-dependence of their arguments, and they depend only

parametrically on ¢. For each and every ¢, De and E¢ have a complete set of eigenfunctions

_¢(n,l,¢), 6_(n, /, ¢) along / with eigenvalues w_(n,¢) and w_(n,¢) respectively, corresponding

to the nth mode of each operator. In the present work we will consider only the case n = 1,

which corresponds to the lowest odd mode with respect to the equator, and suppress n from now

on. As expected, the solution to system Eqs. (1-3) depends critically on the w_ and w_ profiles

which themselves depend on the equilibrium. The plasma equilibrium used in this paper was con-

structed in [1], by solving perturbatively the Grad-Shafranov equation with the plasma pressure

profile P(_b) = P0(1 + ( -g_-c°)2_)-l.Thus the self-consistent effect of a pressure gradient is only

modeled locally and not globally. The equilibrium pressure profile employed is shown in Fig. 1, and

, the resulting w_ and w_ in Fig. 2.

From Fig. 2 it is seen that w_(¢) drops monotonically, as one moves away from *,he planet (i.e. ¢

decreases) until some local minimum Wmin,2 then rises until a local maximum W2maxand subsequently

drops monotonically again, as radial distance increases, tending to zero. If El is sufficiently high
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Figure 1' Pressure profile

W_mincan become negative, w_(¢) is always above w_(_b) and monotonically dropping with increasing

radial distance.

The operators E¢ and De are self-adjoint because of the exclusion of wave-particle interactions,

in the sense that fs N. dlBoqE¢( = fsN dlBo(Ecr], with boundary conditions r], ¢ = 0 at the boundary

points, and similarly for D,. Equations 1, 2, 3 are not generally tractable in an analytic fashion.

We adopt the ordering 1_¢[ = [rn[ _ O(10 2) >> 1, which is consistent with observations, and we

will be using 1/m as an expansion parameter. Then we can employ the WKB approximation in the

radial dimension to reduce the two-dimensional problem to two nested 1D problems.

WKB calculation

We introduce the following WKB ansatz: 0

tic = q¢(_b,l)expmS(¢), (7)

_¢ = rf¢(¢,l)expmS(¢), (S)



Figure 2: _(¢),_(¢) profiles

p± = f±(¢,l)expmS(¢). (9)

Define So¢ _" 0So/0¢. Introduce the expansion:

;Vith the WKB ordering that S_¢ >> °o_ and S¢_ >> 8P-_,we have to lowest order:

,2
(S0¢D¢ - E_)ri0 = O. (13)

This is equivalent to S02¢ = /7)¢/D¢ with the definitions /_¢ = (ri0, Ecrj0), 6¢ = (r]0, D¢_0).

Here (fl,f2) = fsN dlfl(l)f_(l)Bo, that is, we integrate along the field line between its southern and

• northern boundary points. Equation (13) was derived using the boundary conditions that go = 0

at l = IN, Is, which are the points where the field line intersects the ionosphere. The ionosphere is



#

assummed to be perfectly conducting. S0, can be found as the eigenvalue of Eq. (13). In the next

order exploiting the self-adjointness of E¢ and De it can be shown that

(0,S0¢ + 2So_Sl¢)/)¢ + S0¢/_ = 0, (14)

where:

pZ0

/_/= (y_,, (D¢(0¢r]_¢ + B--_-) + (0¢ - fl,)D¢_¢)). (15)

Solutions near turning points

The WKB ansatz breaks down close to a ¢ where S0¢(lb) becomes zero. This ¢ is termed a regular

turning point (RTP). By inspection of Eq. (13), this happens when E_(l, ")RTP; w2)_o(l, CRTP; w2) =

0 or equivalently, when _0(l, CRTP) -- _¢(/, CRTP) and w2 = _2¢(_)RTP ). Another type of turning

point is the singular one, encountered iffor some ¢ there is no finite eigenvalue S0¢ for Eq. (13). From

Eq. (13) this singular turning point (STP), occurs when /_ = 0 or equivalently when ,j0(l, ¢STP) --

0¢(/, {bsTp) and w2 -- _(_'STP). The singular turning point corresponds physically to the resonant

layer where the wave energy could be dissipated.

To derive the connection formulas near _RTP we use a multiscale expansion of the system Eqs. (1-

3), which involves a fast and a slow ¢ dependence, and an expansion in powers of m -_'/a. Define

"" 1_ -- _)RTP and E(¢°) = E¢(¢RTP). Then to lowest, order:

E_°)_o= 0, (16)

which isthe regularturningpointcondition.Eq. (16)indicatesthatr/oisseparablein land (_,

namely,r/o= _¢(/,CaTp)h(_).Usingtheselfadjoint-.c_sofE(¢°)we getfrom thenextorder:

J

02h -h5 (q*' E('}q*> (17)
052 (q,, n(°)q,> '

where E (1), and ,,,¢r)(°)correspond to _, and D_ respectively, evaluated at CRTP. Eq. (17)is exactly '

the Airy equation for the ¢ dependence of the global mode near CRTP. The WKB connection
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formulae can be derived by asymptotically matching the solutions of Eq. (17) to the WKB solutions

given in the preceding section. Thus we have shown that by employing the WKB method a two

dimensional eigenvalue problem can be reduced to two nested one dimensional problems. We could

carry out a similar analysis near the STP but this is not necessary as will be discussed later on.

The Dispersion Relation

By referring to Fig. 2 and remembering that S0¢ = 0 when w_ = w_, we can identify the possibilities

that exist for the regular turning points, and similarly for the singular turning point. In the figure,

we see that depending on ¢v2 we have the following cases:

1. w2 > W2ma×gives one regular turning point,

2. W2max> w2 > max(0,W2min) gives three regular turning points,

'1 3. For large/_l we have the possibility 2 w2Wmin < < 0 (i.e. local balooning unstable mode) and

we obtain two RTP's,

4. 0 < w2 < W2minwe get one RTP.

There is always a singular turning point at 0,2 = 02_b(_)STp).

We recall from Eq. (16) ( S02¢ = D_, ) that for w2 # w_(_), E¢(¢) will be nonzero. The same

i, can be said for w_ and/J_. Writing out explicitly/_¢ we get •

' E¢ -" dl- o + )fro2-IOtffol21 ¢l2 . (18)

The above equation is the variational problem from which E_q¢ = 0 can be derived, and thus it is

clear that /_,(_b) < 0 for w2 < w_(¢). Similarly/9_ < 0 for w2 < w_. Assuming that _ _- 0 at

' ¢ = CRTP and noting that _ < w_ we can conclude that:

1. S02¢(¢) > 0 for w2 < w_(¢) < w_(¢),
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2.So2 ( )<ofor < <

3.SL( )>ofor < <

To have possible radial localization we need to have negative S'02V_between two RTP's, and

according to the above arguments this can happen only if max(v2min, 0) < w2 < V2ma×. The case of

2 Up20Pmin < < 0 could also fulfill this condition, but it corresponds to ideal MHD instabilities, which

require higher drive and is beyond the scope of the present analysis. Thus, we have to look for the

global eigenvalue w2 between these two limits. It is possible, in principle, that the w_-well could

become so shallow that there will be only one regular turning point in all cases and thus no mode

could be localized there. That could happen if _1 is below a certain threshold.

To completely specify the problem, we need to impose boundary conditions. Referring to the

previous results and Fig. 2, we see that, to the left of the RTP a the WKB solution will be a sum of

an exponentially growing and an exponentially decaying part. The appropriate boundary condition

in this region is that the solution be spatially decaying. The other boundary condition is supplied

by the existence of the resonant layer (STP) at d. In the MHD description the mode energy will

be completely absorbed there, and so we know that there cannot be a reflected wave in the region

between c and d. This corresponds to an outgoing wave boundary condition.

Proceeding as in the usual one-dimensional case, we connect the various WKB solutions through

the turning points and impose the relevant boundary conditions. We then obtain the following WKB

eigenvalue condition or dispersion relation:

i7r ?r

exp(-2mT(u_))cos(mIab(w)+ _) = O, (19)sin(mlab(w)+ _) + "_

where lab = f bdtb ___02 ¢ and T = f: d¢So,_, with a,b being the two RTP's defining the localization
i

area, and b,c defining the tunnelling region. Note that, assumming total wave absorption, the exact

location of the resonant layer does not enter in our results.
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Assuming that w = wr -4-i'y and that -r << wr, we get
i,

= + (20)
m

"Y'- exp(-2mT(wr)) (21)
4rnOIab(Wr)

cOwr

In Eq. (20) r is the radial 'quantum' number, the number of radial nodes of the global mode

between the turning points a and b. Equation (21) shows that the damping rate is controlled by the

exponential tunnelling factor. That means that the least damped modes are those that have large

T, or, equivalently, those localized close to the bottom of the well. However we can see from the

quantization condition that the larger m is, the smaller Iab has to be, so that we have to have the

corresponding eigenfrequencies closer to w_i n. At the same time exp(-2mT) becomes very small

too, justifying the assumption _' <( wr for m :>>1.

Physically, higher m modes have to tunnel their way for a longer distance, and thus by the time

they couple to the field line resonance, there is very little energy to be dissipated. Note that in the

present work, we have assummed first harmonic antisymmetric modes; i.e. modes with only one

node. For higher longitudinal mode numbers, we would simply have to find a higher eigenmode of

Eq. (13) with a corresponding S02_ eigenvalue.

We can predict which is the lowest m number a mode can have and still be expected to be

radially localized and not leak out readily towards the shear Alfvdn continuous spectrum. We can

calculate Iab(Wr -- Wmax) and use the fact that (r + ½)/m < Iab(Wmax) to get tile lower limit on m.

An approximate upper limit for the observable m can be found by looking at the growth rates due

to the resonant particle interactions, which show a clear peak [1]. Figure 3 shows w and "r for various
"4

m numbers, assuming one radial node. Note that as m becomes smaller, the damping rate increases

' sharply due to the decreasing tunnelling loss. From Eq. (20) we can also see that higher r numbers

require, higher rnmin modes, which however are not easily excited by wave-particle interactions.

9



l

This means that effectively only r = 0, 1 ( radial nodes ) are viable candidates. Also modes with

higher longitudinal mode numbers (n), are less likely to be localized. The reason for this is that, for

high n the effect of the ballooning term in E¢ is very diminished and the well will become shallow

or disappear altogether. Interestingly enough the lowest n is favored by the excitation mechanism

too.

-0.02
b-

-0.04

100 200 300

azimuthal mode number

)-'' I '''' I _' ' ' I' ':
2.6

a 2.4

2.2 i

100 200 300

azimuthal mode number

Figure 3: w and 3' versus azimuthal mode number

Summary and Discussion

We have shown that the Drift Alfvdn Ballooning modes, previously studied locally along the field

line, can be radially localized in the presence of a steep enough pressure gradient which almost

vanishes after a point. The radial extent of localization is defined essentially by the locations of the

maximum and the minimums of the pressure gradient as a function of radial distance. These modes,

however, suffer finite damping through their coupling to field line resonances. It is important to
1

note that the damping is negligible for m _ 100 and longitudinal "quantum number" n = 1, ( odd

symmetry with respect to the equator). These numbers correspond to modes with peak growth rates,
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as well as to those observed by satellites. The present results thus further support the DABM as a
t_

viable instability candidate. Observir_g the radial structure of Pc4 and Pc5 waves in the terrestial

magnetosphere has always been difficult given that most satellites are in geosynchronous orbits.

The predictions of this work thus, might not be easily testable even though they are consistent with

satellite observations. Finally, we note that the present approach can be readily extended to include

effects of wave-particle interactions as well as pressure anisotropy. The results will be reported in a

more detailed future publication.
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