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An rms-mismatched beam can evolve rapidly to a configuration of 
quasiequilibrium under the influence of space-charge forces. As it 
evolves, its emittance grows and a diffuse halo forms. The beam’s 
distribution function accounts for all of the complicated dynamics. 
Unfortunately, the distribution function is difficult to calculate inas- 
much as the physics lies at the interface between classical mechanics 
and thermodynamics. This paper presents the foundation for a statis- 
tical theory of the dynamics of nonequilibrium space-charge-dominated 
beams. Within certain approximations, the theory takes on a Fokker- 
Planck form. Key questions arise concerning the nature of the dy- 
namical friction and diffusion in the beam’s phase space and of the 
quasiequilibrium configuration that ensues. 

INTRODUCTION 

A charged-particle beam in an accelerator can be significantly away from 
thermal equilibrium. This is particularly true following transitions in the ef- 
fective external focusing force. In an intense beam, space charge drives the 
subsequent evolution. These beams are generally cccool)) , and charge redistri- 
bution in response to the change in external focusing leads to wavebreaking in 
the beam’s phase space, an event which marks the onset of turbulence. Excess 
free energy goes toward establishing a mode spectrum. The mode spectrum 
interacts with particle orbits to generate phase mixing, a process which gener- 
ally decreases the coarse-grained phase-space density near the phase point of 
each particle. The fluctuating space-charge potential also widens the range of 
energies of the particles, a process known in the astrophysical community in 
connection with a fluctuating gravitational potential in a largr stellar system 
as “violent relaxation”. 

Phase mixing and violent relaxation can drive the kwarri toward a quasiequi- 
librium state on a time scale much shorter than the (‘oiiloriib relaxation 
time. Several numerical simulations show relaxation 4 I f  rrris-mismatched 
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space-charge-dominated beams to quasiequilibrium within a few plasma peri- 
ods, corresponding to only afew lattice periods (1). One might suspect this to 
be due to numerical noise. However, the process has also been unambiguously 
observed in laboratory experiments (2). 

Inasmuch as they behave like nonneutral plasmas, three-dimensional beams 
which are strongly turbulent are characterized by an average “collision fie- 
quency” - 9-l times larger than in a quiescent beam, where g = l/nX$ is 
the ‘plasma parameter (3), with n representing the number density and AD 
representing the Debye length. In space-charge-dominated beams 9-l is large, 
and interactions between particles and localized fluctuations are important. 
In weak turbulence the average collision frequency is N g1I2 times smaller 
than in strong turbulence. 

Jean Delayen and I have recently advanced and applied a statistical theory 
of nonequilibrium beams (4,5). It includes the evolving mode spectrum to 
account self-consistently for rapid changes in the electrostatic self-field of the 
beam. Readers interested in a detailed account are referred to these papers. 
The following section, which is largely extracted from Ref. (4), presents the 
fundamental conceptual foundation of the theory, outlining how an equation 
of the Fokker-Planck type can materialize from a “reduction” of Liouville’s 
equation for the distribution function. Subsequent discussion presents key 
questions that arise in the context of this approach. 

FOKKER-PLANCK MODEL 

A precise statistical treatment of the beam dynamics involves the micro- 
scopic Klimontovich density distribution. This distribution consists of a self- 
consistent superposition of the orbits of all constituent particles of the beam in 
the Cartesian phase space (x, u) of a single particle, and it satisfies Liouville’s 
theorem. The microscopic distribution is 

where [xi(t),~(t)] denotes the orbit of the i th particle, and ,V is the total 
number of particles. The ultimate goal of a numerical experiment is to specify 
the Klimontovich distribution as a function of time. 

To develop an analytic formalism, it is more practical to work with a macro- 
scopic distribution function. We thus consider the macroscopic, coarse-grained 
distribution function f(x, u, t) which is found by averaging the Klimontovich 
distribution over scales substantially greater than those associated with local- 
ized turbulent fluctuations: 



where AV(x, u) is a phase-space volume element centered on the coordinates 
(x,u) which is large compared to the size of the turbulent fluctuations but 
small compared to the size of the beam. In what follows, the “bar” is a 
signature of quantities calculated from the coarse-grained distribution f. 

After resolving the Klimontovich distribution into two components, f and 
fluctuations about f, and averaging Liouville’s equation, we are left with a 
“collision” term involving the fluctuations. Working with a coarse-grained 
distribution function is tantamount to neglecting nonlinear coupling between 
fluctuations in the particle distribution and fluctuations in the electromagnetic 
field. This approach results in the reduction of Liouville’s equation to an 
equation of the Fokker-Planck type (6): 

(at +u.v,  +K. o,)f= V, . ( ~ f )  +vu . (D  . vJ), (3) 

where K is the net acceleration of a particle in the comoving frame found 
from the potentials @j and 6, associated with the external focusing force and 
coarse-grained internal space-charge force, respectively, i. e., 

K = -QM-’V,(@j + 6,) ; (4) 

the vector F and tensor D are coefficients of friction and diffusion, respectively, 
and Q and M are the charge and mass, respectively, of the beam particles. 
According to Poisson’s equation, 8, is determined from the coarse-grained 
density, which is in turn determined from 5 

VZ8,(X,t) = -- NQ Jduf (x ,u , t )  ., 
EO 

(5) 

in which E O  is the permittivity of free space. 
If the coarse-grained beam is regarded to be uniform so that it can be 

Fourier transformed using the periodic boundary conditions of a homogeneous 
cube of volume V ,  then the transport coefficients are 

1 2rQ2 F = - -  v ME0 E’(k,Wk) ’ 

k 6(Wk - k - U) 

and 

In these expressions, &k is the energy contained I I I  t i i t  Ilir~.rciation with 
wavevector k and angular frequency wk, and in this ~ i i r  c-itiiit nr fiwnulation 
it evolves i’n the manner 



where 

The first term on the right-hand side of Eq. (8) accounts for Landau damping 
or growth at the rate yk from absorption or induced emission of mode energy 
by the particles, respectively, and the second term accounts for spontaneous 
Cherenkov emission of mode energy by the particles. The dielectric response 
function is 

E(k,w) = l + % / d u  k * VUf(<u) 
w - k - u  ’ 

€‘(k,Wk) denotes [d~/dw],=,,, w = W k  + i-flc is the solution of E(k,w) = 0, 
and‘ w; = nQ2/&oM is the square of the plasma frequency. The k-summation 
in Eqs. (6) and (7) is over the growing (unstable) modes obtained from these 
zeroes, for which yk > 0. The friction F arises from particles losing energy 
to unstable modes via spontaneous Cherenkov emission, and the diffusion D 
results from particles recoiling in response to absorption and induced emission. 
In turn, diffusion gives rise to turbulent heating of the particles. 

The effect of fluctuations is to change the shape off continuously until there 
are no more growing modes and -flc < 0 for all k. When this has occurred, 
the modes quickly dissipate by linear Landau damping, and the turbulence 
vanishes. For example, in the presence of a background isotropic Maxwellian 
velocity distribution, the fluctuation spectrum evolves as 

in which k~ is Boltzmann’s constant and T is the beam’s thermal-equilibrium 
temperature. This shows explicitly that &k dissipates if & > k B T ,  and the 
energy spectrum thermalizes toward the equipartition value & = k B T .  

In the Fokker-Planck equation (3), the left-hand side accounts for system- 
atic effects arising from the external focusing field and the coarse-grained 
space-charge field, and it therefore includes resonances between global space- 
charge modes and the focusing force if any are present. The process of phase 
mixing is included there. The right-hand side accounts for stochastic effects 
of the collective-mode spectrum. Fast collisionless relaxation and energy re- 
distribution between modes and particles are included t hcre. 

This quasilinear formalism highlights the ingredients of a sclf-consistent so- 
lution for the dynamics of a nonequilibrium beam. As thr fluctuations evolve, 
they change the shape of the coarse-grained distribution firnction, which in 
turn modifies the evolution of the fluctuations. As the iiiodc spectrum dis- 
sipates, the friction and diffusion coefficients eventually s r t t  Ir down toward 
their thermal values associated with Coulomb collisions. a r i d  t lie beam then 



slowly proceeds to thermal equilibrium. A word of caution , however: with 
respect to charged-particle beams, “thermal equilibrium” has meaning only 
in the approximation that the frequency of the external focusing forces is high 
enough that there is no significant beam evolution between focusing lenses or 
acceleration gaps. 

KEY QUESTIONS 

The statistical theory is obviously very complicated. It is also only approx- 
imate, particularly with regard to its application to an inhomogeneous beam, 
for in this case it is very difficult to calculate the normal modes. Yet, at the 
same time, it simplifies matters by operating over the 6-dimensional phase 
space of a single particle rather than the 6N-dimensional phase space of the 
N particles comprising a beam bunch. 

To date, applications have incorporated a simple model of the turbulence 
and Brownian particle motion to specify the Fokker-Planck coefficients. Prac- 
tical applications of the statistical theory therefore require more accurate mod- 
els of these coefficients. Establishing viable models will undoubtedly require 
carefully planned numerical experiments. A fundamental approach would be 
to calculate the fluctuation spectrum at each position and time step during 
the course of a numerical experiment and then construct the coefficients from 
the spectrum using Eqs. (6) and (7) as guides. A second approach might 
be to infer them from the orbits of test particles in a sequence of numerical 
experiments. It may also prove fruitful to try to measure these quantities in 
lab oratory b eams. 

Mismatch-induced excitation and subsequent relaxation of a turbulent 
mode spectrum constitutes a transient phase in the beam’s evolution. As 
the fluctuations damp, the beam will evolve more slowly. It is not obvious 
that violent relaxation drives the beam all the way to thermodynamic equi- 
librium. The process stops when the potential ceases to change and there is 
no guarantee that the excess free energy is fully equilibrated at that time. 

Numerical simulations and laboratory experiments suggest the beam as- 
sumes a configuration of quasiequilibrium after a few plasma periods. At this 
stage the microscopic fluctuations are probably weak, and they will eventu- 
ally damp to thermal levels. Subsequent evolution is very slow and, except 
in circular machines, will take much longer than the transit time of the beam 
through the remainder of the accelerator. Thus, it is important to establish 
the properties of the quasiequilibrium beam, especially in machines where 
there is concern about radioactivation due to scraping of a diffuse halo. For 
example, if the quasiequilibrium beam were to comprise only a few low-order 
global modes of oscillation, then models describing the oscillating-core-single- 
particle interaction (7) would probably be sufficient to compute the bulk of 
the halo over most of the machine. One would need to he careful, though, 
because in the early transient stage a statistically few particles could conceiv- 



ably interact resonantly with many modes and be launched into orbits of very 
large amplitude. This is a consideration, for example, in high-current proton 
machines envisioned as spallation neutron sources, for which losses less than 
a nA/m are of concern (8). 

One possibly fruitful approach might be to formulate a “maximum-entropy” 
principle. It would take into account that not all “final” states are equally 
probable in the configuration of quasiequilibrium. For example, there is not 
enough time available to populate the largest-amplitude orbits in the Maxwell- 
Boltzmann distribution. Accordingly, one would expect the core to have pro- 
gressed closer to thermal equilibrium than the halo, and this is consistent with 
observations from laboratory and numerical experiments. This approach has 
been applied to self-gravitating stellar systems with some success (9). 

A third area of investigation of possible relevance to accelerators is to con- 
sider explicitly a periodic driving force in a frame comoving with the beam. 
Stochastic processes in the presence of periodic forcing may be susceptible to 
resonances, which in turn will influence the dynamics. This has been seen, for 
example, in bistable systems (10). It is also of interest to establish unambigu- 
ously the properties of a beam in thermal equilibrium subject to a periodic 
external force. 
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