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Inertial-range scaling laws for two- and three-dimensional turbulence are 

re-examined within a unified framework. A new correction to Kolmogorov’s 

k-5/3 scaling is derived for the energy inertial range. A related modifica- 

tion is found to Kraichnan’s logarithmically corrected two-dimensional en- 

strophy cascade law that removes its unexpected divergence at the injection 

wavenumber. The significance of these corrections is illustrated with steady- 

state energy spectra from recent high-resolution closure computations. The 

results also underscore the asymptotic nature of inertial-range scaling laws. 

Implications for conventional numerical simulations are discussed. 
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I. INTRODUCTION 

The energy spectrum of fully-developed homogeneous turbulence is thought 

to be composed of three distinct wavenumber regions: a region of energy 

injection at the largest scales, an intermediate “inertial range” character- 

ized by zero forcing and zero dissipation, and, at the very smallest scales, 

a region dominated by viscosity. In 1941, Kolmogorov proposed his famous 

P 5 I 3  scaling law for the inertial-range energy spectrum of homogeneous and 

isotropic three-dimensional turbulence. Since then, extensive numerical and 

experimental scrutiny has essentially confirmed this result. Kolmogorov’s ar- 

gument was extended to the two-dimensional enstrophy range by Kraichnan, 

who suggested the scaling 

where kl is the smallest wavenumber in the range (Kraichnan 1971a). How- 

ever, the true inertial-range behaviour of two-dimensional turbulence is still 

a subject of much controversy. 

Until the recent high-resolution work of Borue (1993) , virtually all nurner- 

ical simulations of two-dimensional Navier-Stokes turbulence have suggested 

an energy spectrum steeper than kh3, often more like k-*. Those results 

conflict not only with Kolmogorov’s dimensional reasoning but also with 

atmospheric observations (Boer & Shepherd 1983) and statistical theories 

of turbulence. Many researchers attribute the steepening to the presence 
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of coherent structures (McWilliams 1984) since these long-lived formations 

are mistreated by low-order statistical theories. Santangelo et al. (1989) 

and Benzi et al. (1990) argued that the actual spectral behaviour depends 

strongly on the initial vorticity distribution. 

The present work began with the idea that at least some of the observed 

steepening might actually be due to the logarithmic correction in (l), which 

has often been ignored by previous researchers. In Fig. 1 we compare the 

mathematical functions IC-* and (1). The logarithmic correction is cer- 

tainly not negligible near the injection wavenumber; in fact, it diverges at 

IC = k1. This is illustrated in the graphs of the logarithmic slope 

(2) 
1 = - 3 - -  

3 log k 
d log E(k)  

d log k 

of E(k )  in Fig. 2 for several values of the parameter N ,  the number of inertial- 

range decades. For most conventional simulations, N is no larger than 2. 

Since the data from direct simulations tends to be noisy, the slope of the 

energy spectrum is usually determined from the slope of a tangent line fitted 

to the data at a point in the middle of the inertial range. The vertical line 

in Fig. 2 is intended to indicate the effective wavenumber at which the slope 

would be evaluated by this technique. We suggest that the logarithmic cor- 

rection could be especially significant in older simulations, where the forcing 

and dissipation scales were not well separated. 

To add further fuel to this debate, it would be interesting to demon- 

strate the predictions of certain analytical approximations known as statisti- 
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Figure 2: Logarithmic slope of the scaling (1) for various values of N ,  the 
number of decades in the inertial range. 
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cal closures. These descriptions of turbulence provide approximate evolution 

equations for the statistical correlation function rather than the velocity field 

itself. The test-field model [TFM] (Kraichnan 1971b) seems ideally suited for 

this purpose. Despite the fact that the TFM equations were argued to be di- 

mensionally consistent with (1) by Kraichnan (1971a), this has never actually 

been demonstrated numerically in the literature [e.g., cf. (Herring 1985)l. 

11. INERTIAL-RANGE SCALINGS 

We begin with a systematic review of the dimensional analysis underlying 

the Kolmogorov and Kraichnan scalings, focusing on the separate cases of 

two- and three-dimensional turbulence. 

A. Three-dimensional turbulence 

The Kolmogorov hypothesis relies on the fact that energy is not cre- 

ated or destroyed within the inertial range; it is merely redistributed among 

the inertial-range wavenumbers. Kolmogorov (1941) suggested that the sig- 

nificant dynamical interactions between the turbulent eddies are local in 

wavenumber space. That is, very large eddies will not interact directly with 

very small eddies, but only via eddies of an intermediate size. 

The total energy in all eddies larger than a given scale k-l is J t E ( i )  &E, 
where E ( k )  is the energy spectrum. While the shearing effect of the large 

eddies will significantly distort the small eddies, the random interactions of 
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the many small eddies on the large ones tends to average out their distorting 

effect. Let us denote the rate of energy transfer to eddies of size IC-' and 

energy IcE(k) from larger eddies by q ( k ) k E ( k ) ,  where q(k) is the rate at 

which a unit amount of energy is transferred. Dimensional analysis and the 

fact that eddies are distorted by the shear in the mean flow, rather than the 

mean flow itself, leads to the scaling (Kraichnan 1971a) 

q 2 ( k )  N Snk2E(E) 0 dk. (3) 

The rate of energy transfer from eddies larger than k-' to eddies smaller 

than k-' is hence proportional to the quantity 

we will see below that the constant of proportionality is related to the Kol- 

mogorov constant. 

For statistically stationary turbulence, where the amount of energy con- 

tained in eddies of a given size is independent of time, Kolmogorov's locality 

hypothesis implies that must actually be independent of k. Upon denoting 

f ( k )  = k E ( k )  and differentiating the identity 

with respect to k, one finds that -%12f'/f4 = k. Integration of this result 

between and k, where ko is the smallest wavenumber in the inertial range, 

then leads to the modified Kolmogorov law 
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This result may be written more compactly as 

in terms of the correction factor 

For k >> koll - x0l1/', the inertial-range energy spectrum reduces to the 

usual Kolmogorov law 

(9) 

The correction factor x ( k )  in (7) is analogous to the logarithmic correction in 

Kraichnan's two-dimensional enstrophy cascade law, (1). However, (7) does 

not predict a divergence of the energy spectrum at the injection wavenumber 

since xo > 0. 

To the author's knowledge the correction factor x ( k )  in (7) has not been 

reported previously. This factor is significant only for wavenumbers k 3 lco 

in the vicinity of bll - ~ 0 1 ~ ~ ~ .  When xo << 1, the spectrum will differ from 

(9) only for wavenumbers very close to the injection wavenumber b, where 

x ( k )  will lead to a steepening of the energy spectrum, as illustrated in Fig. 3. 

Notice that the discrepancy from the uncorrected scaling is more subtle than 

in Fig. 2. In the case xo M 1, the spectrum will be indistinguishable from 

(9). Finally, in the case xo > 1, there will be a region near IC0 over which the 
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Figure 3: Logarithmic slope of the scaling (7) for xo = 0 and various values 
of N ,  the number of decades in the inertial range. 

spectrum will be less steep than k-5/3. We present numerical evidence for 

this case in $111. 

B. Two-dimensional turbulence 

Kolmogorov's arguments are based on the conservation of 

E = l m E ( k )  dk.  

Turbulence in two dimensions is complicated by the presence of an additional 

enstrophy invariant: 

2 = i m k 2 E ( k )  dk. 
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Kolmogorov’s picture of energy transfer to the smallest scales cannot be 

correct in two dimensions since such a redistribution of the energy would im- 

ply the creation of new enstrophy (Fjprrtoft 1953). Instead, Kraichnan (1967, 

1971a) postulated that it is the rate of enstrophy, not energy, transfer that 

is independent of k. The enstrophy transfer rate from eddies larger than k-l 

to eddies smaller than IC-’ is proportional to 

Upon letting f(k) = k 3 E ( k )  and differentiating as before, we find that 

-2n2f’/f4 = l /k .  Letting kl be the smallest wavenumber in the inertial 

range, we integrate this result between kl and k to obtain 

We may rewrite this result in the form 

-213 -3 E@) = -rIz k X 4 3 ( k )  (k 2 kl), 3 

where 

and x1 2 n 2 k F 9 F 3  (k1)/3 = x(k1) > 0. Since x1 > 0, the divergence 

exhibited by (1) at k = kl has been removed in (14). The logarithmic factor 

will be significant when x1 << 1 and for wavenumbers near k l .  

At wavenumbers smaller than kl an energy inertial range of the form (7) 

will develop, governed by a uniform rate of energy transfer. In this case 
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still represents the smallest wavenumber in the energy inertial range; it is 

equivalent now not to the highest injection wavenumber but to the highest 

large-scale dissipation wavenumber. In either two or three dimensions, the 

eddy distortion (turnover) rate T k  for the energy inertial range is given by 

while for the two-dimensional enstrophy range, 

112 113 

"= [i k f 2  E ( E )  dg ] " k3E(k)  " [log($) +xl] 

111. CLOSURE RESULTS 

To illustrate the above scalings we will use a recently developed statis- 

tical approximation known as the realizable test-field model [RTFM] (Bow- 

man & Krommes 1995). The RTFM is closely related to Kraichnan's TFM 

but has improved transient behaviour since the random source term in its 

underlying Langevin representation is not &correlated. In the presence of 

non-Hermitian linear effects (waves) such as those encountered in geophys- 

ical and plasma turbulence, the RTFM, unlike the TFM, is guaranteed 

to predict positive energies (Bowman & Krommes 1995). We will com- 

pare the RTFM results to those obtained with the realizable Markovian 

closure [RMC] (Bowman et al. 1993). Like Kraichnan's direct-interaction 

approximation [DIA] (Kraichnan 1958, 1959, 1961)) the RMC is not invari- 

ant to random Galilean transformations of the primitive equations (Kraich- 
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nan 1964; Leslie 1973); it therefore predicts the incorrect inertial range scal- 

ing k-5/2 (Herring et d. 1974; Bowman 1992). The RMC is closely re- 

lated to a DIA-based eddy-damped quasinormal Markovian [EDQNM] clo- 

sure (Orszag 1977) but, unlike the EDQNM, it is realizable in the presence 

of a linear frequency. In a steady state, the RTFM reduces to the TFM 

equations and the RMC reduces to the EDQNM equations, so that these 

distinctions need not concern us here. 

The closure equations were solved by partitioning the wavenumbers into 

64 bins, using the convergent technique of wavenumber partitioning described 

by Bowman (1994). In Fig. 4 we graph the steady-state energy spectrum for 

two-dimensional turbulence as predicted by the RTFM closure. To obtain o p  

timal use of the available wavenumber range we replaced the usual Laplacian 

viscosity uk = v2k2 with the hyperviscosity Vk = u6k6, where 24 was chosen 

(in terms of 4) to keep the enstrophy flux invariant. It was verified that this 

modification had no effect on the large scale dynamics (Bowman 1994). We 

estimate the Reynolds number R = 2~(2E)~/~/( lcfu2)  x lof6 for this case, 

with kf = 4.25 and a saturated total energy E = 5.6. 

The logarithmic slope of the energy spectrum is indicated by the solid 

line in Fig. 5. We verify in Fig. 6 the linear behaviour of [k3E(k)]-3 with 

respect to log(k/kl) as predicted by (14). From the slope of the dotted line 

(determined by a least squares fit) we calculate x1 = 0.26; this value of x1 
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Figure 4: Energy spectrum for high Reynolds number two-dimensional fluid 
turbulence predicted by the RTFM. 

was then used in (15) to evaluate the "corrected slope" 

d log [ ~ ( k )  x1/31 

d log k 

plotted in Fig. 7. We thus see that an inertial range consistent with (14) has 

developed over about four wavenumber decades. 

Alternatively, having established the gross kn behaviour of E ( k )  at large 

I C ,  one can solve for the exponent p(k) of the logarithmic correction such that 

E ( k )  N k"'xP@). The behaviour of p ( k ) ,  graphed in Fig. 8, is found to have 

a nearly constant value close to -1/3 for values of n in the vicinity of 3, as 

anticipated from (14). We also observe that the corrected eddy distortion 
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Figure 5: Logarithmic slope of the RTFM energy spectrum in Fig. 4 (solid 
line) and RMC prediction (dashed line). 
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rate r7kx-1/3 plotted in Fig. 9 is approximately constant over the inertial 

range. 

In contrast, the (DIA-based) RMC closure predicts a slope of -2.5, as is 

illustrated in Fig. 5. As a consequence of its violation of random Galilean 

invariance, this closure introduces a spurious transfer of enstrophy from large 

to small scales that leads to a slope shallower than -3. 

By injecting energy at a high wavenumber, I C ,  = 1.7 x lo’, and imposing 

a strict cutoff on the high-wavenumber dissipation, it is possible to focus on 

the energy inertial range. The steady-state energy spectrum obtained with 

the RTFM closure is depicted in Fig. 10. In Fig. 13, a region where the 
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Figure 7: Corrected logarithmic slope of the energy spectrum in Fig. 4. 

logarithmic slope is less than -5/3 is apparent near k = 20. This case is an 

example where x o  > 1, as is verified in Fig. 12. The linear least squares fit 

gives a value xo = 1.15, which we use to plot the corrected logarithmic slope 

(18), with x given by (8), in Fig. 13. An energy inertial range of the form 

k-5/3 is clearly visible. 

In Fig. 14 we see that the scaling of the eddy distortion rate is consistent 

with (16). Finally, if energy is injected at an intermediate wavenumber, 

kf = 3.5 x lo4, both an energy and enstrophy inertial range can develop, as 

shown in Figs. 15 and Figs. 16. 
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Figure 9: Corrected eddy distortion rate 77kx-1/3 for the energy spectrum in 
Fig. 4. 
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Figure 10: Energy inertial range obtained with the RTFM. 

A. Energy and enstrophy transfer 

The nonlinear energy transfer function IIE can be defined by 

where T(k)  is the triplet correlation function appearing in the energy equa- 

If the nonlinear term is conservative, then 

jomdET(E) = 0, 

19 



0 

n 
24 - -1 W 
ry 
0 

a, 

0 
a -2 
d 
v) 

0 
.r( 

E -3 
2 
L 
(d 

0 
M -4 
4 

-5 

I ' """'I ' " '" ' ' I  ' """'I ' ' 1 Y  ' "' l"11 I ""'m - 
- 

- 

- 
- 

- 
- 

- 
- 

- 
- 

- I 
- 
- 
- 

- 
- 
- 

............................................................................................................ - - 
- - 

.............................................................................. 
- 
- 

- 

- 
- 

- 
- 

- I {  

F 
- - - 

1 io* io2 103 104 105 106 107 108 
k 

Figure 11: Logarithmic slope of the energy spectrum in Fig. 10. 

so that l lE may be equivalently written as 

IC 
rI,(k> = -2 J dk T(k) .  

0 

Note that (21) implies 

II,(O) = rI,(oo) = 0. (23) 

The flow of energy to the high wavenumbers across a surface of constant 

wavenumber k may then be written in terms of its nonlinear and linear 

contributions: ' % k  J"dkE(k) n E ( k )  - E E ( k ) ,  (24) 

where = 2 J,"& vzE(k) is the total linear forcing into all wavenumbers 

higher than k.  A positive (negative) value for n ~ ( k )  represents a flow of 
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Figure 12: Linearity of [k5/3E(IC)]-3 with respect to k i / k 2  for k 2 IC0 = 19.2. . 

energy to  wavenumbers higher (lower) than IC. Thus, for a two-dimensional 

inverse energy cascade one would expect II,(IC) to be negative to the left of 

the injection range. In Fig. 17 we see that this is in fact the case. 

Since the system is very close to a steady state, the solid and dashed lines, 

which respectively depict the linear (e) and nonlinear (n,) contributions to 

the energy transfer, coincide. Note that (23) is obeyed. At earlier times, 

one finds that while (23) is always satisfied, the linear contribution differs 

substantially from the nonlinear contribution; this is an indication that the 

spectrum is still evolving. 

In a similar manner, one may define the enstrophy transfer &, plotted 
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Figure 13: Corrected logarithmic slope of the energy spectrum in Fig. 10. 

in Fig. 18. Since it is positive in the enstrophy inertial range, this graph 

confirms that enstrophy is indeed being transferred to higher wavenumbers. 

IV. CONCLUSIONS 

This work has highlighted the importance of the logarithmic correction in 

the enstrophy cascade. Now that the strict divergence in this correction has 

been removed, the role of this factor should be taken more seriously by the 

community in comparisons of theoretical scalings with numerical simulation 

data. The existence of a less significant energy inertial-range correction was 

also demonstrated in this work. 
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Figure 14: Corrected eddy distortion rate 7&-2/3 for the energy spectrum 
in Fig. 10. 

23 



10' 
1 

10-1 
10-2 
10-3 
10-4 
10-5 

10-7 - 10-8 10-8 

2 10-B - 10-10 
10-11 
10-12 
1043 

10-14 
1 0 4 5  

10-17 
10-16 

10-18 
10-19 
10-20 

Figure 15: Energy and enstrophy inertial ranges obtained with the RTFM. 

The asymptotic nature of inertial-range scaling laws must be emphasized. 

The theoretical inertial-range scalings are expected only in the limit of an 

infinite inertial range, a. e., where the dissipation and forcing wavenumbers 

are widely separated. Since the wavenumbers at the ends of a finite inertial 

range are influenced by parts of the spectrum lying outside the inertial range, 

they will not exhibit true inertial-range behaviour. This is especially true for 

the enstrophy cascade, where the nonlinear transfer is more nonlocal than 

for the energy cascade. 

In the evaluation of inertial-range exponents, the eye can be easily de- 

ceived by the usual guide lines that are drawn tangent to the energy spectrum 
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(cf. Fig. 1). Fortunately, in the case of statistical closure data, it is possi- 

ble to compute the logarithmic slope of the energy spectrum by exploiting 

the inherent smoothness of the solutions. One can then gain insight into 

how widely separated the scales of injection and dissipation must be for a 

proper inertial range to develop. The numerical results presented in this 

work suggest that many decades of wavenumber are required. For exampIe, 

the inertial range that developed in a wavenumber domain of nearly eight 

decades was only about four decades wide. Even with this much resolution, 

the theoretical scalings of the eddy turnover times with wavenumber were 

just barely resolved (cf. Figs. 9 and 14). 
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Figure 17: Energy transfer function IIE for the energy spectrum in Fig. 15. 

Given the nonlocality of two-dimensional turbulence, it is not surprising 

that there has been so much difficulty demonstrating universal behaviour in 

past conventional simulations of this phenomenon. Perhaps the recent work 

of Borue (1993) may mark the turning point in this controversy. However, 

the closure calculations presented here make it clear that very high computer 

resolution will be required to settle the matter conclusively. 

The author is indebted to P. J. Morrison for suggesting the possibility 

of additional features in the energy inertial range. The author would also 
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