
K/CSD/INF-92/27

OBJECT TECHNOLOGY
A White Paper

Sara R. Jordan
Lloyd F. Arrowood

William D. Cain
Wesley M. Stephens

Barry D. Vickers

Computing and Telecommunications Division
and

Engineering Division (Cain)

Martin Marietta Energy Systems, Inc.
Oak Ridge, Tennessee

May 11, 1992 •....

... o

,ii

JAN 2 0 1993
Preparedbythe

OakRidgeK-25Site
OakRidge,Tennessee37831

managedby
_ MartinMariettaEnergySystems,inc. ".... "........ _ ,,,.._

for the
= U.S. DEPARTMENTOF ENERGY

undercontractDE-AC05-84OR21400

OPERATEDBY ,,_MARTINMARIETTAFNER6YSYSTEMS,INC. t_
= FORTHEUNITEDS!: iS DISTRIBUTIONOFTHISDOCUMENTIS UNLIMITED

-- nEDADT|IE_JT 131: E_dEDCV
i oULI r_ll i IIILII I Ul t.. It.- eU I • .,,

• . - '-,,4,-' ' ._.

- DISCLt, IMER

This reportwas preparedas an accountof worksponsoredby an agencyof the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, expressor
implied, or assumes any legal liability or responsibility for the accuracy,
completeness,or usefulnessof any information,apparatus,product,or process
disclosed,or representsthat its use would not infringeprivatelyowned rights.
Reference herein to any specificcommercial product,process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or implyits endorsement,recommendation,or favoringby the United
States Governmentor any agencythereof. The views and opinionsof authors
expressed hereindo not necessarilystate or reflectthose of the UnitedStates
Governmentor any agency thereof.

K/CSD/INF--92/27

DE93 006037

Foreword

Object-oriented technology has gained considerable attention in information systems, CAD/CAM,
and software engineering publications in recent years. This white paper presents the fundamentals
of objects, their impact on software development, plus the emergence of object-oriented data bases
and standards.

In addition, this assessment looks at the various OOT activities on-going in Oak Ridge, Kansas
City, Savannah River, Los Alamos, Albuquerque, and other DOE sites. Recommendations and
references are presented to the managers and programmers who may adapt object-oriented
software.

Acknowledgements

Many people have contributed information, insights, and lessons from experience to help us
produce this white paper. Special thanks are given to the Martin Marietta reviewers of an earlier
version of the paper: David Dieterich of the Computer Aided Productivity Office in Bethesda, and
in Denver, Barry Bounds, Tom Couchman, Don Herkimer, Bob Owens, Don Rudisill, and Randy
Stafford. In Oak Ridge, the advice and assistance of Spivey Douglass, Phil Jones, Bill Kimmerly,
Jim Snyder, Jerry Sullivan, and Doyle Turner are much appreciated.

More than fifty people across the DOE complex have been interviewed to gather information about
the experience already gained using object technology. Some of these people have also
co,ltributed appendices to this paper which describe that experience.

Permission to use several figures and tables from Intelligent Systems Strategies and Object-
Oriented Strategies was graciously granted by Curtis Hall and Paul Harmon of Cutter Information
Corporation. Use of another figure from Information Week was granted by CMP Publications.
Additional assistance (and use of some material) was provided by the ANSI Object-Oriented
Database Task Group, specifically Elizabeth Fong and Craig Thompson.

We greatly appreciate the excellent support given by Tom Willoughby, Mary Schulte, and Louise
Egner in the final stages of producing the document. Finally, we wish to thank the Energy
Systems managers, Chuck Hall, Ken Sommerfeld, Ron Leinius, and Bob Henderson, for their
continuing support through this technology assessment.

OBJECT TECHNOLOGY

Table of Contents Page(s)

Executive Summary 0-1 thru 0-4
What Is 0"ject-Oriented 1 echnology?
Object-Oriented Databases
What Are,the Benefits of OOT?
What Are the Costs and Impacts of OOT?
OOT Activities Within DOE
Recommendations for Using OOT

1. Introduction 1-1 thru 1-6
Motivation: the Current Software Crisis
Software Industrial Revolution
Definition of Object-Oriented Technology
Handling Complexity
Reusability
Software Quality
Risks and Costs
Haven't I Heard This Somewhere Before?
A Brief History

2. Object-Oriented Software Development: Why and What lt Is 2-1 thru 2-11
Traditional Software Development and Its Problems

Structured Analysis and Design
- Data Driven Software Development

The Object-Oriented Approach
Object-Oriented Analysis
Object-Oriented Design
Object-Oriented Programming

OOP Mechanisms
_ OOP Benefits

When Is a Programming Language Object-Oriented?
Object-Oriented Database Management Systems
Hybrid Approach

3. OOT and Applications 3-1 thru 3-9
Introduction
Design and Manufacturing Systems

Some DOE Manufacturing Projects
Modeling and Simulation
Management Information Systems

Problem With Traditional Approaches to MIS
Benefits of an Object-Oriented Approach

" Data Requirements for MIS Systems

i

111

Page(s)

Technologies Which Benefit From OOT
Multimedia Information Systems
Graphical User Interfaces

Applications Which Are Not (Yet) Appropriate for OOT

4. Object-Oriented Application Development 4-1 thru 4-9
Need for Fundamental Reorientation
State of CASE Tools
Object-Oriented Programming Languages and Environments
Software Components - a Strategic Resource

Use of Class Libraries
Risks and Costs of OOT
Organizational and Cultural Changes Needed

5. Object-Oriented Database Management Systems 5-1 thru 5-10
Historical Perspective
Object-oriented Database Manifesto
Architecture
Development
Performance
SQL3, OSQL, and OQL(X)
Legacy Issues
Transparent Data Access
Object-Oriented Knowledge Based Systems
Summaries of Some Object Database Systems
State of the Art

6. Standards 6-1 thru 6-13
ANSI X3 Object-Oriented Databases Task Group
Drive for Standards
Object Management Group
Status of Standardization in Several Areas
Impact of Object-Oriented Technology on Corporate Standards
A Unifying Paradigm

7. Future Developments in Object Technology 7-1 thru 7-6
Changes in Computing
Technology Life Cycle
Problems to Overcome

8. Recommendations 8-1 thru 8-7
Decision Whether to Change
Getting Started
Steps to Exploring the Technology
Cost of Achieving the Benefits
Changing the Organization to Object Technology
Conclusion

iv

Page(s)

References Ref-1 thru Ref-3

APPENDICES:

A. Glossary App 1 - 5

B. Object-Oriented Languages App 6- 7

C. Recommended Readings App 8 - 10

D. Consultants App 11- 12

E. Object-Oriented Products App 13- 19

F. Object-Oriented Database Products App 20 - 45

G. XCUT: An Object-Oriented System for the Process Planning of Machined
Parts (Brooks, Wolf) App 46 - 47

H. IPPEX: An Automated Planning and Programing System for Sample-Point
Dimensional Measurement (Brown, Wolf) App 48 - 49

I. STEP "Happens" (Zimmerman, Christensen) App 50- 53

J. Rapid Response Manufacturing (Cain) App 54- 55

K. Database Modernization Study for Strategic Command, Omaha (Phillips) App 56

L. "Intelligent" Process Control (Marinuzzi) App 57 - 58

M. KOALAS: An Architecture for Intelligent Control Systems
(Barrett, Berkbigler) App 59 - 60

N. GOOSE: A Generalized Object-Oriented Simulation Enviro=_nent for
Developing Dynamic Models (Nypaver) App 61

O. Advanced Scientific Computing Environment Team (Church) App 62 - 69

P. Los Alamos National Laboratory TASP Model (D. Roberts) App 70 - 73

Q. Rocky Flats Plant Simulator (Steinmeyer) App 74

V

Page(s)

(Page references from here to end are questionable because of missing
appendices)

R. Automatically Programmed Metrology (Begley, Klages, Wilson) App 75 - 76

S. AMENDS: Army MICOM Electronic No"tarizedDocument System
(Theofanos) App 77-78

T. Object-Oriented Development of an Expert System for Prioritizing (Hopson) App 79 - 80

U. Y-12 Capabilities System (Alspaugh, Barnett) App 81

V. KATIE Systems for Troubleshooting and Training (A. Roberts) App 82

W. Trim-Sol Multimedia Training System (Greer, Hopper) App 83

X. Object-Oriented Training at the Savannah 'River Site (Funderburk) A0p 84 - 86

vi

Executive Summary

Object-Oriented Technology (OOT), although not a new paradigm, has recently been prominently
featured in the trade press and even general business publications. Indeed, the promises of object
technology are alluring: the ability to handle complex design and engineering information through
the full manufacturing production life cycle or to manipulate multimedia information, and the ability
to improve programmer productivity in creating and maintaining high quality software.

Groups at a number of the DOE facilities have been exploring the use of object technology for
engineering, business, and other applications. In this white paper, the technology is explored

. thoroughly and compared with previous means of developing software and storing databases of
information. Several specific projects within the DOE Complex are described, and the state of the
commercial marketplace is indicated.

What is object-oriented technology?

_. Object-oriented technology promotes a paradigm in which an application domain is analyzed to
identify its essential entities, their important attributes and relationships to each other, and their
behaviors. The entities are the objects, each one represen,,g some concrete thing or an abstract
notion relevant to the problem domain. Objects are organized into classes of objects which
describe common attributes and behaviors. A class may have subclasses which specialize or refine
the abstraction represented by the class, and which inherit the state and behavior of the class and its
superclasses. When an instance of a class is created, the instance assumes the default attributes

: and behavior of its class (or type). The behavior of a class is a set of operations that its instances
can perform to produce a result, or actions that they can cause to happen; each such operation is
called a method. An essential feature of objects is that they are encapsulated so that direct access
from outside to the values stored in their attributes is impossible; the only access to an object or its
actions is by sending a message to activate a selected method. These concepts are illustrated in the
figure showing three objects below. In the figure, instance A will first take its attributes and
methods from object B; specific attribute values are stored locally in A. If A needs information not
stored locally or in B, B will inherit the information from object class C (or C's ancestors, if they
exist). Some of these terms may be familiar to groups who have used Ada, which is an object-
based programming language promoted by the Department of Defense.

A B C

Message coming ! _Zif_: Triangle42 _ _ Trilmgle

i

Class: Triangle _ Superclms: Polygon _ _ _t: Polygon

]

$uperclass: Shape

from another object _ Atlxibu_: Subclus: hmcci_Tri Subclass: Triangle ,Rectangle,
MoveTo: (10,20) Vcttiou: (1,2), (3,4), (7,9) _ Hea agon

FtllColor: Red _: Vertices. FillCohJr
Rmize, CompmeAn_

Display, MoveTo
I

Instance Class Clsms
(Subclass) (S uperclass)

Use c f objects to model an application domain yields a new approach to software development.
Instead of having files or tables of data on which procedures operate, an object-oriented application

_ consists of a collection of objects, causing desired behaviors and actions by sending each other
appropriate messages.

There are several components in object-oriented technology. The earliest part which appeared was
object-oriented programming (OOP). The most famous object-oriented programming

5/I 1/92 0-1

languages are Smalltalk (the oldest one) and C++; the object-based language Ada is also well-
known. When large organizations seriously began to explore software development using the
object model, then the terms object-oriented analysis (OOA) and object-oriented design
(OOD) were coined. Well-known OOA authors are Coad & Yourdon, Shlaer & Mellor, and
Wirfs-Brock. Prominent OOD authors are Booch, Coad & Yourdon, and Rumbaugh. Finally, the
successful development of object-oriented applications led to the need for object-oriented
databases (OODB) such as Object Design's ObjectStore, Servio's GemStone, and Versant
Object Technologies' Versant.

Object-Oriented Databases

In order to fully exploit the ability of objects to model complex information, we need some means
of storing objects over time. Use of conventional databases (such as relational) requires collapsing
these structures and their relationships into flat tables of information, and rebuilding the structures
whenever they are needed. This causes a significant performance impact. Object-oriented
databases are being developed to provide more direct representation of objects, including behavior
in some products. Our activity in advanced engineering and manufacturing applications is cause
for keen interest in this area of the technology.

The development of OODBMS has proceeded in two directions. In one, object-oriented
programming languages have been augmented with many of the services provided by commercial
database systems, e.g., persistent storage of objects, archiving facilities, transaction management,
and query languages. Such OODBMS, termed "language-centric", are predicated on the belief that
it is easier to implement database capabilities into an object programming language than to augment
type capabilities in existing database systems.

The second common approach to OODBMS development has been to extend or evolve existing
relational database management technology to include support for additional data types and query
language extensions to accommodate objects. The extended data types for these "database-
centric", or extensible, database management systems may include text, graphics, voice, image,
and possibly also procedural data.

Of the two approaches to OODBMS development, most of the current marketplace OODBMS
offerings have language-centric origins. Some of these language-centric systems provide excellent
performance on applications whose data require the object representation. While there are some
database-centric OODBMS products now in the marketplace and even more soon to become
available, at present the)' are still fewer in number and also generally offer lesser degrees of object
support "richness" than do the competing language-centric products. Database-centfic systems
should theoretically lend themselves well to an evolutionary integration path with existing relational
database applications. Proponents of database-centric systems point out that there are no new
coexistence or communication issues with this approach, but rather graceful extensibility and
migration of existing applications is attainable. They also state that these OODBMS products are
"more production quality", which is a commonplace requirement of traditional database
applications.

What are the benefits of OOT?

Object technology gives improved ability to represent complex and heterogeneous information and
to manipulate it, for example in applications requiring engineering/manufacturing information,
multimedia information, or graphical user interfaces. Because of the way this information is
modeled and represented in encapsulated form, it encourages reusability of software components,

5/11/92 0-2

both through the inheritance of common attributes and behavior to a more specialized object, and
through the sharing of libraries of these object classes across applications and organizations. The
reliability and testing of object systems is improved because the units can be tested out thoroughly
on creation, and additional retesting is minimized when the units are reused elsewhere in different
contexts. Maintainability is enhanced by the localization of data and procedures, and enables
program updates to be made efficiently since they need to be made in only one place. Extensibility
is provided through customizing existing objects with more specialized attributes or behaviors to fit
a specific application, and enables extensions to the program which are variations of the existing
system to be made with minimal effort and impact on previously written code.

An organization's collection of object class libraries can be collected into a repository which serves
as a reusable, multilingual software base. Development of new applications becomes a process of
finding the appropriate classes which already exist, and extending or customizing them to provide
the behaviors needed for the new situation. This mode of software development is generally
faster, cheaper and better than traditional structured analysis and design methods of software
production.

What are the costs and impacts of OOT?

For maximum benefit from the technology, a fundamental change to our software development
processes is necessary, though changing to it can be gradual. The biggest challenge of adopting
OOT is getting a body of qualified object-oriented software engineers. Both education in the
object paradigm, with a resulting shift of mindset, and training in the needed tools and methods
will be required.

All software developers mast be familiar with the corporate information repository and the libraries
of objects (class libraries) available for their use as components in constructing new applications.
It is wise to use consultants in the early stages to act as mentors and teachers for the people
learning the technology. There is often a long period of analysis, prototyping and design before
production-ready software appears. For all these reasons, there will be an initial period of
investment of staff time and resources for any organization to acquire the needed base of
experience and knowledge of available software components. After that period, realization of the
benefits of object technology will accelerate because providing new applications becomes a matter
of extending the software base to provide the needed increment of capability.

Creation of a central object library or repository function will require additional resources and
management leadership. This will be the cost to build, maintain, and provide reuse mechanisms

._ for the organization's class libraries.

OOT Activities Within the DOE Complex

Object technology has been applied within the Complex for several years in a number of
application areas. In some cases objects have been required to represent the inherent complexity of
the problem domain. Thus objects are being used in a couple of projects to model nuclear reactors
and in several projects to model product definition through the design-to-manufacturing cycle. The
quality of multimedia interfaces which can be provided with an object approach has aided
production of multimedia information systems and expert training systems for maintenance _f
complex machinery.

5/11/92 0-3

Recommendations for Using OOT

As object technology consultant Jon Hopkins says, OOT is a revolutionary technology, but
adopting it must be an evolutionary process. Here are the necessary steps which we recommend
in Chapter 8 to realize the benefits of object-oriented technology.

Educate those in the organization who develop and use software about object technology and its
potential impact on software development. Sell the object approach to ali concerned:

- senior managers who will be needed for money and support, and who can serve as
champions in times of waning resources

- middle managers who must fit object-oriented projects in with the rest of the budget,
schedule, and political realities

- technical people, who may not be uniformly receptive but whose skills and commitment
are essential to success.

Make sure that ali these groups have realistic expectations.

For those sites which have not already done so, use pilot projects to gain experience. Formulate
a methodology which adapts the object technology to local needs. Make and follow a carefully
thought out implementation plan. Be sure the major objectives are known, along with the
metrics which will be used to evaluate each project. The success or failure of a project has more to
do with adequate planning, commitment, and expectations than with the choice of a particular
technology.

Work with some of the best people first, not the ones who can be spared.

Use consultants to assist in education, mentoring, and assisting with pilot projects.

Keep up-to-date on the vendors and standards groups.

Maintain good communication among ali involved in working with object technology.

Begin building a software reuse library for the organization. By 1993, each site should set up
a small group to: 1) establish naming conventions for the objects used to model the organization
and 2) begin building the organization's reuse library. The reuse group should coordinate closely
with any information engineering efforts already under way in the organization.

Why should we go through this extended process to evaluate and adopt obie.,-, _,,iented
technology? Because reusable software components are strategic as%ts; they have
great value to the organization as a repository of our collected expertise and a b,
factor to differentiate us from our competition. This realization attaches great
importance to proper management of these assets and any organizational changes
necessary to implement their use.

_

5/11/92 0-4

Chapter 1:
Introduction

Several groups at sites around the DOE Complex have been separately investigating the potential
of object-oriented technology (interchangeably called object technology) for providing better
solutions to their problems and for improving the software they produce and use for their
respective tasks. The motivation for these efforts lies in the way each group's problem can be
perceived and solved. The object model allows users and developers to think about their
requirements in terms of the way the problem domain works, not in terms of the way computer
structures work. In many cases the object approach of identifying objects and their behavior
suggests a solution to the problem at hand which is much more natural than that provided by
conventional information technology approaches.

Engineering groups are evaluating object databases because conventional databases have proved
inadequate for representing and perforating with complex component design and manufacturing
information. Database and Computer Integrated Enterprise people are interested in the added
capabilities that object technology will give them to handle the organizational information that
drives our enterprise. Knowledge-based s ,_:tems people have long recognized the power of
frames and (later) objects as a means of repr._:.en:tng and reasoning about complex relationships
and behavior of the entities in their applica_ _,/_:¢nains, and have followed closely the maturing
capabilities of object systems and tools.

An Energy Systems team representing all these interested groups has conducted a technology
assessment, and this white paper summarizes the conclusions of that study. We have canvassed
the Energy Systems and other DOE Complex groups who have been working with object systems,
and have surveyed relevant literature and vendor offerings. We hope that the information
presented here will allow ali the groups to benefit from what has already been leanled, will identify
existing projects and contact points within the various site organizations to allow sharing of
experience, and will reduce the amount of search necessary m identify the best approaches to use
on future software efforts. Object technology is receiving tremendous interest and attention from
many who benefit from computing, including funding agencies as well as internal organizations in
need of automated solutions. More effective use of object technology will enable us m provide
high quality competitive solutions m a wide range of problems, some of which in the past have
proved to be unwieldy.

In this chapter we describe the need for object-oriented technology and give a brief overview of the
technology and its benefits, risks, and histol3'. In later chapters, different aspects of the
technology are defined and discussed in much greater detail. The final chapters assess how the
technology is progressing and what our team thinks should be done to take advantage of it. The
Appendices include a glossary of terms used, descriptions of leading object-oriented programming
languages, and recommended readings. The final appendices are descriptions of project

,-- experiences from around the various DOE sites, with information for contacting project
representatives.

1-1

I.I. Motivation: the Current Software Crisis

For a number of years we have acknowle _ed that there is a software crisis, that the ability to
produce software has grown at only a small fraction of the growth rate and cost reductions of
hardware and telecommunications, and the demand for software is far greater than the supply. In
some places, the software backlog is measured in years. The situation is that "software is too
costly, of insufficient quality, and its development nearly impossible to manage." [COX90b, p.
26] Moreover, applications continue to grow larger and more complex. Today it is not
uncommon for large application systems to have millions of lines of code, as opposed to the few
hundred thousand lines for a large system several years ago. Finally, much current software effort
is on maintenance, making modifications because of changes in user requirements, data formats,
bug fixes, and so on. Much too often applications are developed as new efforts, and often the
same functional code is written again and again by the same or different people over time or
different projects.

1.2. The Software Industrial Revolution

In recent articles, industry writer Brad Cox of Stepstone Corporation has made a compelling case
that we must have a "software industrial _volution". After the great IndustrialRevolution, the Age
of Manufacturing has matured and is now being redefined by advances in technology. The
phenomenal achievements that manufacturing brought to computing, communication and
transportation have created a new Information Age. We now have mountains of data, mostly
irrelevant and useless at any given time, so we must have ways to f'dterand ref'methat data to yield
useful infc, mation. The central strategic resource has become software.

The software crisis has created a "vast economic incentive" that will continue extensive growth as
our global economy moves into the Information Age. Cox argues that the software industrial
revolution will come whether our programmers want it or not, because software ce'_sumers will
ultimately determine l_e outcome. The consumers have the most to gain, and will control their
destiny with that time-honored behavioral modification tool, money. [COX90a] If we wish to be
competitive and hold our position as providers of software solutions, we must seek improvements
in our methods.

The hand-crafted, "start from scratch" attitude of conventional software development has become
hopelessly archaic for a maturing software industry. Many would argue that the key element to the
coming software industrial revolution is changing to a product-centered, object-oriented view of
software. That is, we must create a reusable standardparts marketplace, where problem specialists
can procure low-level, pluggable software components to assemble higher-level solutions.

1.3. Definition of Object-Oriented Technology

The term Object-Oriented Technology (OOT) is used to refer to the approach of solving problems
by understanding objects and their behavior within the context of a problem domain. That is,
objects combine appropriate data structures and operations into integrated components for use in
software systems. OOT gives a different way of looking at solving problems with software. In
conventional systems a program is composed of algorithms plus the data structures on which they
operate, or it is built by parallel and separate development of entity-relationship models and data-

1 ,"t
JL-L,

flow diagrams. For large or complex problems the resulting need to integrate data and procedure
becomes very difficult. _;¢ithan object approach, the objects or entities (usually high level) of the
subject domain are identified. The attributes of those objects are described a,ad modeled with data
structures encapsulated with their appropriate operations (called methods). Because the objects are
encapsulated, internal details of implementation are hidden and inaccessible, but users of an object
need only know the methods to invoke in order to retrieve or change a value or cause some other
action. A program consists of a collection of these objects, sending each other messages to activate
the desired behaviors. A rapidly generated prototype can be very advantageously used here to test
the solution and provide feedback for changes. The power of the object approach is that the
problem can be attacked in pieces and integrated easily, lt is easy to get a port;.on of the preblem
solved and then add more complexity incrementally. A report of the Americap National Standards
Institute Object-Oriented DataBase Task C_,roupdescribes it well [THOMIX) 1, p. 1]:

"In programming, the use of objects has emerged as an important approach to making
better data modeling support available to programs while making programs less aware of
and less dependent on details of how data structures and operations are implemented."

1.4. Handling Complexity

It seems that no software organization ever has the resources to produce ali the software that is
needed, and the backlog keeps growing even when people are added. In addition, there is
increasing demand for software which manages complex and highly interrelated data types (and
combinations of them). Examples of these are found in the areas of computer integrated
manufacturing or in multimedia information systems. Another pressure is the inexorable push
toward highly interactive and graphical interfaces to software. Software consumers accustomed to
Windows and Macintoshes want such interfaces, and some computing leaders estimate that about
seventy-five percent or more of a highly interactive system's development effort is directed at the
user interface.

Creating such software systems strains the capabilities of conventional software approaches, but
fortunately, object technology with its data encapsulation, data abstraction, and "black box"
capability for hiding details has shown itself quite valuable for developing these complex
environments. Object-oriented databases show great promise for dealing with complex data types,
and these will be discussed in Chapter 5. The application of OO'1 to user interfaces and as fi'ont
ends to other programs allows designers to create impressive and flexible interfaces with minimal
effort. Thus it allows the designers to focus more attention on the underlying algorithmic and data
management problems of the application.

1.5. Reusability

A much touted benefit of object technology is reusability of software modules, achieved via
mechanisms such as the inheritance of common attributes and behavior through a class hierarchy,
or libraries of encapsulated class modules available for use in many applications. General-purpose
software components can be developed for repeated use across a project, an organization, or even
as standards for use across the country. With a large body of reusable code available to
developers, much of the effort and cost of new apphcations disappears. However, reuse does not
happen automatically. Software organizations must plan for it, reward developers for reusing
software, and design their software for reuse. The experience of AT&T's Bell Labs with object-

1-3

oriented programming illustrates the type of gains achievable. Over a three year period, they
moved new development from C to the object-oriented language C++. When using C, they had
averaged 80% new code on a given application, with 20% of the code coming from existing
libraries. After the three year transition to C++, their analysis showed only 20% of the code had to
be written for an average application; 80% came from existing libraries of code. That meant a four-
to-one reduction in the amount of new code to implement a new application. After taking account
of ali the software life cycle, the total development time was often decreased by 60%. [ATWO89]
See Sections 2.5.2 and 4.5 for further discussion related to this topic.

1.6. Software Quality

It ig widely agreed that software reliability and modifiability are enhanced if there are no
dependencies between different software modules in a program. For each module, the variables
used should exi_,itlocally by default, and any shared data or passed values shoald be explicitly
declared. Object-oriented programming languages (OOPLs) have features that promote efficient
development of such modular, minimally coupled systems.

OOPLs promote the definition of classes of objects, bundling or encapsulating their data attributes
along with their functional behavior. Data and behavior can be inherited from a parent class and
can thus be reused, If a new subclass needs additional attributes or new behavior, the parent class
can be specialized or customized to efficiently produce the new subclass. Each class can be
thoroughly tested at creation and can thereafter be reused, generally without concern for its internal
correctness. Classes have a well-defined interface (no direct access from outside is possible), so
building a new application requires identifying the appropriate classes in the library and tying them
together, along with any needed customization. When a class requires internal revision, it can be
carried out without external impact as long as the defined interface and behavior are maintained. A
more detailed description of the characteristics of object-oriented programming is included in
Chapter 2, or see Appendix A for def'mition of terms.

Summarizing the benefits, the use of object-oriented programming will greatly ease the
modification and repair of large programs, and will provide an additional and powerful way in
which programmers may analyze and solve their application problems. Taking advantage of
reusability, programmers will increasingly build new programs from libraries of tested
components, and thus will be able to more quickly create large, powerful and useful applications.
This should go far in helping to meet the software crisis.

1.7. Risks and Costs

The goals of high productivity and reusability can be difficult to achieve. Programmers must be
carefully trained, not just in the syntax of object languages, but in fundamental changes to the
programming model to produce very general classes designed for wide use. They must be familiar
with available class libraries and know how to build applications using them. Succe3sful reuse
requires adequate archiving and repository technology, plus procedures for using this technology
which are beyond any in common practice. Adopting an object-oriented programming language
without investing in libraries and the procedures for using them will not significantly improve
either reusability or maintainability of software. On the other hand, there is a definite level of risk
in making any significant investment in tools, training, and commitment to specific vendors in the
absence of mature standards and a rich set of class libraries and other tools to support the full

1-4

software life cycle. These risks and costs, and the accompanying cultural issues that arise, will be
further discussed in Chapter 4.

1.8. Haven't I Heard This Somewhere Before?

Some who read this description of current software problems and motivation for object-oriented
technology, particularly the parts about software reuse, may recall that very similar arguments were
made for using the prog_mmning language Ada. The hoped-for benefits from using Ada have been
only partially achieved, however. Some of the reasons may be technical. While the Ada language
supports data abstraction and information hiding, it does not provide inheritance, dynamic binding
or polymorphism (more on these topics in Chapter 2). Given the lack of these features, Ada does
not yield the benefits of reuse as readily as pure object languages like Smalltalk. There are now
toolsets available (such as Classic Ada) which are an extension of the Ada language and provide
many of the object-oriented capabilities of languages such as C++ and Smalltalk.

Some companies have had impressive successes using Ada, but not all. Whether or not Ada
offered ali the features of a true object-oriented programming language, some observers feel that
the problem with early Ada use was "Adatran". Instead of changing the whole paradigm or
approach to software, they feel that progrmmners were still allowed to write Fortran-type code and
run it through the Ada compiler, which of course did not result in real object-oriented systems.

Successful use of Ada or any true object technology will require significant organizational
commitment (from top management down through the software developers) and education. There
should be pilot studies, and core teams should follow object technology closely. However, the
technology will be incorporated into widesp:_ad organizational use only when its processes and_

tools become mature enough to support a production environment with adequate methodology. At
that point, ali involved should be trained and motivated by management (mandated, if necessary) to
take ownership of the tool or procedure. Perhaps much of the difficulty experienced with Ada did
stem from the immaturity of the technology and the lack of support mechanisms and CASE tools.
However, as Ruben Prieto-Diaz of the Software Productivity Consortium points out,

"The problem is not lack of technology but unwillingness to address the most important
issues influencing software reuse: managerial, economic, legal, cultural, and social. On the
one hand we have our technical toolbox full but on the other, we cannot use these tools
effectively because a proper infrastructure is absent." [PRIE91]

At any rate, for long-term success with object technology, we will have to learn from the Ada
expenence.

1.9. A Brief History

Although object-oriented technology has received a tremendous amount of coverage in the press
for the last few years, it is certainly not a recent development. The first object-oriented
programming language (OOPL) was Simula, a hybrid which grew out of Algol in the 1960's.
Smalltalk was the first pure OOPL; everything, even an integer, is an object, and the language
provides a complete programming environment. Combining features from both Simula and the
artificial intelligence language LISP, SmaUtalk was developed by Alan Kay with others (including
Adele Goldberg) at the Xerox Palo Alto Research Center (PARC) in the 1970's. The 1980 version

1-5

of the language (Smalltalk-80) has been the most widely used pure OOPL. Today, the most
widely used object-oriented language is C++, which was developed as a hybrid from the C
language in the early 1980's. We will discuss both C++ and Smalltalk more in later sections of
this paper.

._'tificial intelligence workers must represent complex real world kaiowledge in order to enable
intelligent behavior from their systems, so object-related notions were developed in a number of
languages and systems. Representation of knowledge in frames (closely related to objects) was
seen in the 1970's, and Lisp-based object-oriented languages were developed at Xerox (LOOPS)
and MIT (Flavors). The first commercial expert system shell KEE (Knowledge Engineering
Environment) was introduced in 1983, and featured object techniques as well as rule-based
inference.

Perhaps a more compelling chive toward the use of object representations comes from engineering
and manufacturing, where there is a need to represent complex product information throughout its
entire life cycle. Existing database and applications technology have not been adequate to provide
the needed software solutions, so these groups have been among the first in industry to explore the
possibilities of OOT, specifically object-oriented database management systems.

One last bit of history might be interesting. In the late 1970's, Steven Jobs of Apple Computers
visited Xerox PARC and was quite impressed with the wonderful interfaces that were being
developed there using Smalltalk. He hired away several of their people and began development of
the Lisa and then the enormously successful Macintosh computer. To help spawn software for the
Mac, Apple created the MacApp object-oriented development environment. Later, the development
of the more limited but very friendly object-centered Hypercard environment, has allowed people
with tittle programming skill to create interesting, highly graphical applications.

1-6

Chapter 2:

Object-Oriented Software Development
Why and What It Is

2.1. Traditional Software Development and Its Problems

2.1.1. Structured Analysis and Design

Most current software development is bsLsedon structured methodologies which were originally
formalized ten to fifteen years ago. These traditional approaches, such as those espoused by
Yourdon, Constantine and DeMarco concentrate upon a top-down view of the system and the
functions it is expected to perform. The concept is to structure programs by decomposing the
initial task into a number of separate functions and then applying functional decomposition to each
smaller function. The decomposition continues until a level is reached which can be converted into
programming code. Data flow diagrams (DFDs) depict the data as they are passed from one
function to another. During the 1980's, structured methodologies were expanded to the full
software life cycle, to regulate and prescribe what to do in the analysis, _esign, implementation,
and testing of the software system and how to move it into production use aa_dmaintenance. Even
so, software methodology authors such as Ed Yourdon and Bertrand Meyer [x'OUR90; MEYE88]
now see several major problems with this approach:

1. Structu,. t analysis and design methodologies piace too great an emphasis on modeling
function, and too little importance on modeling data. Data modeling is now seen to
be at the core of software development, as will be discussed in the following sections.

2. The structured methodology, with its waterfall model representing a single path through the
development stages, fails to recognize the evolutionary nature of software
development. This failure to embrace iterative development and prototyping has long been a
problem for software organizations in the real world, where software requirements evolve as
the customers and developers learn more about their domain areas and see how initial software
efforts operate on those areas. Rumbaugh et al. [RUMB91] note that the structured,
procedure-driven approach is more sensitive than a data-driven approach to changes in the
requirements definition, since requirements generally involve system functionality rather than
the underlying data structures which model the problem domain.

3. The structured analysis and design diagram notation gives little or no mechanism for
emphasizing reusable components. Each new project is approached as a new intellectual
exercise, starting afresh to build each new application. Even within a single project, the top-
down analysis of needed system function inhibits reuse. As the hierarchy forms, the same
function may be replicated in several of a system's functional subtrees, perhaps by different
teams of developers. Failure to recognize this redundancy adds additional effort to the project
and makes verification (elimination of bugs) harder.

4. Structured methods provide little help with the user interface. Back in the 1970's when
the structured methods were developed, user interfaces were just streams of characters, but
today's graphic user interfaces (GUIs) are quite different, often resulting in Window, Icon,

2-1

Menu, Pointer (WlMP) systems. Indeed, Bill Joy of Sun Microsystems estimates that up to
seventy-five percent of the logic of current WIMP systems is associated with the user interface.
Object technology gives a much more effective and productive way to implement such
systems.

2.1.2. Data Driven Software Development

During the Eighties, increasing recognition of the importance and complexity of the data structures
needed by programs led many groups to the adoption of a data-driven approach. For this
approach, a corporate data model, usually being an entity relationship (ER) model is developed in
addition to the procedural component. In ER information modeling, an entity is a person, place,
concept, or thing about which an organization wants to store information. An entity-relationship
diagram shows entity types in a corporation and the relationships between them. However, as
Coad and Yourdon state, "Information modeling is a partial method", for ER models lack the
behavioral characteristics of the object-oriented paradigm [COAD91a, p. 28].

In today's modern CASE (Computer Aided Systems Engineering) environments using information
engineering or information resource management, corporate data models are constructed in parallel
with the procedural component. The business rules of the organization may be partly represented
in the ER model (via data constraints and cardinality) but reside mostly in the procedural
component of the system. As the top-down analysis on both sides progresses, great efforts are
needed to assure that the two components are compatible. The integrauon of the data models into
the structured procedural decomposition has been difficult to achieve, however.

Let us see how the data-driven alT'_roachaddresses the problems of the structured approach listed
above.

71F

1. The problem of too little emphasis on modeling data is addressed to some extent by the
evolution to the information engineering approach. With the object-oriented approach to
software, however, the data structures, their relations, and the functions they perform are
packaged and implemented together as objects. This yields an even closer fit to modeling the
real world _::fthe application domain.

2. The use of a static requirements specification and its failure to evolve are somewhat alleviated
in modem information engineering practices such as joint (or rapid) application development
(JAD, RAD) sessions which gather computing professionals and customers from the
application domain area for intensive group work, especially in the initial stages of a project.
This interactive process, coupled with prototyping tools to show customers the results of their
efforts quickly, compresses much of the learning process into several weeks instead of many
months with the older process, and yields better requirements for concluding the development
of the system. With the dual development of data and procedure, however, changes to either
side of the system must be scrupulously traced through the other side of the model to detect ali
the needed modifications. With the encapsulation provided by the object approach, the impact
of such evolutionary changes is minimized.

3. An organization's commitment to use the information engineering approach does enhance reuse
of analysis in certain ways, because the corporate data model is developed cumulatively over
time and can be used repeatedly in future applications of the organization. Object-oriented
technology promotes the reuse of software, or "design by extension", by providing class

2-2

libraries of useful, general software components and inviting their reuse, either directly or by
inheritance of their attributes and methods into new subclasses specialized for the new
application. In addition to software modules, the objects reused might be more abstract
components of the software life cycle, from analysis fragments to test suites.

4. Use of the data-driven approach does little to change the user interface situation. Even today,
most CASE environments are still generating menu screens using Seventies technology.

2.2. The Object-Oriented Approach

The object-oriented paradigm has been touted as one of the most significant developments in the
software industry in recent years, having the potential for significantly improving both the quality
of software and productivity in developing it. Instead of emphasizing procedures and their impact
upon data structures, with object-oriented techniques, an application domain area is viewed as
objects, each c_fwhich has characteristic behavior. As with traditional analysis techniques, system
developers must have an understanding of the problem to be solved. However, the emphasis is
now on those entities which comprise the domain, both tangible and conceptual, and on their
interactions. By shifting the focus to an application's objects, the developers can identify and
represent system dependencies which may have been overlooked in a purely top-down manner.
By capturing these objects as software components, their evolution and reuse in other development
projects can be encourag,_d and rewarded. Revisions or changes to the system requirements affect
the objects and their interactions; some changes can be accommodated more easily using the object-
oriented approach. Enhancements can often be made without affecting the existing structure of the
system. Instead, new objects, interactions, or behaviors can provide this increased functionality.

Even with ali these advantages, there are some types of applications for which the object-oriented
approach is not best suited. For applications which are highly algorithmic or procedural, or require
lots of mathematical computation, the conventional approaches are still probably best suited.

The life cycle for object-oriented software development has the same basic organization as that of
traditional structured analysis and design methodologies. System developers study the problem
domain and define the system requirements; these requirements guide system design. The system
is implemented according to the design specifications. System testing is performed throughout the
development life cycle, but unlike the structured approach, development is very incremental and
iterative. Another difference between the paradigms is the perspective of the developers
throughout the life cycle, the roles and responsibilities involved in software creation, and the
results obtained from each stage of software development.

Object-oriented software development has evolved unevenly. While there are many object-oriented
programming languages, until recently comparatively little attention has been paid to the analysis
and design of object-oriented software. Several methodologies have been developed to assist in
software development and there are subtle differences among them. Some methodologies do not
distinguish between analysis and design activities. In the remainder of this chapter we attempt to
differentiate the various phases of object-oriented software development and discuss the most
prominent approaches._

" 2-3

2.3. Object-Oriented Analysis

Object-oriented analysis (0OA) identifies and expresses the components of a problem domain in
terms of objects, relationships among objects, and their behavior. Since objects consist of both
data and the procedures which manipulate that data, object-oriented analysis must consider the
structure of objects, the means by which objects interact, and the procedures which constitute an
object's behavior. Several methodologies have been proposed for object-oriented analysis. Some
identify the objects first and then define behavior (e.g., Shlaer and Mellor [SHLA88], Coad and
Yourdon [COAD91a], and Rumbaugh et al. [RUMB91]). Others analyze behaviors first (e.g.,
Object Behavior Analysis [GIBS90]) and use that to identify the objects in a domain. All would
stress the importance of understanding the problem domain before attempting to identify objects
and their behaviors.

There are different approaches to identifying and defining objects. Some methodologies
recommend that individual instances of a problem domain be specified and then abstracted as
classes. Coad and Yourdon and Rumbaugh ct al. distinguish between an object and a class, but lt

Shlaer and Mellor define an object as an abstraction of a set of entities, i.e. a class. Each of these
methodologies use objects to represent either tangible or conceptual entities. For example, Shlaer
and Mellor [SHLA88] propose five types of objects. Tangible objects are perhaps the most easily
recognizable (for example, letters, parcels). Organizations or individuals can also be represented
as objects (e.g. the mailroom), as can events (a mail shipment). Interactions between objects may
themselves result in the creation of new objects (legal contracts). Even object specifications can be,
viewed as objects (shippiog requirements). While other types of objects can be represented, this
sampling of objects demonstrates the possible variety of an object population. One guideline that
Shlaer and Mellor use during object def'mition is that an object should have attributes; otherwise, it
probably isn't an object.

Once an object has been identified, its attributes can be def'med. Attributes are those characteristics
used to describe an object and can represent either physical or conceptual characteristics. Attribute
definitions can indicate whether the analyst has achieved a proper degree of abstraction. If several
class definitions share attributes, these classes can be abstracted to form a new class which is a
superclass. The previous classes can then inherit these attributes.

Aggregation defines objects to be comprised of other objects. Typically, one or more objects serve
as components of a larger assembly. This type of relationship complements inheritance. Shlaer
and Mellor do not address the concept of aggregation, thereby limiting the expressiveness of
objects in their methodology, but both Coad and Yourdon and Rumbaugh et. al. accommodate
aggregate objects.

After the objects and their attributes have been identified, the interactions between objects can be
defined through the use of state diagrams. State diagrams are pictorial representations of the
relationship between events taking piace in the system (e.g., a help key being pressed) and the state
of the system after the event has been processed (e.g., a help screen is displayed). (See Figure 2-
1.) Coad and Yourdon, Shlaer and Mellor, and Rumbaugh et. al. ali use some form of state
diagrams to model the interaction among objects, but they use different terminologies. Coad and
Yourdon represent these activities in a service layer. Rumbaugh et. al. places this activity in the
dynamic modeling phase. In each case, the diagrams portray a system's functions in response to
information received from external sources.

2-4

0 S_trt _ switchon _

Figure 2.1. State transition diagram for overhead transparency projector.

Coad and Yourdon consider the Shlacr and Mcllor approach to be more representative of semantic
data modeling than object-oriented analysis. Their principal criticism is that these methods do not

: explicitly deal with object behavior. Shlaer/Mellor and Rumbaugh both employ state transitioo
diagrams to "formalize behavior over time." Actions resulting from state transitions are
represented as processes in data flow diagrams. Coad and Yourdon contend that this dependence
on functional specification techniques ignores fundamental elements of the object-oriented
paradigm.

There are some diagramming tools which support this process. For example, OOATool is offered
by Object International of Austin, Texas. lt provides drawing and validation support for Object-
Oriented Analysis as defined by Coad and Yourdon.

The last portion of the analysis process that we will discuss is the specification of object behavior.
Having defined a structure for the objects and identified the interactions among objects, the
behaviors which are performed as a result of the interaction remain to be defined. Rumbaugh
considers this the functional modeling process. In this activity, traditional top-down approaches
can complement the object-oriented paradigm.

Most OOA methodologies concentrate upon identifying those entities which comprise a particular
domain; having done this, they model the relationships among objects. Gibson [GIBS90]
proposes Object Behavior Analysis (OBA) as a means of defining those behaviors to be exhibited

_ by an application and deriving objects using this behavioral perspective. Objects are then grouped
according to similar behaviors and properties. According to Gibson, the result is a requirements
specification which "emphasizes the reusable aspects of a system, i.e., the behavioral protocols
and the hierarchical groupings of objects according to such protocols." The highest level of

2-5

behavior defines the system's responsibilities; presumably, lower levels of behavior correspond to
the responsibilities of collaborative objects. A variant of the CRC (Class-Responsibility-
Collaborators) cards [CUNN86] is used in defining objects based on behavior. There is no
explicit reference to inheritance and the methodology does not appear to have been used to develop
actual applications. These and other object-oriented analysis methods are compared in a recent
report from Hewlett Packard Laboratories [DECH91].

2.4. Object-Oriented Design

Object-oriented design (OOD) refines object defimfions and specifies data management and human-
computer interaction. Booch [BOOCgl] and Coad and Yourdon [COAD91 b] both discuss object-
oriented design. Booch does not distinguish between analysis and design activities and views the
development process from a higher level of abstraction than Coad and Yourdon. For application
developers learning to design object-oriented software, Booch provides better insight into the
motivations for the technology while Coad and Yourdon present a step-by-step approach.

As guidelines, Coad and Yourdon give the following steps for object-oriented design (OOD) using
the results of object-oriented analyses: design the problem domain component, then the humm:
interaction component, then the task management component, then the data management
component.

The problem domain component uses the OOA results and improves upon them. Reuse of
existing software components is encouraged and existing classes are specialized to obtain desir,_d
behaviors. The human interaction component includes the design of a detailed user interface,
i.e., the actual displays and inputs needed for effective human-computer interaction. Windows,
menus, text boxes, etc. are ali specified in this stage. The task management component
considers task definition, communication, and coordination, lt considers whether the system is
multi-user or multi-platform. The data management component includes access and
management of persistent data. lt isolates DBMS concerns, asking for example whether object and
relational database systems are being used.

lt is in the design phase of development that reuse of software components occurs. Reuse can be
achieved by using existing requirements, designs, source code, or test suites for software. Class
libraries, either customized or vendor-supplied, can substantially reduce programming efforts, lt
has been suggested that class libraries follow some convention to accommodate class reuse and to
minimize or eliminate altogether inconsistent class definitions. One such scheme [MOOD91]
organizes libraries into the following hierarchy: Foundation classes contain those low level entities
upon which ali other classes are built, e.g., string, stream. Framework classes provide those
higher level entities which are employed by ali applications, e.g., windows, buttons, menus, scroll
bars. Add-on classes implement capabilities which may be needed for certain applications, e.g.,
databases, spreadsheets, matrices, graphics. Lastly, application classes are those classes
developed specifically to meet the business needs of an organization. Figure 2-2 shows the
different layers with sample classes for each.

2-6

Foundation I I strings, arrays and stream

Framework _!!!iii!!i!!i!i!_!_i_:iii_!ii_i!i!i!i_!i!i_:iii!i_:_:!_:i!_:!!i!_ii!;_;!!_:_!ii;i!i_i_!_!!!!ii!i!!i_i!_!_!_windows, buttons, menus, scroll

bars, etc.

Add-on [:::_:_:_:_:_:_:_:_:_:r_:_:_:_:_:_:_:_:_:_:_:_::_:_:_:_:_:_:::_:_:_:_::! databases, matrices, graphics

spreadsheets, etc.

Application

Figure 2-2. Hierachy of class libraries.

Another approach to object-oriented design is responsibility-driven design, which views an
application as a collection of objects that collaborate to discharge their responsibilities, i.e., to
perform the computations required by the system design [WIRF89]. The responsibilities of an
object are those services that it provides for ali objects that communicate with it. An object fulfills
its responsibilities by performing some calculation or by collaborating with other objects. In this
view, a contract is a set of related responsibilities defined by a class; this contract governs the
interaction between collaborative agents. Behavior is formulated in terms of contracts,
responsibilities, and messages. In this approach, design is partitioned into exploratory and
analysis phases. During the exploratory phase, the classes required to mt_del a domain are
identified, the behavior of the system is specified, the responsibilities of respective classes are
determined, and the collaboration among classes of objects is defined. Collaborations among
objects are then identified. Once an initial model of the domain has been constructed, it must be
revised to identify abstract classes, exploit reusability, and simplify inter-object communications.
The resulting design should minimize the number of collaborations between classes of objects,
limit the amount of delegation between them, and reduce the number of different contracts
supported by each class of objects. Several object-oriented design approaches are compared in a
recent report from Hewlett Packard Laboratories [ARNO91].

2.5. Object-Oriented Programming

The one common element among all object-oriented programming languages (OOP, OOPLs) is the
notion of an object as the primary component of all programs. In contrast with the separation of
procedures versus data in conventional programming, the notion of objects unifies data and
process. Encapsulation protects objects, in that other objects may interact with it only through an
interface. The internal implementation of an object is inaccessible. Most "pure" object-oriented
languages enforce full encapsulation while extensions to existing languages rely upon
encapsulation by convention. That is, programming style, instead of language constructs, dictates
that an object's attributes will be accessed by those mechanisms defined specifically for that
purpose. This form of information hiding via fixed interfaces promotes maintainability in that the

2-7

internal details of an object can change without affecting the manner in which other objects interact
with it.

2.5.1. OOP Mechanisms

A class is a description of the structure and behavior of one or more similar objects; these
individual objects are called instances of that class. Some object-oriented languages do not
differentiate between classes and instances. Classes can be arranged in a hierarchy such that
classes at a lower level of the hierarchy can share procedures and data from one or more classes at
a higher level. See Figure 2-3 for an example set of three objects in a hierarchy. This sharing of
data and procedures is called inheritance, and object-oriented programming languages support
either single or multiple inheritance. Single inheritance allows a class to inherit data and
procedures from only one parent class and its parents up the hierarchy; multiple inheritance permits
a class to inherit data and procedures from several parent classes and all their ancestors. Shared
data and procedures can be localized to avoid redundancy by placing them at a point in the
hierarchy where they will be inherited by ali classes that need them. A new class which is similar
to an existing class can be added to the system by making it a subclass of the existing class,
specializing it as needed by extending or slightly modifying its inherited data and procedures.

Objects have methods, or internal procedures, which define the behaviors they can perform. Most
object-oriented languages initiate activity in a program by having one object send a message to
another. A message typically consists of a selector which specifies the operation (method) to be
performed and any appropriate arguments for passing needed information. A message of a given
name may be sent to a variety of objects. Local message interpreters determine which actions to
take, based on the class of the receiver. Thus a "Display" method would be implemented
differently for a text object and a video object. Given these interpreters, uniform interfaces can be
established between sets of objects by establishing standardized mc Jsage formats. Such interfaces,
called protocols, support data abstraction since a message sender need only concern itself with
what the recipient is supposed to do, not how it is to go about doing it. The protocol must be
general enough to permit modifications or enhancements at a later time (thereby promoting
reusability).

Figure 2-3 shows how the information and behavior in objects can only be accessed via a message
selecting the appropriate method to perform. In the example, the only access to objects A, B, and
C is by using the four methods listed in objects B and C. In order to respond to the incoming
"MoveTo" message to A, the MoveTo method code (pointed to by object C) is inherited and
executed.

2-8

A B C

from tnothe: object Clau: Trlansle ____. _ _] Superca,: PolySon _ Superclau: Shape,...

1 Subclau: lu_eleJTrt Sub.u: Triangle,Recttns}e, Hexagon....MoveTo: (10,20)
Vertioes:(1.2),(3,4),(7.9) A_RmI_S: _ Vertices.FillColor

FdlColor: Red _

:lass

Instance _ (Sabchm) (Superclus)

.

Restze --. ,Display

ComputeAre MoveTo '_

Method

Method

Method Table Method Table
for for

Triangle class PolygorJ da.u

Figure 2-3. Object classes, methods, and message.

Message sending takes advantage of other features of object-oriented programming languages.
Polymorphism is the capability of several classes of objects to respond differently to the same
messages. Polymorpnism depends upon dynamic or late binding. Dynamic binding determines at
execution the correct function call reference for a particular object; conversely, static or early
binding establishes this reference at compile time. While dynamic binding is not as fast as static
binding, it gives the software developer greater flexibility. Dynamic binding and polymorphic
functions promote software reusability by allowing the same function calls to be used by different
objects with different structures and behavior.

2.5.2. OOP Benefits

Object-oriented programming enables software systems to deal with more complex and
heterogeneous data than has been possible previously. This has made much more tractable the
problems of manipulating sophisticated graphic interfaces, design and manufacturing information
for parts production, and multimedia information of various sorts. Maintainability is enhanced by
the localization of data and procedures, and enables program updates to be made efficiently since
they need to be made in only one place. Extensibility is provided through customizing existing
_:;jects with more specialized attributes or behaviors to fit a specific application, and enables

' extensions to the program (e.g., new object definitions) which are slight variations of the existing
system to be made with minimal effort and impact on previously written code. The working code
remains unchanged, but the application has been extended or refined. These benefits allow us to
isolate changes and minimize their impacts. This should also help to reduce resistance to making
changes in software when they are needed.

Data uniformity is provided through the encapsulation of ali data as object attributes, and procedure
uniformity is provided through protocols. Both make programs cleaner and easier to understand.
The reliability and testing of object systems are generally improved because the units can be tested

2-9=

out completely when they are created, and that quality remains with the unit as long as it is
encapsulated and used as expected. Having defined usage protocols for interfacing between
objects yields better testing because there are fewer failure modes and types of interaction to
validate. However, the powerful dynamic binding feature can also cause thorny testing and
debugging problems, especially in interpreted systems such as Smalltalk. In a system of complex ,
interactions among objects, it may be impossible to anticipate the sequence of messages which will
be sent, and what the resulting states of the objects may be.

The recognition of software life cycle entities as reusable components leads to their treatment as
corporate assets, and creation of a different mindset in thinking about software. These assets have
_reat value to the Corporation, and this realization attaches significant importance to proper
management (creation, storage, indexing, facilitation of retrieval and reuse) of these assets. The
inventory of components becomes the organization's store of expertise, and commercial libraries
(generic or specific to application areas) cml be assessed and acquired where there is sufficient
value added.

2.5.3. When is a Programming Language Object-Oriented?

Most languages purporting to be object-oriented allow the definition of classes and instances,
inheritance of attributes or properties from parent to child, dynamic binding, method invocation,
and some degree of data specialization. Using the ,definitions from a seminar run by the
Association for Computing Machinery [HERK91], a language is object-oriented only if it:

- supports objects that are abstractions with an interface of named operations (methods) and
a hidden local state (encapsulation)

- can associate one or more abstractions with any given object (polymorphism)
- allows abstractions to inherit attributes and behavior from other abstractions.

A language is object-based if it provides all the capabilities listed above except for inheritance. An
example of this is Ada. An object-oriented language is "pure" if all constructs within the language
are objects with associated classes. An object-oriented language is a "hybrid" language if some
constructs are not objects.

Examples of pure object-oriented languages are Smalltalk and Eiffel. Two hybrid languages which
supply object-oriented extensions to existing languages are C++ and CLOS (Common LISP Object
System). Since hybrid languages do not enforce encapsulation, developers can implement much of
their design using techniques which do not allow for extensibility or reusability. On the positive
side, such hybrids permit a more gradual adoption of object-oriented methods within
organizations.

t

2.6. Object-Oriented Database Management Systems

Objects created with an OOPL are transient; they disappear after the program terminates.
However, objects could also be persistent, so that they could be stored and retrieved after the
program restarts. However, the complex structures built during the execution of these programs
cannot be directly stored to conventional database management systems, such as relational DBMS.
One approach is to "flatten" the objects, breaking the complex data structures and procedures into
tabular forms. Another is to create object-oriented database management systems (OODBMS).

L

2-10

These systems permit the objects to be manipulated as entities, supporting the encapsulation critical
to the implementation of object-oriented programs.

The design of OODBMS has taken two differing paths: in one, object-oriented programming
, languages have been extended to support persistent objects and other database functions; in the

other, existing database technology has been extended to permit the storage of complex data types,
including procedures. OODBMS will be discussed in more detail in Chapter 5.

2.7. A Hybrid Approach

One of the advantages of the object-oriented paradigm is that an analyst can represent a problem
domain in a natural form, as representatives of real-world entities and their behaviors. There is no
need to transform the problem into a series of procedures. This representation produces a more
understandable system for both customers and developers, since it is easier to see how the problem
domain was mapped into software. Although object-oriented analysis and design techniques can
be employed separately from implementation, much of this advantage is lost since the
transformation to procedure-driven software components is merely delayed until implementation.
Coad and Yourdon in their book are perhaps too optimistic about this:

"If you receive a non-OOA requirements specification, rapidly develop (say over 1-4
weeks) an OOA model If you receive a non-OOD specification, yet you plan on
implementing the design using an OOPL, rapidly develop (1-4 weeks) an OOA model, and
expand into an OOD model. Finally, apply detailed OOD" [COAD91a, pp. 181-182]

This suggests, perhaps unrealistically, that functional specifications can be quickly translated into
object specifications. Other authors are much more pessimistic about the ease of making the
transition from structured to object-oriented paradigms.

The use of an object-oriented programming language which supports the notions of abstraction,
inheritance, and polymorphism greatly simplifies the translation of the object-oriented design
specifications into source code. Both Coad and Yourdon [COAD91a] and Rumbaugh et al.
[RUMB91] indicate that object-oriented analyses and designs can be implemented in procedural
programming languages, but that object-oriented programs are easier to write, maintain, and

_ extend. Rumbaugh describes an approach for translating object classes to relational tables. The
need for persistent object storage can be more easily satisfied by the use of an object-oriented
database management system, if use of one is feasible in the given computing environment.

2-11

Chapter 3:

OOT and Applications

3.1. Introduction

We will discuss several major application areas that may benefit from object-oriented technologies:
design/manufacturing systems, modeling and simulation, management information systems, and
multimedia information systems. As object technology improves, increases in time and space
efficiency of the software tools will make it realistic to also deliver some of this work in actual real-
time environments. However, the scope of this paper excludes the problems of real-time systems.

Over the last two decades, computer automation has been promoted as the means of providing the
increased productivity needed to improve a company's position in the competitive market. Some
applications such as accounting, scheduling and material planning are well understood manual
processes and have been successfully automated. However, the resulting productivity gains from
automation have not materialized to the levels promised. This is primarily due to the complex
nature of the products and processes used. Designing, manufacturing and marketing competitive,
quality products requires precise coordination and integration of ali of a company's resources.

While there are many successful automated CAD/CAM/CAE applications, the net effect on the
enterprise has been to create what is commonly referred to as "islands of automation". Each
application is built around its view of the product and the processes it automates. These
applications have been very successful at automating their specific view of the product but in the
process have isolated the information they use and create from the other applications in the product
life cycle. The major problem with software from the commercial-off-the-shelf (COTS) vendors is
that the COTS software encapsulates the data it creates and uses in a relatively impenetrable
wrapper. Most CAD/CAM/CAE software has been written from the perspective of a stand-alone
application and not as a supporting piece in the full life cycle of a product. Vendors have developed
their own private application-driven databases structured for efficiency, but have sometimes not
even been able to inte_ate their own application software effectively.

The management of bill-of-material (BOM) information throughout a product's life cycle is an
example of an application for which the object-oriented paradigm appears ideally suited. Each life
cycle stage has its own viewpoint. For example, in the conceptual stage, a BOM may be a list of

- requirements; in the design stage, it could be the list of components that are assembled to make up
the product or it could be the a list of the materials needed to make the entire part; in the
manufacturing stage, a BOM might be the list of materials needed to accomplish an in-process
manufacturing activity and so on throughout each stage. The object-oriented approach allows one
to identify object and application view subclasses for each of the specific types of BOM. Each can
be structured and behave according to its role in the life cycle. Encapsulation, multiple inheritance,
polymorphism, extensibility and persistence are ali useful characteristics that could effectively be
utilized to support this multi-faceted application.

Engineering data are in general more complex in structure than business data. Traditional software
and computer technologies have not been able to deal adequately with complex product life cycles,
design and manufacturing processes, or with sophisticated human interactions using hypertext and

3-1

graphical user interfaces. This difficulty may be partly due to the lack of real-world physical
models to understand and emulate. Using the methodology and tools being developed within the
object-oriented paradigm, the long-promised increased productivity obtained through automation
may now be achievable.

Another area of advanced information processing is that of simulating and modeling complex
systems. Object technology allows the efficient extension of typical simulation package capabilities
to model dynamic systems of various sorts. Several such systems will be discussed later in the
chapter. Another application area where objects provide a very natural representation mechanism is
in modeling and managing communication networks. A network management tool based on object
technology is being evaluated for use in Oak Ridge.

Traditional database management systems (DBMS) have proven to be effective tools for organizing
and maintaining large volumes of data. DBMS technology allows multiple users to share the same
data in a timely and sensible fashion. In many enterprises, DBMS are the focus of new and varied
applications. Most of the successful DBMS applications have been oriented towards processing
business data. The primary reason for this is that the traditional DBMS systems are capable of
operating in a relatively efficient manner on massive volumes of data where the data structures are
relatively predictable and easily understood. Usually there are few data traversals required for each
transaction and the number of different transaction types is small.

Industry trends are driving the need for information management systems capable of representing
and modeling the behavior of large, complex, multimedia data types. Many types of automated
information have become available; we now have sound, still image, video, and graphic and CAD
data as well as traditional text and numeric information. The required information management
cannot adequately be provided with existing relational data base technology. Object-oriented
technology offers the promise of removing some of the existing technological barriers. OOT
supports the ability to navigate through heterogenous types of data as well as the ability to process
queries on sets of homogeneous data. With this technology it is possible to design systems that
have mechanisms for change management, managing group work and sharing and permanently
storing objects for use in multiple applications. The defining characteristics of OOT (encapsulation,
inheritance, polymorphism, extensibility, objects, persistence, class libraries, etc.) are the types of
concepts that are needed to establish and implement these kinds of complex information
management systems.

This chapter includes both genetic discussions of several types of applications and descriptions of
specific projects. Some of these projects are described in more detail in the Appendices. Across
the DOE complex there has been a substantial amount of work using mostly C++ and some
Smalltalk, and a few projects have used commercial object-oriented database systems. Although
the technology is still young, we are already developing significant experience and expertise.

3.2. Design and Manufacturing Systems

Design and manufacturing are application areas that generate data processing requirements which
exceed the capabilities of existing DBMS. There has been a tremendous amount of time and money
expended throughout the public and private industrial sector to automate and integrate the activities
and processes occurring throughout the life cycle of a manufactured product. A major business
objective is to significantly reduce the time it takes to conceive, design, manufacture and market a
product while reducing its cost and improving its quality. In order to accomplish this, the general

3-2

consensus is that the life cycle activities of a product will have to be automated and integrated in a
data-driven environment centered around an intelligent product information database. There are
several emerging design and manufacturing methodologies which will help to achieve these goals:

- Total Quality Management (TQM)
- Computer Integrated Manufacturing (CIM)
- Design for Manufacturability (DFM)
- Design for Quality (DFQ)
- Concurrent Engineering.

For success, these methodologies require that an integrated data-driven environment be established
within the enterprise. Many attempts have been made to design and implement such a workable
database with little success because of a number of problems. One of the technical barriers, which
is now dissipating with emerging standards such as STEP (Standard for Exchange of Product
data), has been the absence of a unified standard for representing the complex relationships,
constraints and rules which exist among product data. However, it has also been established that
existing relational DBMS technology is not sufficient for handling massive databases where the
structures are complex, the database transactions are long and complicated, and the number of
different transactions is extensive. Evidence of this is that there are no commercial CAD systems
whose working database is truly relational.

lt appears that there will be commercial object-oriented DBMS capable of creating cost-effective
database environments for:

1. describing product life cycle information including design intent and the manufacturing
processes.

2. reusing, exchanging and managing engineering, manufacturing and support information.
3. supporting the common sharing of complex design and manufacturing data and the

cooperation, collaboration, and coordination of these groups.
4. integrating with existing relational databases, CAE/CAD/CAM and image applications, and

languages.
5. supporting standards such as CFI, CALS and PDES/STEP, and Open Systems.

lt is generally conceded that the compromises necessary to use current relational DBMS technology
yield systems which are too slow and unwieldy to support these types of complex databases in a
concurrent environment, so great hope is placed on the emerging OODBMS products.

3.2.1. Some DOE Manufacturing Projects

At Allied-Signal in Kansas City, there is a whole family of advanced manufacturing projects under
development which will communicate their data models via PDES representations and will share

_ information using an object-oriented database system. The XCUT system (see Appendix G) will
generate process plans which call out tasks for numerical control analysts and inspection planners.
The advanced numerical control planning system ANC will scan the process plan for NC
requirements, generate tool paths, and add them to the database. The inspection planning system
IPPEX (see Appendix H) will scan the process plan for inspection requests and add inspection
tasks to the database. These systems rely on the Advanced Manufacturing Development System
AMDS (see Appendix I) to provide product design data translation from the design agency's model
representation to Kansas City-specific representations.

Prototype systems are also being developed at Martin Marietta Energy Systems in Oak Ridge
(described in Appendix J) and at other DOE sites. Although the use of object technology is quite
promising, actual use of this approach for developing production manufacturing systems is
currently limited to one system now being implemented (Appendix R). Widespread use of object
technology is not likely for several years.

A project under way at Sandia National Laboratory extends the ideas behind design and
manufacturing to the area of planning, specifically how to streamline a large cooperative planning
process involving a number of government enterprises. The hypothesis is that using modem
extended relational databases or object-oriented databases would not only allow concurrent
planning operations but would also yield a number of other benefits (see Appendix K).

In Los Alamos there are a couple of projects which bridge the areas of process control and
modeling. For the last couple of years, some earlier artificial intelligence work has been extended
to develop a high-level modeling and process control system (see Appendix L). In a separate
project, the KOALAS architecture for intelligent control systems combines conventional control
theory with automated reasoning techniques (see Appendix M). This architecture is currently being
applied to automated multi-sensor integration in tactical naval aircraft.

3.3. Modeling and Simulation

As any large organization strives to fully understand and improve its complex processes, and to
make plans for future operations, modeling and simulation are widely used and important
techniques. Object technology allows extending traditional approaches to modeling complex and
dynamic systems.

One area of modeling which is of strong interest in the DOE Complex is in nuclear reactor
operations. In Oak Ridge, an object approach was used to create a modeling tool called GOOSE
(Generalized Object-Oriented Simulation Environment) for developing dynamic models of systems
such as nuclear reactors (see Appendix N).

At Savannah River there is an ambitious plan for giving nuclear reactor scientists and engineers a
scientific computing environment which will maximize their ability to manage their scientific data
and use simulation to understand and solve the scientific and engineering problems associated with
nuclear reactors. Object technology is being used to create a set of graphics tools (portable across
systems) to enhance application development and human interfaces to the systems. See Appendix
O for a description of this work.

There are a number of other modeling efforts across the DOE complex in the areas of weapons
production processes and waste management. The Technology Assessment Selection
Panel (TASP) model was started several years ago at Los Alamos using artificial intelligence tools
and techniques (see Appendix P). The model now has involvement from several DOE sites
(including a large effort at the Y-12 Plant in Oak Ridge) and is moving to an object-oriented set of
tools. The purpose of the TASP model is to study DOE weapons complex production facilities and
plan for the proposed Complex 21 reconfiguration. In a similar vein, the Rocky Flats Plant
Simulator (RFPS) has been developed at the Rocky Flats, Colorado facility to help with planning
and scheduling their people, equipment and processes (see Appendix Q). The early emphasis of
the project was on manufacturing, aqueous recovery and pyrochemical processing buildings, but
with recent mission changes, modeling efforts have been redirected to include stabilization and

3-4

elimination of liquids and other wastes. The RFPS is needed to help answer a variety of "what if"
questions with the new mission of the Plant.

Again at Savannah River, object-oriented techniques and tools were used to model the Defense
Waste Processing Facility (DWPF). 1 The DWPF will be used to process radioactive wastes into a
glass substance which can then be disposed of safely. The system is composed of three programs.
The Glass Compositions Program gives a visual display of how to mix waste components into
glass components, under a number of constraints. The Batch DWPF Simulation Program provides
a graphical, real-time simulation of a batch chemical process operation, keeping track of levels,
transfer of material between vessels, and ali the process steps (heating, cooling, boiling,
condensing, etc.). The Product Composition Control System (PCCS) does statistical process
control, monitoring ali sample analyses and maintaining the status and sample assay of each vessel
to know what is happening at any given time.

3.4. Management Information Systems

Management Information Systems (MIS) applications provide management, supervisory, and
operating personnel with the business information required to effectively manage ongoing activities
of the enterprise. Examples include human resource systems, activity scheduling systems,
manufacturing support systems, and production measurement systems. A primary motivation for
MIS application developers to consider object-oriented technologies is rooted in their pursuit of
methods to maximize the correspondence between MIS systems and the business functions they
are intended to support. Unlike engineering and manufacturing systems, their motivation is not
linked with inadequate data management support from existing languages and database
management systems. Another strong motivation for using OOT is the software engineering
benefits which can be attained. A library of tested, high quality objects can be created and reused
for modeling the information structure of the organization. This approach also reduces the high
cost of maintenance and the system enhancements which are inevitably needed.

An interesting project developed in Oak Ridge used objects to address the needs of a "paperless
office." This system, described in Appendix S, developed a secure electronic signature capability
and incorporated that type of verification into an electronic document handling system.

The "First Priority" project at Savannah River used an object-oriented approach to build a genetic
prioritizing scheme (see Appendix T). The system builds up a tree-like structure which represents
principal goals, subgoals and concrete measures which are then used to compare issues. The
system has been used for a variety of prioritizing tasks, including responses to Tiger Team
findings, request for personal computer systems, and selection of technical award winners.

-t

3.4.1. The Problem With Traditional Approaches to MIS

In early approaches to the development of enterprise MIS applications, software developers
discussed the requirements of the business with appropriate business representatives and translated

1 Apaper on thissystem "Controlof DWPFMelterFeed Composition",by R.E. Edwards,K. G.Brown,andR.
L. Postlesof the WestinghouseSavannahRiverCompany,waspresentedat theNuclearDivisionof the American
CeramicsSocietymeetingin Dallas,TXApril22-26,1990. ContactRichardEdwards(803:725-6456)formore
information.

3-5

the requirements they heard into an application system design. Business users, however, found it
difficult to express their expectations of a computer system with precision, and in terms that could
be effectively communicated to software developers. The result was many application systems that
were not responsive to the business needs. Formal specifications were needed- expressive
specifications that both the business user and software developer were comfortable with. Elaborate
methodologies were developed to manage the creation of these specifications. These
methodologies were broad in scope, long on detail, and intractable for any but the smallest of MIS
software projects.

Today's commercially successful CASE products address the specification problem by lending
software support to many of those same methodologies. The most common methodologies are
based on a modeling paradigm that treats the definition of data and of function as separate tasks.
Data models are distinct from process models, and numerous methods, techniques, and tools are
used to validate each model in the context of the other. The treatment of data and process as
different entities represents the major disconnect between existing CASE products and the object-
oriented approach. The effect of this disconnect is the perpetuation of the original problem --
miscommunication between business users and software developers.

The heart of the problem is the process modeling activity. There is no single, correct hierarchical
model of business processes. At the top of the process hierarchy the decomposition is essentially
arbitrary. The methodologies indicate that processes (often referred to as functions at the upper
levels of the hierarchy) should be defined without consideration of existing enterprise
organizational structure. Often this level of independence can be accomplished at the high level,
but usually it breaks down as processes are successively decomposed. The forces that effect this
breakdown are fundamental. Process decomposition independent of organizational structure is
useful in defining and understanding the business, but application software systems are defined,
developed, used, and most importantly funded, by organizational units. They require an
operational design that reflects their organization's responsibilities and preferences. Organizations,
however, are among the most dynamic entities of a business enterprise. Building their structure
(even indirectly) into the model creates significant instability in both the business model and the
software systems implemented to support it.

Information engineering methodology represents a transitional approach, in that the interrelation of
business processes and data is acknowledged. Business processes may be defined by the manner
in which they change the state of information over time. However, it is still difficult to avoid the
injection of organizational units into the system definition. The defined relationship between data
and process still falls short of that represented in object-oriented approaches.

3.4.2. Benefits Of An Object-Oriented Approach

The object-oriented paradigm represents a major shift in thinking for business users and MIS '-
software developers. Object classes represent the fundamental entities to be modeled, and ali
processes are modeled in the context of an object class. This technique has many benefits:

- focusing on data first allows the model to be built on the most stable element of the business
environment

- defining process or functions strictly within the context of a data entity prohibits
organizational structure considerations from becoming part of the model at any level

3-6

- by postponing the operational definition of an application system to the last possible moment,
developers are able to maximize the reuse of software components, and minimize investment
in software that provides an organizational view of their update and query requirements.

j 4

3.4.3. Data Requirements For MIS systems

MIS systems require complex user-defined data types and functions, plus management of data
aggregates and their associations. Currentobject-oriented technology can successfully meet these

- needs. But in the business environment there are often also requirements for multi-user
concurrency management with cluster locking and for performance-oriented management of large

- volumes of structured data. These capabilities are generally not present in current OOT systems.

In recent years, the MIS area has moved away from the tendency to solve individual problems with
independent systems, and is reaping the benefits of the dam modeling approach using information
engineering and CASE tools. Starting from the top, the enterprise as a whole is modeled, then
each business area is analyzed in turn to yield business systems, and applications are developed.

= Object technology can be added to the computational architecture to help shape the systems built
within the enterprise business model. But a widespread shift to the object paradigm to achieve the
benefits of OOT awaits strong commercial support of object-oriented techniques by both CASE
vendors and conventional database management systems vendors. We see that support coming,
for example in Texas Instruments' statements about future releases of its IEF integrated CASE
product. However, until that support is mature, there is little likelihood that most MIS developers
will embrace the new object techniques.

3.5. Technologies which Benefit from Object-Oriented Technology

3.5.1. Multimedia Information Systems

Earlier in this chapter we mentioned the many types of automated data that axe available for use
today: not only text, but graphics, still images, video and sound. If a computer is used to integrate
such multiple forms of communications media, then interactive multimedia systems can be built.
These systems act as nonsequential documents, or hypermedia, and allow the user to interact with
and control the flow of information. The user of the system can follow links in the web of
available information, browsing freely or choosing specific information needed to solve some
problem. One such system has been built in Oak Ridge to support technology transfer by
representing the diverse capabilities of Energy Systems development and manufacturing
capabilities and facilities. The system gives flexible access to information at ali levels of detail and

- presentation in several formats (see Appendix U). Multimedia tools are quite valuable for
illustrating concepts that are hard to describe in text, or events that go by too quickly or slowly for
normal observation. They can bring up documents or regulations that apply to some event, while
automating analysis and record keeping about the events. The systems can deliver sounds or
visual images that enhance the information needed for some task.

_

Almost every application domain area can benefit from use of multimedia information; people keep
creating new applications for it. Multimedia is especially appropriate for procedural
support/reference and for training systems. Several such systems have been constructed at Energy
Systems. One early system was KATIE, built using Smalltalk, which used an expert systems

3-7

approach to guide users through the maintenance and diagnosis of complex manufacturing
equipment. KATIE uses video displays of procedures being performed on the equipment, along
with active text presentation of required procedures. A later version of KATIE (still object-oriented
but not requiring expert systems techniques) is being used to train security force personnel. See
Appendix V for more information on this system. Other training systems have been built using
object-based products which make it easy to combine hypertext and visual information into a
training presentation. See Appendix W for a description of a system which was built using Owl's
GUIDE product.

3.5.2. Graphical User Interfaces

Perhaps the strongest driver for the growth of interest in OOT has been the development of
graphical user interfaces (GUIs) on personal computers, notably those of the Macintosh, Windows
3.0, Presentation Manager (OS/2), and X-Windows (UNIX). According to Bill Gates, chairman
of Microsoft, the goal of working with a computer is "information at your fingertips" -- the ability
to find, compile, and summarize information from many electronic sources without even having to
know where it comes from [VERI91]. A graphical interface gives a user much greater power over
the interaction with a computer system and requires almost no training to use at a competent level.
The desired type of interaction now has information presented in windows, with the user
manipulating choices represented as icons by selecting them from a menu with a mouse or other
pointer. This type of interface is called a WIMP interface (for Window, Icon, Menu, Pointer).

Provision of such interfaces is a real computing challenge, especially if the ability to scroll through
a large region is included, and users are allowed to change the size of and move their windows.
Several tools are available (such as Hypercard, Supercard, HP New Wave, and public domain
Interviews from Stanford) which ease the development of WIMP interfaces. Use of an object-
oriented approach was necessary to build these interface managers. Coad and Yourdon motivate
the use of object-oriented approaches with the following statement:

"software managers at IBM commented ... that ali of their attempts to use standard
structured techniques to build applications in the OS/2 Presentation Manager environment
[were] dismal failures; the only successes ... were applications developed with object-
oriented techniques." [COAD91a, p. 191]

Ali types of applications can benefit from WIMP interfaces. Even though the prognosis was
somewhat pessimistic about near-term use of OOT in management information systems, use of
objects to provide an interface to business information is already feasible and quite appealing.
There is a special class of management information system called Executive Information Systems
(EIS) which provides highly interactive management-level information about an organization.
These systems benefit greatly from the use of object technology, largely because of the type of user
interface they need.

3.6. Applications Which Are Not (Yet) Appropriate for OOT
-

There are some types of applications for which OOT is not yet mature enough to solve the
problems, andothers for which existing solutions seem better than what OOT could offer.

3-8

The business-oriented MIS applications described in the previous section are in the first category.
The need for high performance over great transaction volume exceeds current OOT capabilities.
Similarly, current object tools and object-oriented database management systems do not yet provide
shared, secure multilevel access to classified or sensitive information. When these capabilities and
performance levels are reached in the maturing products, then use of OOT for applications which

, need those features can be reconsidered.

In the other category, there are some types of applications which need algorithmic solutions which
are already implemented. When this is the case and there are no problems with existing solutions,
there is no reason to change the legacy applications to object technology. Indeed, if an existing
system is to be integrated with a larger object system, one way to handle the interface is to use
"wrappers" which treat the existing system as a "black box" object and use its standard calling

; sequence to invoke the system's behavior. In this way, there is no need to reprogram the system.

3-9

Chapter 4:

- Object-Oriented Application Development

4.1. Need for Fundamental Reorientation

A basic problem with the structured approach to software development, according to object
technology leaders such as author Brad Cox and consultant Jon Hopkins, is that it is process.
centered, so that the programmer-machine interaction and the processes we use to create software
are paramount. With software development in crisis, unable to keep up with hardware and

_ telecommunications advances and cost reductions, we must abandon our tradition of hand-crafting
software from raw materials. Instead, we should take a product-centered view of software,
where the producer-consumer relationship and the software products needed by the consumer are
more important. Cox argues that after the "software industrial revolution", programmers will
choose standard, reusable components from software catalogs (class libraries) and combine or
specialize them as necessary to create new applications.

We could draw an analogy from our experience in engineering electronics. Twenty to thirty years
ago, our engineers designed any circuits needed for the devices we built. But as technology
advanced, a variety of prefabricated integrated circuits with standard interfaces became

- commercially available. This enabled quicker and less error-prone assembly of complex devices,
using off-the-shelf components.

Now a similar phenomenon is beginning to take piace in the software industry. Once the software
components market is established, consumers themselves may be able to assemble many needed
applications from robust off-the-shelf components marketed by several layers of commercial
software producers.

A!though Brad Cox sees much hope with object-oriented technology to carry out the software
industrial revolution, he warns that implementation tools to create interchangeable parts cannot
succeed alone; there must also be specification tools to determine whether components are
combined and behaving according to specification and within tolerance. In other words, you need
not only a saw to cut a piece of wood, but also a ruler with which to measure before and after
cutting a piece. The primitives of this needed specification language would be test procedures

: which would collect operational measures to determine software product quality. That is, the
specification tool would monitor the consumer's interface with the product, instead of the more
traditional focus we have had on the software producer's interface (using lines of code or
complexity measures, for example). [COX90]

4.2. State of CASE Tools

The state of Computer Aided Software Engineering (CASE) tools today is that they are
productivity enhancing tools, increasingly coveting ali life cycle phases, but mostly for developers
building Management Information Systems applications, using structured methodology, and
generating COBOL code. For other types of development, the state of the art is less helpful. The
ultimate power of CASE tools is that they allow the developer to create the application at an abstract
level by diagramming it, and then the tool can generate the code needed. If program modifications
are needed, the developer is supposed to generate them through the high level representation of the
CASE tool, not by revising the code. In practice for many technical organizations, the COBOL

4-1

generation is often not desired, so the full benefit of CASE tools is usually not achieved.
However, this situation will change as more and more CASE tools generate C code.

The abstract, high level representations of an organization's applications and data stores must be
stored permanently in repositories to allow modification or extension to other applications. There
are some tool-specific repositories, but CASE tool users naturally would like an open, common
repository that could communicate with any vendor's CASE tool. A number of vendors are
working on repositories (e.g. IBM, DEC, Texas Instruments, KnowledgeWare, Oracle, Computer
Associates). IBM's emerging AD Cycle/Repository has received much attention in the trade press,
but it is not clear when it will be successful. The nature of the application diagramming
methodology and the representational capability of the repository determine the types of
applications that can be generated; that's why most current tools generate structured COBOL. A
CASE tool for object-oriented applications must have a repository that can store class and instance :J
objects and their methods, and that sort of capabi!ity doesn't easily coexist with the structured
tools.

The key difference between the structured and object-oriented systems is that conventional CASE
tools generally use a procedural environment to represent the applications, whereas object-oriented
(and knowledge-based) application development tools tend to use more declarative and business
domain-focused information. "The more genetic, declarative, and business-focused the
representation, the more powerful and flexible the tool", says industry watcher Paul Harmon
[HARM91 c]. But although the declarative representations are more powerful and will increasingly
be the preferred tools during the 1990's, a limiting problem is the lack of an accepted methodology
for object-oriented development. There are several such methodologies being developed, but their
ability is still pretty limited. Although AD Cycle/Repository does have some storage capability for
object-oriented components, IBM has postponed its scheduled announcement of AD/Cycle support
for OOT. Instead of announcing support for AD/Cycle with at least one object language (probably
Smalltalk and perhaps also C++), IBM decided to delay the announcement and address the larger
issue of OOT and how it will affect the whole software life cycle. On a less optimistic note,
Harmon predicts that the AD Cycle/Repository will not be viable even for conventional CASE use
before 1995.

Many CASE tools already use object techniques behind the scenes to help provide the structured
application development capability, usually in the graphical interface. Very few tools allow
developers to create object-oriented systems and generate C or C++ code. (See Table 4-1.) Of the
conventional CASE vendors, Harmon wrote that Texas Instruments' IEF tool seems best
positioned to develop an Intelligent CASE tool, adding objects as well as a knowledge-based
systems capability. Table 4-1 shows the comparative capabilities of six popular CASE tools
[HARM91c].

4-2

- Table 4-la. Popular CASE Tool Vendors 1

, , , ,

, praducl ApplicationDevelopment Workbench F_celeralorSe=ios InformationEngineeringFacility(IEF)

Campany (ADW) KnowledgeWiua:,Inc. IntetsolvInc. Teau lmmament,
,,,

Buic Functimudily Enterprimemodelin| EnmrpriJe modeling Enterprise modeling

of producI Analysis and design of applications Analysis and deaign of applications Analysia and design of applications

Interpreted RAD/prototyping environment Code generation haterTa_tedRAD/teeing envi:onment

Code generation (databa_ lene_ltion) (interface code generators) Code generation (dataLmaegeneration)

Application and chttabal_deaign uth.'ies Reverae engineerinll Test and maintenance utilities

Rever_ engmccring Reverseengineering

Prototyping
i

Development OS/ IBM PC, DOS; PS/2 O5/2 Stendard or El/ PC AT, P$/2, DOS, IBM AT, MS DOS 3.1 Or >;

hardware 1.2 or >, MVS (rain. 8 MB memory PS/2, OS/2EE 12or >.

recommended). Pmeentation Manager

interface.

DeliveryOS/ IBM PC andPS/Z,OS/2,MVS. PC AT,PS/"Z,DOS OS/2 wk/sta.,OS/2EE 1.2and DBM; DEC

hardware VMS; Unix gys. V (T| 1500 and Fujiulu).

IBM MF, MVSDLA,MVS/ESA with DB2.
_

Price Stea_ al $20,O00 for 4 wodutatidm; $9,800 Wmkartationtoolacta; $9,400 - $23,O00

individual workalatlom _ $10,125. Mainframe: $100,O00 - $340,000.

Development Methodology independent; however, also Methodology independent; however, tlm Infmmation Engineering Methodology

methodology ra_ 0uppora: Martin, DeMarco/Gan_ - Sarson, supping, Yotudon, Ward - Mellor, Gane -

and Yo_dcm. Ctt_mnizable for supporl_ Sarson, 4Front, etc. Cgalomi&able for

in.bouacnnmhodolollics, strsctumddevelol=ment.

DstaLmac./Relxmitm'y IBM Al) Cyc_e/Repmitmy compliant. XL,/Repository (pml_etary); IEF Central Encyclopedia (proprietary

Suppora:d (IBM AD Cycle development parlm=), IBM AI) C_e/Repmitory compliant, repository), Integrttion with DB2, OS/2

Integration with DB2, Focus, Oracle, DBM, Rdb, and Oracle.

Prog_eu, RBASE, Revelation, etc.

Language teel was C, Prolog C C, PL/i, ALC

initially written in

Underlying techniques Object-oriented design and analysis Object-ceiented technology Object-oriented technology

gaed in I_oducl Information Engineering Rul_ and infe_ncing

- Straclu:_d analytia Pattern-matt.bin8 technology

Su-acaued design

For mo_ information KnowledgeWtre, lhc. Interu_v Inc. Texas lmmamaenla

contact 3340 Peachtree Road, N.E., Suite 1100 32_O0Tower Oaks Blvd. Advanced Info. Management Division

- Atlanta, GA 30326 RockviUe, MD 20852 6550 Chase Oaks Blvd. MS 8474

Phone: (404) 231-8575 Phone: O01) 230-3000 Piano. "IX75023

: Phone: (gO0)527-3500

(_)1991 Harmon Associates. Ali Rigl_J Reterved.

_

1Source: Paul Harmon, ed., Intelligent Software Strategies, Vol. 7, no. 4, April 1991. Used with
permission by Associate Editor Curtis Hall.

--

4-3

Table 4-lb. Popular CASE Tool Vendors 2

rl ,li. i ii i iiiI'

Prudent Ml:mo Teamwork Telan, Telan PWS

Campany So_tb, inc.. CadreTeciamiolr,Ws,Inc. P#nmpl_cSyr_as, Inc.

Buic functiouali_ F.merpri_ modeling Entre'prisemodeling En_'rprim modeling I'

ofpveducZ Analys;-andde,ignofapplkations Analysisandde,ignofappl_ Designofapplicationl

Interlm:ledRAD/testin|envirorlmen!Code h_led RA_i_I environment l_ted RAD/I_Rin_environment

pneration Code pnoratian Code generation {databmmgeneration)

Teat and maintemmm utillti_ Test _ maimemmm utilitim Tem and nminumance utilitiea

Revente enlinmrmI Revenmenllimmring

Development OS/ IBM AT, IBM RS/6000 or 9000. Apollo, Stm, DEC, mM, HP, IX}, and IBM Mainframes, MVS. IBM AT or 386 v

laudvtm Client mr tmlfimczare _in| MS OS/?dUnix, Ultrix, &IX, VMS, HP-UX, (mim.4M B eat. memory), MS DOS 3.0 or

DOS (diem) and Unix (_r). Damaia OS/g. >; OS/2 1.2 F..Em >.
H

Delivery OS/ Any IBM, DEC, HP, Honeywell Ball, Apollo, Stm, DEC, IBM, HP, DG, mad05/2. OS/400, MVS: CICS, IMSK)C.

hardware Uni_i tta/Unix , ,

Price Appmximaleiy$15,000 per worimmiou. Prking _ at $6.S00; T*.ion- S150,_ - 450,000

50 worlunmiom appraximately _xf_0,000. ;:._ FWS: _2,250 - 12,500.

DevelOlXnem "Any methodology cambe _pixm_," Saplxaret: Youxdan - Dr.Mamo,Yaurdou - Method_ofy _pundent: R._D

m=lhoclololy auppom:d SA_D, SSADM, Mm_le,Se_c C.omlantilm,Boeioa - Harley, B_r 04:30,

anplcmentation available. Ward - Mellor, Me' _ - Sc.hal_ OOD. _llg

EMtatmm/Repmitary Dev_oFedfm DBMS. UrnsSoftlab Proprietary_ _mdt_r_itory Proprietary databam and mpmitory;

Stqppaned OMS (Online,MuJti-_ DODBM5) u IBM AD Cyr_/Repmitary complaint.

mpmimfy; otbe_ _, in_d_

IBM AI) Cycle via inl=rface.
, , , ___._.

Language t_o| wl, C C, C.+ Amcmbi¢=.COBOL

en/ltsUy writ_n m

Underlying techniqtm, Object-oriemed /echnology Object-orien_d techaoio r Object-oriented lec_iol._Jgy

_d in product Ralm and infe_acinl Ralet and /n_enaginl Ralm and infenmcms

Pamma-matr.h_ te¢.Ja_ olp/

Clicnt-_rver trchil_tth-e

OWn
i

Fm mc_ mforumtio_ So.ab, tac. Cadre Tec.tmoiosiea, lhc. Pmmphic Sym_m, inc,

cooutct 188 The Embascadero 222 Rghamud Street 2400 C.abatDrive

Sin Ftaucitco,CA 94105 Providence, RI 02903 Lisk, IL 60532

l_axa:: (415) 937-9175 Ptam=: (401) 351-3950 Phane: C?_) 505-6000

W_d _, C_au=y

(_)1991 l,Iumoo A,amr.mt=s.ALI_ Re_r,,ud.

2Source: Paul Harmon, ed., Intelligent Software Strategies, Vol. 7, no. 4, April 1991. Used with
permission by Associate Editor Curtis Hall.

4-4

A number of organizations have adopted the Information Engineering (lE) methodology as a means
for producing high quality software. Without the use of automated CASE tools to assist the
software teams, carrying out the associated lE processes manually would be so expensive in time
and resources that it just would not be done on many projects. The CASE tools for doing
information engineering are fairly prescriptive in taking a project through the life cycle; there is not

' much flexibility for using different techniques. So, although some of the widely-used CASE tools
are already using object-oriented techniques to develop their software, there is as yet no facility to
do object-oriented development of applications. However, most of the CASE vendors are
seriously studying OOT and making plans for adding object capabilities. CASE industry leaders
such as James Martin seem to believe that OOT is definitely in the future of the conventional CASE
products, and that the analysis and design phases of Information Engineering will change to
accommodate objects. Data models will evolve to be more object-oriented, perhaps even allowing
some mechanism to store methods along with objects, while the procedural components willi

endure as a par_'alel mechanism for many years. At the 1992 CASE World conference, Texas
Instruments announced plans to use its proposed Information Engineering with Objects (lE/O)
methodology in Version 6 of IEF, scheduled for 1993 release.

4.3. Object-Oriented Programming Languages and Environments
w

Object-oriented programming languages permit software developers to implement object-oriented
designs using the concepts of data abstraction, inheritance, and polymorphism (see Appendix B for

| a description of _he most popular languages). Although several of these languages have been
evailable for years, there have been few attempts at standardization. Class definitions and method
ir_vocation may vary greatly from one language to another; consequently, programmers familiar

2 with one object language may have difficulty with another.

,,. There is much debate in the language community at this time about the relative merits of Smalltalk
versas C_+. Many developers argue that Smalltalk is easier to use and produces better object-
crienteo, systems, b_t C++ appears to be the language most likely to be widely used. One
advantage of C+. is that it permits a more gradual introduction of object-oriented programming
techniques since it is a superset of the C language. This can also be a disadvantage, since it allows
continuation of conventional C programming techniques even though the language is C++. Since
C++ is a strongly typed language, it is more difficult to successfully put reusable parts together.

= However, there is also less of a burden on the programmer to ensure type compatibility, since the
compiler helps with type checking.

The current generation of object-oriented programming environments extend the programming
languages with browsing and debugging tools. Some include class libraries which can be used by
application developers. ObjectWorks (for Smalltalk and C++) and CenterLine ObjectCenter
(formerly Saber C++) both provide additional capabilities which can greatly improve programmer
productivity. A few development tools, such as ObjectCraft, permit visual programming. These
tools offer great promise in applying object-oriented techniques. Such tools can permit developers
to specify classes and methods using a high-level approach. These high-level specifications are
then used to generate source code. With these front-ends, developers can concentrate on the
relationships among objects and leave language-specific details to the code generation facilities of
the tool. Future tools might use the state diagrams employed by several OOA/OOD methodologies

_ to generate scripts for controlling object behaviors.

4-5

/-

4.4. Software Components - a Strategic Resource

Just as information is now recognized as a key part of a corporation's assets, the software
components created and owned by the organization and the organization's technical skills in using
these components are also crucial to the corporation's success and competitiveness. In order to
increase software productivity (reducing the average number of hours required to produce a line of
code, for example), it is only logical to use the most effective methods and leverage existing "
software assets (libraries of software life cycle components) to produce new applications with
fewer resources. Some of these productivity gains are mentioned in Appendix S. In view of ali
the benefits of using OOT, a few groups, such as a scientific programming support group at
Savannah River (see Appendix T), have made the commitment to use OOT for ali new software
development unless there is sufficient reason not to do so.

Software components are intellectual property, and this raises legal issues and licensing concerns.
Implementing software reuse, either commercially or within an organization, will require working
through a number of new and interesting questions.

Software reuse is the ability to reuse objects across programs, applications, and development
organizations. Reused objects may be code segments, design diagrams, test modules, or any part
of the software life cycle which can be shared for later use. Achieving software reuse is the most
difficult benefit of OOT to attain, and is the most expensive, since it requires significant time in the
design stage of a system to evolve to the fight definitions to maximize class reusability.

As the entities, behaviors and relationships understood about the domain are transformed into a
class hierarchy, distilling needed functionality into generic classes encourages their reuse. An
accompanying problem is that of finding the fight object in a library of hundreds or thousands of
classes, so that it can be reused.

4.4.1. Use of Class Libraries 3
-

Experienced object software developers highly recommend that any group starting to do object
work should get a good class library to boost its efforts in building an object system, especially for
beginning C++ programmers. There are perhaps a dozen companies offering Smalltalk libraries
and this market is mature enough that multiple class libraries can be successfully combined without
significant difficulty. The C++ library market is less mature and the library class definitions often
clash.

As OOT matures, many class libraries targeted at different software development levels will
appear, from the systems or foundation class level up to application-specific levels. (See Figure 4-
1.) Some libraries will provide generic functions such as a graphical interface, and will enjoy a
high degree of reuse. Other class libraries will be specialized to help different groups of
professionals in many disciplines. The lowest degree of class reuse can be expected from the
application-specific classes, which are customized for specific uses of models in different
situations. Another consideration in selecting class libraries is the target development and
application environment, for the libraries are not equally suitable to ali situations.

3 This section includes material based on experience described by Chuck Noren of
Martin Marietta Defense Systems and Don Herkimer of Martin Marietta Astronautics
Group, both in Denver.

4-6

Application-specific layer: I iii ii

"li

Discipline-related models: ledger, accounts I

Foundation classes: array collection orderedcollectionrectanglewindowscrollbar/

Figure 4-]. Layers of class libraries.

Using existing libraries acquired with source code, a team can save considerable time. The
documentation on almost ali libraries is not complete enough, and the source can be invaluable,
both to understand how the library's classes work, and to emulate the same style and conventions
when it is necessary to extend the library.

A number of technical issues must be resolved to enable widespread use of OOT. Fitting multiple
class libraries together for use in an application will require careful checking for redundancy or
conflicting definitions of objects, and will require conformance to standard interface protocols for
communication among the objects, hese standards do not currently exist, but de facto standards
are being developed by members of the Object Management Group (see Chapter 6 for discussion
of this group's work). Standards efforts are also under way in the American National Standards

_- Institute (ANSI). Also, there are sometimes difficulties when a different version of C++ compiler
is used from that of the library supplier.

As an organization matures in its development and use of class libraries, it should have some
experts available who are familiar with each commercial or public domain class library which might
be useful to its projects. These experts should guide new projects to select the appropriate libraries
to use and help train the software team in what is available to them. Public domain libraries are
desirable to use, since there are several mature public domain libraries available and this can be a

J way to provide an open solution to a problem. (X-Windows, while not a class library, is an
example of a widely used "public domain" library. The National Institutes of Health Class Library

- NIHCL, pronounced "nickel", is an example of a mature public domain class library.)
Recommended public domain libraries include the NIH Class Library, InterViews from Stanford,
ET++, and possibly Ct K)L from Texas Instruments.

lt is also good to esta,',':,',isha program of software reuse in each of the major language areas. Every
object-oriented developer should become aware of established company policy of how classes are

; put into the organization's reuse library, and be familiar with and encouraged to write generalized
classes. The growing base of reusable software will be a valuable benefit of this practice. Finally,
each organization should monitor the developments of the Object Management Group (OMG),
which is establishing standards for object-oriented development.

• 4.5. Risks and Costs of OOT

Any moves to adopt object technology will be driven by the expected benefits and the need to
- maintain a competitive advantage in software production, but there are also risks and costs

associated with such a paradigm shift. Although the Smalltalk language appeared about twenty
years ago, object technology as a whole is just beginning to mature. The tools are still not as

4-7

robust as more conventional tools and languages. Although the technology promises powerful
capabilities in the production of high quality software, the object tools available for use may be
lower in performance, at least for the fast few years.

One risk of object-oriented software development is that there is often a long period of iterative
analysis, design and prototyping of objects before the software components start to appear in
demonstratable form. There may appear to be less progress than with a typical procedural
development. If a system is prototyped using either approach, much of the user interface and
superficial aspects of the system may be demonstrated early on and enthusiastically received. But
then the necessary disciplined design and implementation of the production version of the system
may go much slower. Most of the time, effort, and responsibility needed in a project are in the
analysis and design stages, not in implementation. This can be very worrisome to observers,
especially project managers and customers, as they feel that little progress is being made.

One of the big challenges of adopting OOT is getting a body of qualified object-oriented software
engineers. Recent graduates of computer science and information sciences programs who enter the
Corporation may be already familiar with object technology, information engineering, and other
advanced technologies. However, other software developers must be reeducated to be effective in
the new paradigm. Both education in the object paradigm and the needed shift of mindset and
training in the needed tools and languages will be required. Ali software developers must be _-
familiar with the corporate information repository and with whatever libraries of objects (class
libraries) are available for their use as components in constructing new applicationz, lt is widely
advised to use consultants in the early stages to act as mentors and teachers for the people learning
the technology. There will be an initial period of significant cost for any organization to acquire the
needed base of software components. After that period, realization of the benefits of object
technology will accelerate, for providing new applications becomes a matter of extending the
software base to provide the needed increment of capability.

4.6. Organizational and Cultural Changes Needed

Widespread recognition of a corporation's information as a critical asset has already led to
organizational impacts such as marion of Chief Information Officers at high management levels in
many companies, with software and information models considered part of the information
responsibilities of the CIO. Use of object technology to create better business models and better f_
software will serve to reinforce thesetrends.

Object technology also contributes to the increasing recognition that software development groups'
roles are changing. We cannot and should not try to create ali the information delivery applications
needed in our organizations. Instead, our goal should be to provide high-level tools and
environments in which end users can create much of the information and softwar_ applications they
need to do their jobs. An example of this type of environment might be an executive information
system, in which a manager can use a window and icon interface to create an ad hoc report •
combining some specific information items needed for a special meeting, and can also use a
graphical display capability of the system to create hardcopy and transparencies for presentation of
the information. Systems such as this are extremely difficult to provide without object technology.

Recalling the ideas mentioned at the beginning of the chapter, our software organizations must
change to become less process-oriented and to focus on the software products and environments
we create. We must indeed strive to improve our software production process, but we must also
take a product-centered view, where the customer's need and the view of the product as seen and
used by the customer are paramount.

4-8

The evolution to OOT and extensive use of class libraries to develop new software applications will
create new categories of jobs and the need for a different reward structure. Mary Loomis of
Versant often describes the new job categories when she speaks on object technology. Some
people will excel at creating widely useful objects which are efficient yet flexible and easy to reuse.
These people will be the class creators, and they should be rewarded for the level of reuse their
objects receive. Some people will be librarians, skilled at (and rewarded for) naming class objects

J and other software LCOs (life cycle objects) and arranging them so that they can be browsed and
found easily when needed for reuse or specialization. Application developers must be familiar with
the software components available to them and must be skilled at combining these components
(unchanged or appropriately customized) to create new applications.

Both consultant Jon Hopkins and Mary Loomis emphasized in an Energy Systems symposium
what we have heard many object technology leaders say about changing the reward system for
object software development. Instead of rewarding programmers for activity, that is for the

• atnount of code they produce, management must evaluate and reward them for the amount of reuse
they do, for that is what will make them more productive.

This switch from creation of original code to the browsing of software catalogs for appropriate
items to reuse may lead to some disgruntlement at f'trst. Similar grumblings were heard ten to

-. twenty years ago when engineers trained to design circuits were compelled to browse catalogs and
use off-the-shelf components. However, the productivity leaps and new capabilities in the
integrated circuit world have been phenomenal, and we can hope for similar improvements in
software development. Instead of creating an application from source code, the object-oriented

, software developer of the future will concentrate on using available tools and components to
provide a system that meets the user's known needs, can grow easily to meet probable future
needs, and does its job with a flexible and pleasing user interface.

-

4-9

Chapter 5:

Object-Oriented Database Management Systems

An object-oriented database management system (OODBMS) is a database management system
which supports an object-oriented data model. An OODBMS must provide persistent storage for
the object instances, their behaviors, and their class definitions, or schemas. The OODBMS must
provide an interface for schema definition and modification, i.e., a data definition language
(DDL). The OODBMS must also provide an interface for data manipulation functions, i.e., a data
manipulation language (DML) to store, retrieve, and modify the actual objects. OODBMS should

" also support execution of object behaviors from within the database. This basic functionality can
be integrated with traditional database management system facilities (transaction management,

" recovery, security, integrity, etc.) to provide true object-oriented database management systems.

5.1. Historical Perspective

Numerous data models have been proposed for data management which differ in the manner in
. which they permit data to be viewed and manipulated. The hierarchical, network, and relational

data models have preceded the object model and it is instructive to contrast these earlier data models
with the object approach. In the hierarchical data model, record types are linked together in a
parent-child relationship, where each parent record type can have multiple children record types,

m i.e., one-to-many data relationships. The network data model extended the hierarchical data model
- by allowing record types to have multiple parents and multiple children, i.e., permitting the

definition of many-to-many data relationships. Both the hierarchical and network data models
implemented data relationships via system-generated embedded pointers that were physically
maintained and stored with the actual data. While maintaining such pointer links between record
types in a database involved system overh "cadand made data navigation both complex and limited,
DBMS products employing these technologies gained wide marketplace acceptance during the

_" middle and late 1970's.

The newer relational data mode 1 discarded the use of system-generated pointer links in favor of
using actual data values to permit dynamic navigation and linking operations between data files, or
tables. The relational data model was based on set mathematics and set operations. The relational
data model significantly simplified the user interface to data definition and data manipulation,
although it did not perform nearly as well for some types of applications as the preceding
embedded pointer-based data models. By the middle 1980's, DBMS products built around the
relational data model had gained command of the general purpose DBMS market, supplanting the
predecessor hierarchical and network DBMS products.

At the same time, there were fast emerging new applications requiting extensive manipulation of
complex information structures, including CAD data, graphical/image data, text/voice data,
geographic/spatial data, etc. These complex data types could not be easily defined using traditional
database technology and their restrictive data types, and the resulting overhead of manipulating
such complex data typically resulted m unacceptable performance. These types of applications led
to the emergence of object database systems.

• Prior to the advent of object database systems, storage options for object-oriented programming
languages were very limited. Complex object relationships had to be translated into representations
suitable for storage in relational database systems or in files, and there was no way to store object

5-1
3

behavior (executable code). The process of reading data back in from the relational structures and
reconstructing objects necessitated long setup times. Similarly, at the completion of the program,
the objects had to be "flattened" in order to resave the current state of the system. In electrical and
mechanical CAD applications, a great deal of time was required for making a single change due to
the time spent on the beginning and end of sessions.

5.2. Object-Oriented Database Manifesto

In 1989, a group of academic OODBMS researchers collaborated in writing The Object-Oriented
Database System Manifesto [ATKI89], a set of "Golden Rules" which must be satisfied for a
system to be an object-oriented database system. Here are the rules, without explanation:

The Object-Oriented Golden Rules
1. Thou shalt supportcomplex objects.
2. Thou shalt support object identity.
3. Thou shalt encapsulate thy objects. ,,
4. Thou shalt support types or classes.
5. Thy classes or types shall inherit from their ancestors.
6. Thou shalt not bind prematurely.
7. Thou shalt be computationally complete.
8. Thou shalt be extensible.

The DBMS Golden Rules
9. Thou shalt remember thy data.
10. Thou shalt manage very large databases. "
11. Thou shalt accept concurrent users, i
12. Thou shalt recover from hardware and software failures.
13. Thou shalt have a simple way of querying data.

The following additional features are proposed to significantly enhance the power and functionality
of an OODBMS:

Optional Features: "The Goodies"
1. Multiple inheritance
2. Type checking and type inferencing
3. Distribution
4. Design transactions
5. Versions

The document certainly cannot be considered formal or theoretical, but it does represent a
convergence of research opinion on the proper direction for OODBMS technology. In a limited
sense, the Manifesto serves the role of Codd's rules for relational databases, in that it establishes
design criteria for the next generation of database technology.

5.3. Architecture

Useful characterizations of OODBMS are found in [DABR90, KIM89]. '_hese systems are viewed
as consisting of three components: an Object Manager which provides the interface between ,.
external processes and the database system, a Transaction Manager which provides client-server
capabilities, and the Persistent Storage which is the object representations as actually stored on
secondary memory (see Figure 5-1).

!

5-2

1

new dass _ modificationsdefinitions _ to classes FUNCTIONS

_ _ [Object I dynamic b|udlng
Manager syntax and type checking

transactions

I concurrency conU'olTransaction buffer mangementManager backup and recovery
storage management

read/write

to memory

q

Persistent
_

Storage

Figure 5-1. Object.Oriented database management.

The Object Manager receives requests to create new class definitions, modify existing dermitions,
process messages generated by application programs using the OODBMS, and process ad hoc
queries. The Object Manager performs dynamic binding and syntax and type checking. Requests
are then submitted to the Transaction Mana_er.

The Transaction Manager (also referred to as an Object Server) manages the actual retrieval,
insertion, deletion, and update of stored objects in the database. A sing!e server may handle

" transactions submitted from more than one Object Manager. The Transacuon Manager provides
concurrency control, buffer management, and recovery services, lt is also responsible for physical
storage management which includes both object storage in the Persistent Storage and the
implementation of access methods. Typically, backup and archiving services would also be
provided by the Transaction Manager.

5.4. Development

The development of OODBMS has proceeded in two divergent directions. In one, object-oriented
progrartaning languages have been augmented with many of the services provided by commercial
database systems, e.g., persistent storage of objects, archiving facilities, transaction management,
and query languages. Such OODBMS are predicated on the belief that it is easier to implement
database capabilities into an object programming language than to augment type capabilities in
existing database systems. These types of OODBMS may be characterized as "language-centric".
While some of these systems may provide excellent performance, they are typically designed for a
particular programming langu..age,and therefore may not provide similar performance or even offer
support for other programrmng languages. Also, language-centric OODBMS are less likely to
integrate well with other types of database management systems, such as relational ones.

5-3

The second common approach to OODBMS development has been to extend or evolve existing
relational database management technology to include support for additional data types and query
language extensions to accommodate objects. These OODBMS may be characterized as "database-
centric", or extensible database management systems [ZDON89]. Extended data types may include
text, graphics, voice and image data. A data type for procedures should also be available. Storage
of procedural behavior allows databases to become active instead of passive. The query language
must then be extended to permit selection and retrieval for these new data types. OSQL and SQL3
are object query languages which are described in a later section. Versioning and cooperative
processing may also be required. Database-centric OODBMS typically can support a wide range of
programming languages.

Of the two approaches to OODBMS development, a larger number of the current marketplace
OODBMS offerings have language-centric origins. There are a few database-centric OODBMS
products now in the marketplace and even more soon to become available. However, they
generally offer lesser degrees of object support "richness" than do the competing language-centric
products. The relational database companies expect that they will be able to add some object
storage and retrieval techniques to augment their systems. Robert Miner, co-founder of Oracle,
was quoted as saying "I was nervous that we were going to be blindsided. But now I think that
we'll be able to do everything they do before they do everything we do." [VERI91, p. 100] Both
language-centric and database-centric OODBMS approaches have numerous strengths, and both
types of OODBMS products are reasonably assured of achieving good marketplace success.

5.5. Performance

Performance of OODBMS versus traditional DBMS (relational, network) is a subject of
considerable interest. The caveat to the buyer is that most claims of DBMS performance come
either directly from vendors or are vendor sponsored, and vendors invariably can design/tune
performance verification suites that portray their products in a favorable way. For complex object
data, some OODBMS vendors have documented their products to offer up to a tenfold performance
increase over traditional DBMS, and in some cases, this level of performance improvement can
likely be achieved. However, OODBMS are still a relatively new commercial technology, and as
such, significant performance gains and improvements wiU in part depend on the wider production
use of OODBMS within the marketplace, which in turn will provide OODBMS vendors with true
usage statistics and performance data that will serve as a basis for future OODBMS tuning and
performance enhancements.

For classic business/MIS database applications with purely standard types of data (fixed
alphanumeric, numeric, dates, etc.) and transaction processing requirements, the OODBMS
performance levels are generally far less impressive than traditional relationa!/network DBMS. For
example, OODBMS results against the industry standard database benchmarks (e.g., TP/1,
debit/credit) yielded lower transaction rates/higher response times when compared with traditional
DBMS transaction rates. In summary, traditional DBMS and OODBMS both perform well with
the primary types of data they were designed to handle. The major difference at present is that the
performance of traditional DBMS has benefitted from more years of experience, research and
development, whereas OODBMS are newer technology and so the future is projected to hold great
potential for significant performance gains for OODBMS.

5.6. SQL3, OSQL, and OQL(X)

There are active efforts to develop standard database languages for object-oriented database
management systems. Database Language SQL is adopted as a standard for relational DBMS by

5-4

ANSI (X3.135-1989 and X3.168-1989), the U.S. Government (FIPS 127-1), and ISO (9075-
1989). A new upward compatible version of SQL (commonly known as SQL2) is now being
concurrently processed through the final procedures within both ANSI and ISO, and is expected to
be finalized for formal adoption by both organizations in 1992. At the same time, both ANSI and
ISO technical committees are defining the follow-up to SQL2, "SQL3", which will contain
extensive new capabilities to accommodate object definition and object manipulation in addition to
ali previous SQL functionality. Current SQL3 draft specifications include facilities for
encapsulation (assertions, triggers), user-defined data types, abstract data types (ADTs), and
inheritance. SQL3, like current SQL and SQL2, would offer bindings to multiple host languages.

OSQL (Object SQL) is a high level language for developing object-oriented database applications
[LYNG91]. lt is desc_;_ed as a combination of the best benefits from object-oriented
programming (encapsulation, inheritance, extensibility) with the benefits from traditional database
programming (access control, views, concurrency control, declarative queries). OSQL is based on
the functional language approach, and provides data access and operations via a set of built-in
functions, as well as allowing user-defined types and functions. OSQL is designed to be language
independent. Hewlett-Packard implemented a subset of OSQL as part of their Iris Project. They
now market Iris under the name OD/1. Interactive as well as programmatic interfaces for OSQL
have been prototyped by H-P Labs.

The SQL standard was originally developed to serve both as an interface for interactive users and
as a sublanguage to be used by programmers. Experience has revealed that it has been not been
fully satisfactory for either use. Interactive users (especially nontechnical ones) generally choose
easier query interfaces, such as graphic query or query by example (QBE), and let those interfaces

i generate the SQL. As for programming interfaces, the DBMS vendors have had to extend the core
SQL sublanguage in order to make it more useful for developers. The various extensions then are
incompatible with each other, and the interoperability goal of SQL is defeated. Also, SQL is
supposed to work with ali languages, but its definitions of language constructs often conflict with
those of the host language it is being embedded in. This experience with SQL has caused some
industry writers to call for a different approach for object data manipulation languages. They
propose that each programming language establish a data manipulation language (DML) binding
appropriate to that language, which would integrate more smoothly with the host language and take
advantage of its strengths, instead of conflicting with them. Such an extension would also be
easier for developers to learn [A'I3VO89]. The American National Standards Institute (ANSI)

. Object-Oriented Database Task Group (OODBTG) committee recommendations for standards in
object information management [MOOR91] include both a query language bound to a language-
neutral object model (such as SQL3) and a query language bound seamlessly to different
programming languages. This language-specific approach is taken in the OQL(X) efforts,
described next.

OQL(X) is an approach to extending a programming language X with a statement from an Object
Query Language (OQL) [BLAK90]. OQL(X) is based on three principles:

1. adding a ,set type to the programming language X,
2 extending the programming language X with a query statement based on the SELECT-

FROM-WHERE structure of SQL, and
3. allowing expressions from the programming language X to be used in the formulation of

queries.
A prototype binding of OQL with C++ was built as a module of the Zeitgeist Open Object-Oriented
DBMS at Texas Instruments. In addition to OQL(C++), a CLOS version, OQL(CLOS), was also
built. The result of OQL(C++) is a query facility for object-oriented languages seamless with
respect to C++. OQL(X) is proposed as an alternative evolutionary SQL approach for object-
oriented database management, lt would utilize different SQL extensions for each programming
language.

- 5-5

5.7. Legacy Issues

Most existing production database applications reside in network or relational DBMS, and many
large business applications still do batch processing with fiat file systems. In general across the
industry, there are many more network database applications than relational, but that is not true at
some places (Martin Marietta Energy Systems, for example). An important challenge is to integrate
OODBMS with the "legacy" of applications using these existing DBMS. Before object-oriented
technology can be introduced into traditional application shops, there must be some solution to this
problem of existing code integration.

OODBMS that are extensions of relational database management systems (database-centric) should
theoretically lend themselves well to an evolutionary integration path with existing traditional
database applications, at least the relational ones. Proponents of such OODBMS point out that
there are no new coexistence/communication issues with this approach, but rather graceful
extensibility/migration of existing applications is attainable. They also state that these OODBMS
products are "more production quality", which is a commonplace ,:equirement of traditional
database applications.

On the other hand, advocates of the language-centric OODBMS are quick to point out that their
implementations provide a richer, more pure object-oriented environment, and that traditional
database applications can easily coexist and communicate with their OODBMS implementations.

An OODBMS featuring the SQL3 language can solve most legacy issues, as SQL is a standard
today for traditional database applications and is being extended to support object-oriented i_
constructs. Another solution is to treat the existing systems as large objects with their own
behavior. In this approach, the interface between the object system and the legacy system is treated _
as a series of interactions between two objects. An object is "wrapped around" the existing system
and messages are sent to that object, or "wrapper" (see Figure 5-2).

Messagecoming iot_ect: ¢JlaLeoger i _ Class:Legacy System ! r'

Inmnce for Log=oySystem)

Invokeslegacysystemas
"blackbox"wltnapWopriate
perarneters

MethodTable
for

Legacy System class

Figure 5-2. "Wrapper" around Legacy System.

5-6

5.8. Transparent Data Access

Transparent data access means totally integrated distributed data under the control of a distributed
database management system. Distributed database management implies capabilities for
partitioning logical data structures into pieces that may be stored at different remote sites, for
replicating data at multiple sites with coordinated transaction management, concunency control,
and access management. A truly distributed database is still largely a research consideration.
Commercial DBMS products, including OODBMS, are making progress in this direction and many
actually offer some distributed database facilities, but usually with many update and concurrency
restrictions, _::",,_,ftenwith severe performance limitations.

What is possible in the near term is distributed processing and interoperability. Distributed
processing implies "client/server" access to remote sites, with full capabilities for data definition

' and data manipulation, and for standardized transfer of data parameters and query responses across
communications lines to multiple remote sites. With traditional relational DBMS, SQL is the
vehicle for such interoperability. A standard Remote Database Access (RDA) protocol based on a
client/server SQL environment is expected to be finalized and adopted by ANSI and ISO in 1992-
93. This RDA/SQL standard will serve as a vital building block for future transparent object-
oriented database access, for those OODBMS supporting SQL3. Architectural issues for
OODBMS include the distribution of objects and the distribution of global schemas into local
components, lt should be noted that OODBMS lend themselves better to distributed database and
client/server architectures than do traditional relational DBMS.

Transparent data access is a strategic goal of most DBMS vendors today. Some selected vendors
have joined together in an effort to make their products interoperate and provide easier access to
data stored in their databases. ANSI standard SQL is the common denominator that allows such
technologies to become marketplace reality. Gateways are a popular method of providing
transparent data access. Gateways permit user access to remote sources of data via predefined
network routing, while making data appear local to the client user. Gateways can provide

. concurrent access to data stored at multiple remote nodes, and permit operations to be requested
that require data joins, unions, etc. Gateways typically have some restrictions (e.g., may be
limited to retrieval only with no update, may be one directional) over full function distributed
DBMS capabilities.

Another approach to providing transparent data access is through the use of natural language
interfaces. Such interfaces typically allow an English-like query request be specified by a user,
and then reference a lexicon-type facility to translate the English request to a valid SQL syntax.
This kind of user interface has met with wide acceptance at many sites from end-user personnel,
who typically find SQL too complex to master. Such user friendly interfaces do add a layer of
translation to a database session, which does require some additional resources and has some
potential performance impact. However, any performance impacts of such database interfaces are
usually more than offset by increased productivity of the users. ANSI standard SQL is the key
vehicle that has enabled software interfaces of this category to generate database queries that can
operate against multiple vendor DBMSs.

5.9. Object-Oriented Knowledge Based Systems

Knowledge-based systems (KBS) builders have used object-type knowledge representations for
years, because these representations can model natural world objects and abstractions. Most early
implementations of this type of structure have been frames, which have characteristic sets of
attributes (or slots), each of which can have one or more values. Attributes can have constraints on

5-7

legal values, and default values can be stored. As with current object systems, frame structures
can be inherited to form class structures. A very useful mechanism is the use of demons, which
are methods or procedures attached to slots or frames, _nd which are automatically activated
whenever the subject slot or frame is accessed or changed (there can be different demons for each
case). The pattern matching rules used by KBS tools in effect would do database joins on
instances of classes in the knowledge base, thus carrying out a search for stated combinations of
values perhaps more effectively than doing similar searches on relational databases. [HARM90b]

The most important difference between KBS frames and true objects is that frames are not
encapsulated. Most systems allow rules to directly access the values in each slot. This "feature",
which probably results in more efficient search of knowledge bases, must change as OODBMS
systems are more widely accepted. However, the demon feature of KBS tools is quite useful for L_
monitoring a system's use and activities, and has been discussed [DABR90] as active databases.
With active databases, retrieval and update operations can automatically cause the invocation of
alerters and triggers, i.e., procedures. This is similar to the "demon" procedural attachments in ,
frame-based systems. Also known as access-oriented techniques [STEF86], actions are perfomaed
as a byproduct of data manipulation. True object-oriented techniques require messages or some
other form of method invocation in order to access data. These active databases appear to violate
the current definition of object-oriented encapsulation.

Another blurting of the distinction between object databases and knowledge bases is the use of
pattern matching rules to find similar objects in an object hierarchy. Some knowledge-based
development tools which support objects use production rules to effect join relations (e.g. Aion's
ADS) while other tools use SQL syntax to find patterns in the data (e.g. Level 5 Object).
However, such rule-based approaches may not have access to the object hierarchy. In these cases,
a rule matches on the members of a class _ut does riot go down to its subclasses.

The ability to define interfaces between objects and to limit an object's view of another object
provides the principal distinction between frame-based and object-oriented systems. Therefore,
object-oriented programmirig can be utilized in the same fashion as frame-based systems while
providing a greater degree of software assurance.

5.10. Summaries of Some Object Database Systems

The following comments about several OODBMS are not complete representations of the products,
but are compiled from vendor literature and comments of colleagues. More formal and organized
presentations of information can be found in Appendices E and F and in a report from MIT
[AHME91].

Objectivity/DB (Objectivity of Menlo Park, California)
Objectivity/DB is an object database management system designed for engineering applications.
lt is based on a client/server model. Objects may be linked dynamically to create composite
objects or may consist of dynamic arrays called VArrays. Behavior is not stored. The
programming language interface supports both C and C++. A graphical browser based on
OSF/Motif allows developers to examine the contents of a database.

ObjectStore (Object Design of Burlington, Massachusetts)
ObjectStore uses a proprietary Virtual Memory Mapping Architecture to provide high-
performance data management and storage. In ObjectStore, any C or C++ data type can be
allocated as persistent. Existing applications can be migrated to ObjectStore using transaction
mechanisms. Behavior is not stored.

5-8

Ontos (Ontologic of Burlington, Massachusetts)
Ontos is the oldest of the products; it stores class behavior. Ontos does not support part-of
relationships, but a class may have an instance of another class as one of its member amibutes,
i.e. composite objects. Schema modification is restricted to compile-time changes. The
structure of a class may be modified at mn-time ff it has no instances, but data migration is not
supported.

Versant (Versant Object Technology of Menlo Park, California)
The Versant Object Database is a multi-client/multi-server distributed database manager that
allows objects to be stored, retrieved and updated in a heterogenous computing system.
Versant Star provides a consistent set of gateways to integrate existing applications and
databases into the Versant information system. The programming languages supported by
Versant includes Ct C++, and Smalltalk.

Gemstone (Servio Corporation of Alameda, California)
Gemstone is implemented in C and runs on most UNIX workstations. Its SmaUtalk interface

_" is graphical, but its interface to C is based on subroutine calls. The data manipulation language
of Gemstone is OPAL, an interpreted language which considers ali data types to be objects.
,')PAL does not support multiple inheritance, nor does it explicitly support the notion of
composite objects. In OPAL, an instance may be an attribute of another object. Gemstone
allows classes and transactions to be created at run-time, and allows class and instance
variables to be added or deleted at run-time. Changes in the inheritance hierarchy require
recompilation. Data migration of old instances to new types is impossible. Gemstone
terminates transactions with storage access conflicts. Gemstone does not provide update
notification or version management.

ITASCA (1TASCA Systems of Minneapolis, Minnesota)
ITASCA is an outgrowth of the MCC Orion project. By supporting dynamic schema
modification it allows developers and users to modify existing data structures without

= regenerating the system. ITASCA supports methods and their automatic distribution to clients.
When an authorized user updates a method and commits it to the shared database, ITASCA
distributes that code to the local sites. Methods then execute on the local machine. Developers
may write code in C or Common LISP.

5.11. State of the Art

In a white paper from the National Institute of Standards and Technology [DABRg0], the
prediction is that object database systems will be used in CAD/CAM, multimedia and complex
engineering applications, but that relational database systems and SQL will be used by more
conventional applications, e.g., management information systems. The paper speculates that in
five to ten years, heterogeneous database environments might emerge which could integrate
relational, object, and transaction systems.

Since object database systems are a relatively new concept, there has been little consideration of
database security or mansaction management. Indeed, the ANSI OODBTG recommendations state
that "In Object Information Management systems, there is a major need for more consensus on
security, since little work has been done in this area." [MOOR91, p.11]. Vendors have stated that
market consideration could influence their efforts in providing secure systems as defined in the
new National Computer Security Center guidelines (the "purple book"). One database vendor,
Objectivity, claims that it will have a C2 rating for im product soon.

5-9

As part of a Martin Marietta Astronautics Group project for NASA, a comparative study of object-
oriented database products was produced in November 1990; this document was updated in late
1991 to reflect v_"ious OODBMS system upgrades, and is included as Appendix F. See also the
listing of database products from the Object-Oriented Strategies newsletter (Appendix E) and the
MIT study of object database systems [AHME91].

5-10

Chapter 6:
Standards

Object technology has enjoyed rapid growth and enormous interest in recent years, and there are a
number of successful commercial language and database products to support use of the
technology. H",wever, the computing world has become very interested in standards at ali levels
of computing. The strong drive for open systems comes from the emerging dominance of the
client-server architecture (often with heterogeneous systems) and the economic necessity to
preserve investments in software and hardware. Users need to mix various hardware and software
products on their local area networks and yet have standardized object interchange capability to
allow full communication. Consequently, many feel that object-oriented technology cannot be
widely adopted and its benefits cannot be fully realized on a broad scale for large users until there
are accepted industry standards for languages, class libraries, and databases. Many others warn
that premature adoption of standards in a new area such as OOT could inhibit the exploration and
innovation needed to develop mature and robust tools. However, standards efforts are under way,
and several will be described in this chapter.

6.1. ANSI X3 Object-Oriented Databases Task Group1

In January 1989, the Database Systems Study Group (DBSSG) advisory group within ANSI
established the Object-Oriented Databases Task Group (OODBTG) "to investigate the subject of
Object Database Management (ODM) systems with the objective of determining which, if any,
aspects of such systems are suitable, at present, candidates for the development of standards."
Note that the OODBTG uses ODM in lieu of OODBMS, and the term "object" rather than "object-
oriented". This OODBTG project team completed its work in July 1991, and the public release of
the Final Technical Report is expected from ANSI DBSSG by January 1992. Their scope of work
included a Survey of ODM Systems, two public workshops on ODM standardization, an ODM
Reference Model document, and a Recommendations for Standards in Object Information
Management report_ The Task Group has now defined and considered standards recommendations
for object information management (OIM), which includes the use of objects in programming
languages, object models, database management systems, design methodologies, user interfaces,
and other related areas. This broader scope results from the group's conclusion that common
concepts are used in all these areas, and the development of object versions of ali the relevant
standards should be coordinated.

The ODM reference model defined by OODBTG provides a framework that is presented as the
design space for ODM characteristics (features, capabilities, functions). The reference model
provides a comprehensive glossary of ODM terms that builds a common language for discussing
ODMs.

1 Muchof this informationwastakendirectlyfromthe followingdocumentsproducedby the OODBTG:
1. RevisionR7of ReferenceModelforObjectDataManagement,CraigThompson,AccreditedStandards

__ CommitteeX3, INFORMATIONPROCESSINGSYSTEMS,DocumentNo.OODB 89-01R7.
2. X3/SPARC/DBSSG/OODBTGRecommendationsFor StandardsIn ObjectInformationManagement

Revision7, Editors:Ken Moore,CraigThompson,andWilliamKent, AccreditedStandardsCommittee
X3, INFORMATIONPROCESSINGSYSTEMS,DocumentNo.OODB90-R7.

6-1

APPLICATIONS APPLICATION CODE PROGRAM

DBMSs DATA STRUCTURE STRUCTURE

Figure 6-1. Traditional Application/Database Interface.

The OODBTG concluded that today's traditional applications use database operations to manipulate
data structures. There is a single interface between user programs and the system code managing
the data base as shown in Figure 6-1. The semantics of the operations at this interface are defined
in terms of the system-supplied data structures (e.g., records, hierarchies, networks). Object
Information Management (OIM) introduces a new middle ground as shown in Figure 6-2. Object-
oriented applications do not directly manipulate data structures. Applications apply operations
(methods) to objects without knowing how the objects are actually represented or implemented.

APPLICATIONS APPLICATION CODE

PROGRAM

OBJECTOPERATIONS

DBMSs

DATA STRUCTURE STRUCTURE

Figure 6-2. Object-Oriented Application/Database Interface

Correspondingly, there are two distinct modes in which information is manipulated. In the first,
more traditional mode, data is retrieved from the database to be manipulated by program constructs
in the program space. In the second, more objected-oriented mode, operations are executed in the

6-2

database space, without exposing the data structure to the requester. Standardization of data
structure is more important in the first mode than in the second, which concentrates on object
behavior. Existing standards groups organized to follow the traditional boundaries may have
trouble adapting to the object-oriented mode. Strong communication among standards groups will
be necessary to produce effective, useful standards incorporating the object-oriented paradigm.

The OODBTG classified the related standards into four layers as shown in Figure 6-3. lt is their
position that interoperation of components of an OIM based on standards requires each standard be
coordinated with a common model. The following four levels of coordination were identified:

1. Within a single category, different standards should be consistent.
2. Across a layer, common semantics should apply to similar operations, but no redundant

operations should be provided.
3. An integration framework needs to be coordinated with the concepts of a specific

application domain.
4. Object model concepts and terminology should be defined and implemented in the same

manner throughout ali standards.

......DO AIN-IND DE ENGINEERING CASE

INTEGRATION I '

FRAMEWORKS - OMG I - EIS - PeTE

. - CR - CIS

- "" i iiiii i ii iiiiiiii

LANGUA GES PROG RAMMING I OML & DML LANGUAGE ! CLASS

& TOOLS LANGUAGES BINDINGS LIBRARIES

i i ii ii

iii iriil lill I i
i II

COMMUNICATIONS u INFORMATION n CONTROLI i
l I

SERVICES OBJECT REQUEST ! - REPOSITORY m - TRANSACTIONSI i
BROKER n - QUERY LANGUAGE m - SECURITY

u m - CHANGE MANAGEMENTm - INTERCHANGE m
| I

iii

OS & . X/OPEN - Ul - OSI
COMMUNICATIONS . OSF - PO,SIX - ODP

i

Figure 6-3. Layers of Object Standards

The OODBTG concluded that several OIM areas needed immediate formal standardization attention
while others areas were lower priority and could defer standardization for the present time.
Subareas of OIM where standards should be developed include:

1. Object Model - a common, unified object model definition, semantics and syntax are
needed to facilitate sharing objects across language, operating system and machine
boundaries.

2. Object Communications - both ANSI X3T3 (Open Distributed Processing) and an Object
Management Group task force are already working on this specification.

6.3

3. Persistence - a language-neutral model of persistence, with sections on various languages
like C++, Common Lisp, Ada, SQL, etc.

4. Transactions - new transaction models are needed due to new application domains. This
area must be compatible with existing or in-progress transaction standards from ANSI
X3T5 and X/Open.

5. Query Capability - next-generation database applications need persistent languages and
object query languages like SQL3. ANSI X3H2 is developing SQL3.

6. Object Repository - to provide shared definitions among OIM components. ANSI X3H4 is
currently developing this.

7. Class Libraries - common contents and organizations of sharable and interoperable class
libraries within and across languages.

8. Object Design Methodologies - add methodological considerations to current perspectives
on using object technology.

6.2. Drive for Standards

Though there are a number of increasingly mature products on the market, there is little
interoperability between the systems, and no common object model has been developed. This lack
of agreement on a standard creates a risk for users, since their increasingly complex applications
require capabilities beyond those provided by conventional systems. Driven by these needs to use
object tools from a nonstandardized marketplace, they risk using a product which could ultimately
diverge from the de facto standard and could as a result go out of business, leaving the users
unsupported.

Strong communication among standards groups will be necessary to produce effective, useful
standards incorporating the object paradigm.

Within ANSI, there is coordination in the way standards are developed by the database committee,
language committees, repository committee, and similar standards bodies. From Figure 6-3, it is
possible to identify other existing standards bodies that have been or will be influenced by object-
oriented technology. Strong liaison between ANSI X3 subgroups and other standards bodies will
be required, as one of the major challenges will be to ensure that the standards developed are
interoperable and useful when assembled together into an OIM environment. Several of the
standards groups have now embraced the object paradigm as central to their work. Table 6-1
describes the existing standards groups and addresses their relationship to object-oriented
technology. One important consortium, the Object Management Group, is described in the next
section.

OOT and OODBMS are such hot topics that various groups are driving hard toward particular areas
of standardization. Perhaps the major challenge for OOT standardization is not the technical
aspects, but instead is found in the political arenas of standards development. For example, there
are diverse groups and bodies who are currently at various organizational and procedural stages of
activity for development of a standard object-oriented database query language. Within ANSI, the
charter for such a standard will reside with the X3H2 Database technical subcommittee, and will be
developed as part of SQL3. However, the current X3H2 membership is comprised mainly of
traditional DBMS vendors and users; there needs to be greater active involvement from some of the
OODBMS players (Versant, Servio, etc.) in this standards arena. Other standards bodies looking
at object query languages include IEEE and some industry specific trade groups. Again, the major
challenge and opportunity will be to ensure that OOT standardization efforts are coordinated among
standardization bodies/groups. Within ANSI, coordination is an inherent part of the standards
process, but in some other arenas, the coordinaf, on wil_require greater voluntary efforts on the part
of the players. Without formal coordination of OOT standardization efforts, the result will likely

6-4

be that OOT technology and marketplace usefulness will suffer from fragmented and disjoint
standards and the associated politics.

Table 6-la 2. Standards efforts which relate to object technology.
III

Standards Effort Description
i ilu i

Database Management
I II I II

X3H2-SQL3 A technical committee responsible for the standardization of database

languages NDL and SQL. They have, in May 1991, completed
specification of SQL2, and are currently working on SQL3, an extension
to current SQL standard which will include object concepts.

X3H2.1 RDA (Remote Data A task group under X3H2 on Remote Data Access (RDA). This group is
Access) responsible for the specification of a protocol concerned with providing

access to data stored at remote sites using SQL.

- JTC1 SC21/WG3 - Data An international standards committee responsible for the specification of
Management standards on data management. Projects include data management

reference model, database languages SQL, IRDS and RDA.

SQL Access Group A consortium of users and vendors working to advance the RDA protocol
and planning to work on a call-level interface to SQL systems.

Illl I I IIIII III

Transaction Processing
iii i iii i

X3T5 - TP (Transaction Processing) A task group under X3T5 (OSI) is responsible for the specification of TP
which is an application layer protocol used for exchange of information
between two or more distributed systems.

JTCI/SC21/WG5 An international standards committee responsible for the specification of
standards on transaction processing languages and bindings, including
concurrency, commitment, and recovery (CCR).

POSIX 1003.1 A group working on a profile for transaction processing.

• X/Open Transaction Processing A working group developing the XTP model of transaction processing,
which includes the XA a'ansaction specification.

2 Source: Elizabeth N. Fong et al., "X3/SPARC/DBSSG/OODBTG Final Report," from Accredited Standards
Committee X3, Information Processing Systems, September 17, 1991. Used with permission of Elizabeth N.
Fong, National Institute of Standards and Technology.

-

= 6-5

Table 6.lb. Standards efforts which relate to object technology.

Standards Effort Description

Object Communications and Distribution
'1

X3T5 OSI (Open Systems A technical committee responsible for the specification of protocol

Interconnection) standards in accordance with the 7-layer Open System Reference Model.

In particular, the X3T5.4 Network Management Task Group is responsible

for the specification of managed objects using object-oriented
technology.

X3T3 - ODP (Open Distributed A U.S. technical committee contributing to the international effort

Processing) JTCI/SC21/WG7. The ODP effort is working on the specification of a

standard reference model which will make the complexities of distributed
computer systems more transparent. The ODP-RM defines an ODP trader

which is a computational object offering services to other objects at
service povts.

OMG ORB-Object Management A task. force within OMG developing technology that performs

Group's Object Request Broker appli,=ation invocation and and sharing of large granule objects.

JTC1 SC21/WG4 - Management An international standards committee responsible for the definition of the

Information Services information model of managed objects that corresponds to the

information aspects of the systems management model. Although the

documents refer to CCITI" applications, they define general object
management concepts.

X3T1M1.5 A technical committee responsible for common management information

services for managed objects defined in accordance with JTC1 SC21/WG4
documents.

OSI/NM Forum An international forum on OSI network management.

Data Interchange

X3T2- Conceptual Schema for Data A project under X3T2 working on the standardization of conceptual

Interchange schema mechanism for data interchange. Responsible for ASN.1, a

language for data encoding and interchange.

: 6-6

Table 6-1c. Standards efforts which relate to object technology.
i i iim

Standards Effort Description
i

Domain-specific Data Representations
II

PDES/STEP (Product Data Exchange The PDES is the U.S. organizational activity that supports the

using STEP) development and implementation of STEP. STEP is the standard for the

exchange of product model data. The level 3 product data sharing

implementation specifies that multiple user applications access data to a
common shared database.

EDI (Electronic Data Interchange) EDI is an application layer protocol, lt is a standard which describes

formats for orders, payments, shipments, billings, and other business
transactions.

EDIF (Electronic Data Interchange A format for exchanging CAD chip design data.

Format)

- ODA (Office Document ODA is a standard for interchange of documents (including text, facsimile

Architecture) and graphics information) which are produced in an office environment.

Interchange of ODA documents may be by means of data communications

or exchange of storage media.

ii

Repositories

X3H4 - IRDS (Information Resource A technical committee responsible for the specification of IRDS 1 family

Dictionary Systems) of standards. This IRDS1 family of standards includes a command

language and panel interface specification, a soon to be approved

Export/Import File Format standard, and a Service Interface specification.

The next family of IRDS standards will utilize object technology.

X3H6 - CIS (CASE Integration A technical committee working on a family of standard interfaces between

Services) CASE environment framework components and tools. Standards are

being developed for service and tool registration, change management

(versions and configurations), and an object model.

EIA CDIF (Electronic Industry An industry association established to permit interchange of CASE

Association CASE Data Interchange models and data among tools.
- Format)

6-7

Table 6-ld. Standards efforts which relate to object technology.
i

Standards Effort Description
i

Programming Languages

X3J4- COBOL (OO COBOL) A technical committee responsible for the standardization of the COBOL

programming language is working on extensions to COBOL that will

include object concepts.

X3J9- Pascal A technical committee working on the standardization of the Pascal

programming language, which is working on a Technical Report for

object-oriented extensions to Pascal.

X3J13 - Common LISP A technical committee working on the standardization of Common LISP

which includes the Common LISP Object System (CLOS).

X3J16-C++ A technical committee responsible for the standardization of C++

programming language.

X 11/SC 1/I'G 11 - MUM PS A task group working on object-oriented extensions to MUMPS

Smalltalk, Objective-C, Eiffel Object programming languages.

Ada Joint Program Office The group coordinating the development of Ada 9X.

'1

Frameworks and Consortia

I

CFI - CAD Framework Initiative CFI is a consortium chartered to define interface standards that facilitate

integration of design automation tools for the benefit of end users and
vendors worldwide.

OMG- Object Management Group The OMG is a consortium to promote object-oriented concepts and

methods. The OMG architecture defines an interface called Object Request

Broker (ORB). The Object Model Task Force is developing a description

of a concrete object model.

PCTE - Portable Common Tools PCTE is an emerging ECMA standard for specifying interfaces which are

Environment primarily designed to facilitate communications and interoperability

among cooperating CASE tools and applications.

OSF- Open Systems Foundation A consortium which, as part of its project, is defining a distributed

management environment (DME) which utilizes object concepts.

ESPRIT Esprit is a European funding agency working on the specification of

information system architectures, including CIM-OSA, COMANDOS,
CSA, AND DELTA-4.

6-8

Table 6-le. Standards efforts which relate to object technology.
II

Standards Effort Description
Ull illU iu

Frameworks and Consortia

I I III

EIS - Engineering Information A US Air Force sponsored framework effort.
Systems

X/Open A consortium of users, hardware and software vendors, developing
portability guides for languages, databases, and operating systems.

DARPA The US DoD funding agency funding work on: knowledge representation
Standards Initiative, Open OODB, and NIST Persistent Object Testbed.

As this report approached publication in May 1992, the ANSI X3 Committee announced formation
of a new Technical Committee, X3H7 -- Object Information Management. 3 X3H7 will develop a
reference model technical report, with scope including:
- an interoperable object model
- object data management services
- external representations of object model schema and data
- object class libraries
- object languages
- object communication and distribution
- object design and methodologies.

6.3. Object Management Group

In the interim period before a formal standard or family of standards exists, a large group of more
than 140 commercial enterprises and user organizations formed in 1989 a consortium called the
Object Management Group (OMG). OMG "will create industry standards for commercially
available object-oriented systems by focusing on Remote Network Object Access, Encapsulation of
existing applications, and Object Database Interfaces" (quoting their brochure).

The first order of business for the consortium was the creation of a framework of the basic
components of object technology that OMG would like to standardize. OMG does not concern
itself with specific implementation of object techniques, but does seek agreement on interface
issues of interoperability, to assure that message passing between objects in different languages,
tools, databases and operating systems can be carried out smoothly. Figure 6-4 from the OMG
Architecture Guide shows the major interfaces OMG is considering. The OMG architecture has
four major components: 4

1. Object Request Broker (ORB) enables objects to make and receive requests and responses.

3 For furtherinformationon the X3H7Committeeand its meetings,contactElizabethFong, N.I.S.T.,
TechnologyBldg,A266,Gaithersburg,MD20899,phone301' 975-3250.
4 Taken from Object ManagementGroup Standards Manual, Draft 0.1, OMG TC Document90.5.4, by R.M.
Soley, May 25, 1990.

6-9

2. Object Services (OS) is a grouping of services with class interfaces that provide basic
functions for realizing and maintaining objects.

3. Common Facilities (CF) is a group of classes that provide general purpose capabilities
useful in many applications.

4. Application Objects (AO) represents the collection of classes that are specific to particular
end-user applications.

ApplicationObjects[I CommonFacilitiesI

I I / !

0ObjectServices

Figure 6-4. OMG Framework overview.

Not surprisingly, the first component area for which a consensus design was attempted was the
ORB (see Figure 6-5). Out of an original seven proposals, several were combined and finally
there were two: joint proposals by DEC/Hyperdesk and by Hewlett-Packard/Sun/NCR. In an
impressive feat of consensus-making, the OMG task force issued an ultimatum in June 1991 and
got agreement of the two teams to work out a compromise design for the ORB in the next ninety
days. Ali parties seemed to realize the benefits of working out a combined design, so future
cooperation of this sort may be expected on later issues.

6-10

i||1

Application

Application Programming Interface (API)

Static API
Dynamic API Class-Definition

Language
i

Distributed Object Management Facility

i

Figure 6-5. Object Request Broker interfaces.

There are some important things to note about the OMG. Instead of waiting for the formalized
standards-setting-with-public-review-process, which could take a couple of years, the group has
focused on existing technology that can already be delivered. As soon as the agreements are
reached, the marketplace can start aligning their products with them. Also, virtually ali of the
major hardware and software vendors active in object technology are now members. After holding
out for over a year, finally even IBM and Microsoft joined OMG in 1991. Finally, in late spring of
1991, OMG and the technical committee of Unix International announced that they will cooperate
with each other, and that UI will include key components of OMG's specifications in Roadmap,
the future direction of Unix System V. Ali this is very encouraging evidence that the object tools
market may avoid the confusing state of having multiple, semi-compatible products with which to
work.

6.4. Status of Standardization in Several Areas

The language Smalltalk is probably the most uniform of the object programming languages, with
syntax, semantics and class libraries being fairly consistent between the various dialects of the
language. There are three commercial dialects (Smalltalk-80, Smalltalk/V, and Tektronix), plus
several public domain versions to be standardized. Issues include run-time representations,
compilers, exception handling, and class hierarchies. Smalltalk has the most mature libraries,
applications, and toolkits among OOPLs.

The C++ language is undergoing standardization within ANSI by the X3J16 technical committee.
C++ is rapidly becoming the de facto industry standard in the United States. C++ is more
desirable to industry than Smalltalk because of the easier transition from other languages, such as
C. In addition, C++ is not a "closed" language like Smalltalk is; C++ modules can be embedded in
other applications. The original ANSI X3J16 scope of work included three layers of C++
standardization: 1) the features and libraries available in the AT&T C++ Release 2.0, 2) primary
libraries, support environment features, and run-time mechanisms, and 3) new language features.
ANSI X3J16 first convened in December 1989, and projects completion of the C++ standard in
1992. Meanwhile, there are several compilers available and none of them interoperate. This of
course causes problems with projects which use tools based on different vendor's language
products, or even different releases of the same product, but this long-experienced type of problem
is certainly not limited to object-oriented products.

6-11
-z

In the area of object-oriented databases, there is no formal, common object model such as E.F.
Codd's definition of the relational data model. The nearest such definition is "The Object-Oriented
Database System Manifesto" [ATKI89]. The market is still developing, with several good
products using different approaches. As yet there is no consensus on a clear leader among the
products. However, we can expect progress in this area, given the widespread cooperation the
Object Management Group is getting in its efforts to develop de facto standards.

As for analysis and design, there are several methodologies and no clear winners there, either.
Some canonical methods of representing applications graphically will probably emerge in a few
years. Given the marketplace, it is likely that one of the big CASE vendors will become the de
facto standard with added object features. The successful CASE product of the future will
probably be UNIX-based and will embody a well-accepted methodology.

6.5. The Impact of Object-Oriented Technology on Software
Standards

There are a number of software architecture and development standards in piace around the DOE
complex. Most assume a structured analysis and design type of software methodology, but for the
most part, use of object technology does not appear to conflict with the standards. Some mention
object technology in passing, but do not address it further. Methodologies with detailed step-by-
step procedures (such as Information Engineering) may not fit the object paradigm currently;
however, those methodologies are expected to adapt to object technology over time.

One area in which object databases probably could not meet regulations is in secure or sensitive
environments, since there are essentially no security features in the existing products at this time.
However, Objectivity claims that they will have a C2 rating for their pr_c_UCt soon.

6.6. A Unifying Paradigm

One of the philosophically pleasing aspects of object technology is the unifying influence it has on
the way we view computing and software systems at all levels. As the ANSI OODB Task Group
points out, object information management is no longer as distinguishable from other aspects of
information processing as it used to be. By encapsulating data structures behind object interface
protocols, the object model defines the interfaces in terms of domain-specific operations, not as
structures access by system- or structure-defined operations. Quoting from the Recommendations
for Standards [MOOR91, p. 5]:

"The semantics of object technology cross traditional boundaries, being applicable to user
interfaces, programming languages, network management, repositories, operating system
services, storage management, and other areas. It should be possible, but not required, to
have uniform semantics, syntax, or both for transient data (typically associated with a
programming language) and persistent data (typically associated with a DBMS).
Mechanisms developed for distributed object management should also be useful for object
data management

"Thus a very strong recommendation is to re-examine traditional boundaries, both in
computer technology and in standards organizations. Database may no longer be an
isolatable component of a software system. Relevant standards should be developed
cooperatively by database committees, programming language committees, repository
committees, network management committees, and so on. Object technology standards
should be developed in a way that promotes harmony across these boundaries."

6-12

This view of object technology could allow us to piace ali tasks related to computing along a
continuum, instead of viewing different groups' task areas as distinct and largely unrelated.
Adopting this view could have far reaching effects on our organizations and our approach to our
work over a period of years.

A quote from Cliff Reeves, IBM's executive responsible for object technology will conclude this
chapter: 5

"The nice thing about OO is the way you think about objects scales ali the way from
implementation issues, like binary flow and integer collections ... up to very abstract
enterprise-level things like hotel, process, customer, accounts payable, certificate of
deposit. You think about these things as nicely capsulated [sic] objects which have certain
behavior. I think that's tile underlying strength of the model."

5 The DataTrendsReporton DECand IBM,May 1991,p. 2

6-13

Chapter 7:

Future Developments in Object Technology

7.1. Changes in Computing

In order to look at the future of object technology, we must consider what is happening in general
in the computing world. In 1991, virtually ali computing activity is still procedural programming,
doing numerical or data manipulation. Most developers and many users use 16-bit PC
workstations, but user interfaces must still be aimed at "dumb" terminals hooked to mainframe
computers. Most applications use data stored in relational or hierarchical databases. Our
computing organizations are still arrangedas they were when mainframe applications were the rule,
and people trained in the mysteries of programming each specific hardware system provided all
applications and preplanned data access. There are indeed many people today using 32-bit
hardware and advanced software engineering methodologies such as information engineering to
develop software. There are a number of groups using object and knowledge-based techniques
and exploring object databases. But these people are part of the first wave of exploiting the new
technologies; their work cannot be called mainstream activities.

Fundamental changes will come as several technologies mature. The growth in use of 32-bit
workstations is leading us to view computing in terms of networks of clients and servers
communicating in a network, instead of terminals talking to mainframes. The field has finally
matured enough to commit to open systems, allowing more transfer of software and skills among
different hardware systems. There are also other trends to the decentralization of knowledge,
responsibility and power in computing; there is a growing trend to provide automated help systems
and on-line reference material with hardware and software systems, so that users can
independently learn to use the systems and can help themselves in case of problems. More types
of programming environments are appearing, too, not just CASE tools for professional
programmers, but user-friendly tools which help users to build the types of data access,
manipulation, and reporting functions they need (without waiting for the long process of formal
application development).

The CASE tools and associated methodologies for professional programmers will help the current
large application development situation immensely. Using these emerging tools and
methodologies, application development becomes less an art in coding with a programming
language, and more a matter of engineering, where the product is analyzed and developed
according to a disciplined process. As the tools and our skills in using them mature, we will be
better able to estimate and adhere to scbedules and resource allocations, and needed documentation
will be automatically assisted.

By the end of this decade, these trends will have given us a new world of computing. Most
developers and many users will be using 32-bit workstations arranged in client-server networks.
Software will routinely be engineered with CASE tools, but these tools will use object-oriented
techniques plus knowledge-based and other artificial intelligence techniques to provide much more
intelligent, helpful, and easy-to-use applications. Large applications will still be developed by
traditional computing application departments, but many applications will be built and maintained
within user organizations by means of powerful, WlMP-interfaced programming environments.
These environments will run on local workstations, but will build applications which can access
(or provide) information from (or to) network nodes ali over the enterprise, by means of
transparent data access. There will be no reason for concern about what type of hardware is used
at another node of the network, for the open systems can communicate using standard protocols.

7-1

To make ali this happen, there will be extensive use of object technology, because it provides
mechanisms for dealing with ali the heterogeneous pieces of the computing enterprise. Mainframes
and PCs can also be included in the client-server network, and old software systems can function
as objects in themselves, interfacing with newer object systems according to standard protocols.
The tremendous investment in conventionally represented information and software (the "legacy")
cannot be discarded, but it can be augmented with object databases and object-oriented systems
where the need and technology are appropriate.

Some may think this view utopian, but they should also look back ten years and consider the
differences between mainstream computing in 1981 and the current situation. There are also a
number of articles which predict these revolutionary changes [HARM91d], [THOMA91]. Let us
next consider how object technology will contribute to these changes.

7.2. The Technology Life Cycle
P

The lifetime of any computing software or hardware progresses through stages:
- research in academic or corporate settings
- increasing interest and offering of early commercial systems, often by academics starting

small businesses
- early adoption by progressive orgar_izations; pilot projects by many large organizations
- appearance of numerous comrnercial products
- adoption by mainstream organizations
- shakeout of weaker commercial products
- widespread use of mature technology
- declining use as old technology replaced

Figure 7-1 [HARM91b] shows how Intelligent Software Strategies editor Paul Harmon views this
life cycle, and where he would piace a number of technologies. Object-oriented programming
languages such as Smalltalk and C++ have made fairly significant progress along the path, both
having a number of successful applications produced by large organizations. Really widespread
adoption and use of these languages depends on OOT education and language training, plus on the
availability and acceptance of class libraries, so that users can readily assemble large applications.
Class libraries will become a significant part of the market, whether as standalone products or as
elements of object application tools. Also needed are supporting software tools such as class
browsers and debuggers to further speed up development times for some languages. Given these
developments, many software gurus are predicting that object-oriented programming will be the
dominant mode, surpassing procedural languages, within ten years. Indeed, Yourdon and
Constantine predict that most professional programmers will prefer object programming by 1995,
but that seems a bit early.

7-2

i COBOL DIJI

c_.S

obl_-_-_

I oo - . Too0a IA'
_rm $yml_ms

Academic Early Stsniricant Large Scale Mature Technology Technologyin
and Adopt_m Early AdopUon in GeneralUme DecliningUme
Corporate Corporm
R_d_ ExpkM-_

1991Hnm A. AUP.ia_ _

Figure 7-I. The location of various technologies in the software
life cycle as of 1991.

. If the experience with fields such as knowledge-based systems is any guide, what will be widely
used in several years is not the object programming languages themselves but application
development tools built from those languages, with ali the helpful features rolled into a
commercial package. An early example of this is ObjectWorks from ParcPlace, which has both
Smalltalk-80 and C++ versions. An example of evolution from another direction is that Intellicorp,
originally a leading knowledge-based systems tool (KEE) vendor, has enhanced the object-oriented
portion of its tool and has entered the object market with strong object-oriented tools (ProKAPPA,
KAPPA PC). In addition, the conventional CASE vendors are using object capabilities to
implement their tools, though none of the major ones offer the ability to do object-oriented
development with the tools yet. Most obj_t development tools currently a_'efrom small start-up
compames, basing their products on Smalltalk or C++. Some of these will grow into Intelligent
CASE (ICASE; note that this acronym is often used for Integrated CASE also) environments
themselves. We can also expect to see some companies merge with or acquire others to gain
advantageous technology. As the market develops, versions of products will be ported to more
hardware platforms, lt is impossible to say which vendors' tools will dominate by the late 1990's,
but it seems certain that the successful ICASE tools of that time will be an amalgam of the best
features of today's CASE, KBS and OO tools.

Object-oriented database products are not as far along the life cycle as languages and development
tools are. There are fewer than ten major products, and ali are standalone products for
workstations. The OODBMSs are already valuable for CAD/CAM applications, enabling
persistent storage of the complex knowledge structures needed for those applications. The
competition in the database area will be between the OODBMS vendors who will be expanding
their capabilities, hardware platforms, and performance, and the relational database vendors, who

7-3

will be modifying and extending their products to add object capabilities. If the relational vendors
can successfully add enough object extensions fast enough, they are likely to win the market, given
the cost and trouble of reimplementing any organization's databases and the urge to minimize any
needed conversions. However, many legacy systems are file-based (not relational database
systems) and running on mainframes. If a vendor can show a good migration path to workstations
and OODBMS, that might be a winning strategy in many cases.

To summarize, in ten years, the most successful application development tools (or Intelligent
CASE products) will combine the best features of today's CASE tools, knowledge-based systems
and object-oriented tools. It's also expected that there will be an object.oriented interface and
operating system that will be easy for nonprogrammers to use and modify; the NeXT machine
interface might be an early example of this. And both these types of systems will be integrated
with object-oriented databases which will store and manage the complex structures of
multimedia needed by the applications of that day (see Figure 7-2). [HARM9 le]

CURRENT PRODUCT LINES: EVENTUAL PRODUCTS:

IIIII II IIIIII

True (30 Operating Systems _ Object-Oriented
Current Operating Systems _ Operating System
OO-based Client-Server Software _ Incorporates end-user

Hypermedia Products _ development tools, class
4 GL Application Builders "- libraries, and OO-based7_.__ client-serve" network
_ating System Interface Builders v mmaagmaent utilities

Class Libmri_ _

Object-Oriented [

OOl.,s md Tools -"- Application Development
OO Design Tools _ , _ Tool

"- Incorporates O0 lmguages
CASE Tods _ tools, CASE, symbolic languages, Tools modified to
Expert System Tools _ madexpert system tools [_, rely on active OODB

" _knowledge braes
I IIII

[Object-Oriented
[Database Mansg_

RelationalDatabasesandMmag=s -- "- I .r_. laces re!ation_l ..
..... "- I aataDaSes as me on ol

Llamvases _mammag_s _'_'_' | choice.Used with a 00-
] basedelicnt-saw_

network
,jj__ --

1992 1993 1994 1995 1996 1997 1998 1999 2000

_1901 _ _sociatm, AIR_hts_ourv_.

Figure 7-2. The Overall Development of the US Software Market

7.3. Problems to Overcome

There are a number of problems which must be overcome or allowed to evolve away before OOT
can become pan of mainstream software development. Some of the risks and costs of object-
oriented application development were described in Section 4.6. Object technology is still
maturing. Progress has been rapid, and the products are getting better in both capability and
performance, but development of a new technology takes time. Figure 7-3 shows a timeline for

7-4

several years of intense activity in OOT. There are a number of vendors in the field who will not
survive the inevitable shake-out, and so any organization must be cautious about making too much
commitment to a single vendor's products, especially if it strays far from the developing consensus
on standards.

AT &T AT &T AT &T First significant Object-_rlented
C+_ 2.0 C,_+ 2.1 C++ 3.0 commmclal claim
av-,lleble _ail_le available libraries q)pear COBOL available

First CAD
Microsoft ships vendors

Wbldows 3,0 C++ compiler klcorporste Fksl important
Cmtologic ships available third-party objKt-orlentod

ONTOS object-orientIKl applicsUons
d.t.l_im, developed by

Object Do.ign Fortune I000
.hip.

ObjectStom

1990 1991 1992 1993 1994 1

Same ob_cl.oclented

database vendors are AT LT Object SQL

Borlend shipe Systems vendors and acquired by systems C++ 4.0 available
Turbo C++ relational databaee vend_rs and relatiorw.| available

Versant ships vendors mike demle to dstabsae vondofs
VERSANT market object-orlented

Boriand ships and dstabsees
Object PASCAL

Obj, ctiv_ ship. Improved browsers
Obiectivlty/D B and other

tooll appelr
Servto ships

GemStone 2.0

Projected Object-Oriented Technology Tirneline
taken from Information Week, January 7, 1991

_

Copyright 1991 by CMP Publications, Inc., 600 Community Drive, Manhasset, NY 11030. Reprinted from

InformationWeek with permission.

Figure 7.3.

Another problem is the lack of tools to support object-oriented application development from
analysis through maintenance. Powerful OOP environments have appeared (especially for
Smalltalk), but more. nearly complete coverage of the software life cycle is needed, especially for
C++ development.

A very important unresolved issue is the best way to deal with legacy databases and applications.
There have been a number of ideas on how to integrate OODBMS with the legacy databases,
including the use of wrappers (see Figure 5-2).

Until there are standard versions of languages, databases, and development methodologies,
widespread progress in adopting object technology will be limited. Currently, the vendors are still
exploring ali the possibilities and going in several directions with their products, lt may take a few
years for some areas to "settle down" to a consensus.

A whole different set of problems exists in our organizational environments, as was discussed in
Section 4.7. Here, the issues are cultural. New paradigms for software development must be
fostered with both training and management support. Software developers who have recently
graduated from computer science programs will probably already be familiar with the new

7-5

technology, so we must make sure our older staff are not left behind, unable to work with
advanced software development techniques.

An organization's reward structure must value reuse of other people's code and analysis/design
segments, and skills of finding those items in a growing library of life cycle objects. This may be
the hardest change to achieve.

New organizational structures may be required to build several levels of software components, and
to accumulate libraries of generally useful components at each level. An organization can preserve
and solidify its expertise in certain types of software (such as manufacturing or modeling or
environmental management) by encoding expert design knowledge in discipline-related libraries
and by storing these classes in a repository. We must also develop mechanisms for classifying and
accessing those components when they are needed, to enable reuse.

7-6

Chapter 8:
Recommendations

8.1. Decision Whether to Change

This white paper has considered many aspects of object-oriented technology. What can be
concluded from this survey? Is it time for us to be changing to object-oriented software
development? Let us address four major decision areas raised by Ed Yourdon [YOUR90]:

1. Is the object-oriented paradigm sufficiently mature, with well-developed products?

There is tremendous promise for improvement of software quality and development
productivity, once the tools for software development mature so that the full life cycle is
covered. Unfortunately, automated assistance in the analysis and design stages is still
weak, though there are a growing number of books and courses on the subject. Object-
oriented programming languages and tool sets are pretty well developed, with numerous
products, books, courses, and such available. There are stroo.g proponents and good
reasons to go with either C++ or SmaUtalk; the language decision must be made for each
project individually. As application development environments compatible with our

, ,,_ environment become increasingly available, we should take advantage of the productivity
gains these tools offer. Object-oriented database products are still not mature, but already
seem to be valuable for areas (like engineering) for which the relational approach is
inadequate.

The technology seems mature enough to use on problems for which conventional
approaches are insufficient. Beyond that, for simple improvement of software quality and
productivity, the state of the field is such that more progressive organizations would do
well to adopt OOT as a recommended technology for projects of sufficient complexity.
More conservative organizations may wish to do a couple of pilot projects to gain
experience with the technology. As mentioned previously, security is an issue which is yet
to be resolved.

2. Is there good object-oriented implementation technology? Do we have tools available for
effective use of the technology?

It is possible to do object-oriented analysis and design and then implement the system with
conventional software tools, but it is not always straightforward. Many companies will

: choose to wait for significant use until there is an easy path from OO analysis and design to
- implementation in an OO language, lt will not be very hard for C language programming

shops to convert to C++, but it will be hard for Cobol shops to convert. (Yourdon says
seventy-five percent of existing applications are written in Cobol, even though it is a
1950's era language.)

However, help is on the wav. Pure object languages are improving in performance and
connectability to the conventional world, and some conventional languages are being
extended to incorporate object features. Even Cobol has a standards committee planning

: changes to extend it into the object world; interim versions may be available in a couple of
years.

8-1

3. Is our computing organization sophisticated enough to change its methodology?

Watts Humphrey [HUMP89] has characterized five levels of "process maturity" 1 (see note
below) which can be used to categorize any computing organization. A hallmark of level 3
is a documented, repeatable software development methodology. Parts of the DOE
contractor organizations could be claimed to be almost at level 3, but it is a safe bet that
level 3 process maturity is not consistent across ali software development at any of the
organizations. According to Yourdon and others, there is general agreement that an
organization cannot make effective use of new tools or methodologies unless it is at level 3
or above. [YOUR90] One could probably argue with this judgement, however; even if an
entire organization is not using a new technology most effectively, it seems likely that
large, "process-mature" departments within an organization can use a disciplined and
consistent approach and achieve much value from a new technology. However, we must
also guard against falling back to level 2 because of adopting OOT methodology before it
becomes standardized.

4. Are our organization's systems and applications the kind that could effectively use OOT?

People and organizations generally don't change to a new technology just to solve familiar
problems more quickly or efficiently. The cost of training, and changing the systems, and
simple iner_2agenerally encourage people to stay with the old technology until either the
cost of not changing gets too high (and they could get order-of-magnitude improvements
by changing), or new problems arise which cannot be feasibly solved with the old
technology.

What this means is that for batch systems or applications needing simple interaction via
menus, or high transaction volumes with good performance or strict security requirements,
it may be hard to justify the change to OOT. But for developing graphical user interfaces or
a new application which cannot be solved easily with conventional techniques, OOT is a
promising solution strategy.

Even if it is not time to change the whole organization's software to an object-oriented approach, it
seems clear that the industry is evolving in that direction. A recent survey by International Data
Corporation found that 70% of large U.S. corporations said they are programming with objects or
plan to do so soon. The reason cited was money. Shearson Lehman Brothers claims a 30% drop
in development costs and software that better simulates its business. Brooklyn Union Gas, weary
of modifying and maintaining a huge and inflexible 13-year-old customer information system,
scrapped it and created an object-oriented system that is 40% smaller and yet does more. With the
flexibility inherent in OOP, they expect the new system to last twenty years at a fraction of the
maintenance cost. [VERI91, p. 98]

1 W. Humphrey's levels of process maturity:
1. Initial level. No formal methodology, no consistency, no standards.
2. Repeatable level. Intuitive; informal consensus, but no formalized methodology.
3. Defined and managed level. Formal, documented methodology; software inspections,

configuration management.
4. Measured level. Level 3, plus formal process measurements used.
5. Optimizing level. Measurements from Level 4 used to improve process.

In the late 1980's, 85% of large U.S. computing organizations surveyed were in level 1, 10-12%
at level 2, and about 3% at level 3. None were at level 4 or 5, as of 1990.

8-2

Given experiences such as this across the industry, we should encourage pilot projects to gain
valuable experience with the technology. Some groups have already been doing Sis for some time
(see Appendices for descriptions), and these groups are ready to build production systems
wherever the tools and project conditions merit. With experience gained in such pilot projects,
those computing professionals have learned which products are good for what uses, how to
integrate object projects with the installed base of applications and data bases, and even some
negative lessons of what doesn't work. We need to make effective use of the experience already
gained, plus encourage other groups to do pilot project work with current versions of object tools
and gain similar, updated experience.

8.2. Getting Started

A very important part of any effort to try object technology is education and training. First, people
should be educated about the technology, its benefits and limitations, and its interaction with other
technologies. All groups, from customers to management to developers, should be given
appropriate education and training in the tools used. See Appendix X for a description of several
courses used at the Savannah River Site.

: A gradual, staged adoption of OOT can minimize the costs of wasted effort and the reduced
productivity that accompanies the learning phase. During the coexistence of existing procedural
languages and structurally developed systems, some authors [DUFF90] even recommend
introducing object techniques by programming them within a traditional language. The argument is
that this would produce useful code in a familiar language while helping the programmers to
understand object-oriented programming language mechanisms, demystifying the technology, and
increasing user acceptance.

There are problems with this approach, however. The pseudo-object system will be much harder
to write and probably less efficient than if written in an object-oriented language. And the entire
body of applications would still need to be reimplemented in object software, when the decision is
made to adopt that technology. One of our experienced object developers warns that you should
adopt the entire new object paradigm for the software life cycle; if you persist with part of the old
software life cy_..le.,you won't see the desired results.

Hybrid languages ,_:uchas C++ are easier to change to, especially from C language, but
programmers are more likely to continue old procedural programming habits in C++, yielding
software modules that are hard to reuse and overall reduced benefits from the object technology.
Additionally, C++ tools are not as mature as Smalltalk tools. However, applications in a hybrid
language are easier to integrate with the "legacy" applications of an organization.

Pure object languages such as Smalltalk are cleaner and simpler to use, and are more likely to
produce reusable code, since the object paradigm is the only one available. However, such
systems are also much harder to integrate with legacy systems, since Smalltalk is a relatively
"closed" language (that is, it cannot easily be called by or embedded within another system). In
addition, some developers have found that Smalltalk development environments (from ParcPlace,
at least) make it difficult to enhance a system's capabilities, for example the user interface, without
significant extra effort.

= 8.3. Steps to Exploring the Technology

8-3

As object technology consultant Jon Hopkins says, OOT is a revolutionary technology, but
adopting it must be an evolutionary process. Here are the necessary steps to start exploring the
benefits of object-oriented technology.

Educate the organization on object technology and its potential impact on software
development.

Events such as the Symposium on Object-Oriented Technology held in Oak Ridge in April
1991, which included excellent presentations by Jon Hopkins and Mary Loomis (see
Appendix D for consultants listing), can help us in this regard. Regional professional
societies such as ACM and IEEE Computer Society can also be helpful for technical
education. An example of this is the Professional Development Seminar on Object-
Oriented Technology which was held in Boulder in June 1991 [HERK91]; this seminar
was conducted by two Martin Marietta employees.

Sell the object approach to ali concerned:
- senior managers from whom you'll need money and support, and who can serve as

champions in times of waning resources
- middle managers who must fit object-oriented projects in with the rest of the budget,

schedule, and political realities
- technical people, who may not be uniformly receptive
- customers (business people), whose understanding, support and good will is

necessary for success.
Make sure that all these groups have realistic expectations.

Too often there is a tendency to skimp on training, but the new object-oriented paradigm
requires a new mindset, so training and follow-up reinforcement are required. Managers
will often be too busy to attend, so senior management must not only attend themselves,
but must urge their subordinate managers to attend also.

For those organizations which have not already done so, use pilot projects to gain
experience and to learn how best to adapt the object approach to local needs.

Find a bounded problem that cannot be handled easily with a conventional approach but
which seems natural to consider with object techniques. It is best to choose a project which
does not require close integration with a number of conventional systems. Consider future
application possibilities, and give preference to a problem whose resulting class library
might be reused on other problems.

Use consultants to assist in education, mentoring, and assisting with pilot
projects.

This will bring people up to speed faster and reduce the amount of "wandering in the
wilderness" which might otherwise occur. A rule-of-thumb agreed on by several OOT
leaders at the 1991 OOPSLA conference was that 30% of an object-oriented project's
people should already be experienced. In the early stages, this is hard to achieve without
consultants. Excellent commercial consultants are available (see listing in Appendix D), but
we should also consider internal mentoring programs to share the expertise of those who
already have several years' experience in the area.

Work with some of your best people first, not the ones whom you can spare.
These people are your technical leading edge, and should be involved in your assessment
of the technology. Even for excellent people, consultants indicate that it takes probably six
months to change modes to object technology.

Make and follow a carefully thought out implementation plan.

8-4

List the objectives of the technology trial, for example to show: reduced cost, errors,
redesign, maintenance; improved reuse, user friendliness, and so on. Keep track of project
costs and benefits, differentiating such costs as training and consultation. Use early
successes to promote support in later stages of the integration plan.

Keep up-to-date on the vendors and on standards efforts in the Object
Management Group and ANSI.

The market is quite volatile. Products keep improving, so decisions based on product
features and capabilities may change from month to month. Knowledge of progress
toward standards will help to guard against committing to tools which are veering too far
from the emerging standards.

Maintain good communication among ali involved in working with object
technology.

This is essential to maximize the usefulness of ali the information being gained and the
lessons learned. As the saying goes, "None of us is as smart as ali of us." Information
sharing will also reduce the time spent in working through technical problems and
difficulties in interfacing between tools and systems. In Energy Systems, periodic
"community meetings" and special interest newsletters in advanced technology areas such
as knowledge-based systems have been used with good results. Also, user groups and
technical newsletters are excellent ideas to promote learning about the new technology. In

-. activities such as these, new developments in the marketplace can be discussed, and
ongoing projects can be described and critiqued.

Begin building a software reuse library for the organization.
By 1993, each DOE site should set up a small group to: 1) establish naming conventions
for the objects used to model the organization and 2) begin building the organization's
reuse library. This activity will serve as a training ground for object-oriented technology,
for the repository should be based on a commercial object database tool and will involve the
use and evaluation of different OODBMS and object-oriented programming languages.
Besides a small core group, additional people can be rotated through this activity both to
augment the reuse staff and to aid technology transfer.

The reuse activity should mesh closely with any information engineering (IE) activity
(especially the enterprise modeling) which is going on in the organization. We expect that
the IE tools will evolve to greater use of OOT in the next couple of years, so the IE and
reuse activities will merge when the IE/CASE tools allow it.

8.4. Cost of Achieving the Benefits

Much has been made of software reuse as a great benefit of 00% but it does not come without
significant investment. Software development practices and perhaps even the structureof software
development organizations must change. As object technology is adopted, project teams must be
allowed adequate time to study existing class libraries, in order to know what objects can be
reused and how. This may appear to be "dead time" to observers, but it is essential to successful
reuse.

lt has been found best to give different groups on a project team different responsibilities with
respect to objects. Some people will excel at building general purpose components, and some will
be more skilled at reusing and customizing classes of objects for applications. The two groups
should have significant interaction during development of an application, to ensure that developed
classes are reused and not rewritten. Also, interaction between class builders and the application

8-5

developers will improve the probability that the classes in the class library will be at the right level
of generality for the needs of the applications foreseen.

As experience with object-oriented projects grows, organizations should support reuse of the
growing class libraries by forming groups for the purpose of building and maintaining general
purpose classes, and managing class repositories as a corporate resource. This would be
analogous to the Data Resource Administration groups found at various sites.

The accumulating libraries of reusable software modules will become a corporate resource of
tremendous value which will increase our software productivity and enhance our ability to win
contracts. The cost here is in setting up mechanisms to classify and later be able to retrieve the
thousands of stored software modules and other "life cycle objects". These life cycle objects
would include not just actual software, but also other useful items such as design segments.

One of the most widely recognized benefits of using object-oriented technology is the increased
maintainability of the resulting software. The resources dedicated to maintenance will shrink
significantly as the portion of object-oriented software in the installed base grows, and this is a
permanent gain.

8.5. Changing the Organization to Object Technology

Some of the more revolutionary proponents of object-oriented software development argue that we A-
should throw out structured software development completely, and get rid of the old installed base
of legacy software as soon as possible. Some even suggest that the older structured software
developers may be unsalvageable. However, the more moderate "synthesists" (Yourdon's term)
argue that we can use the best ideas of object technology and structured technology at the same
time. For example, we can identify a number of functions on local data stores in a data flow
diagram and group those together as objects. However, the thinking process and communication
between the user and developer is very different between the structured and object-oriented
methods. There are indeed some fundamental concepts of software development which are just as
relevant when using object technology as they are for structured development: notions like
abstraction, partitioning and the conscious deferral of design decisions. Most of our experienced
structured software developers will be able to shift to the new orientation.

And change will come, with or without our traditional computing organizations. Mainstream
Information Age workers don't care about the lower level software constructs, or whether we are
using object or structured techniques. What they need is the results of a different software
development orientation-- higher level software components (robust and high quality, of course)
from which they can assemble solutions to their information problems. Many of these workers
will be able to use the emerging nontextual, nonprocedural visual software development tools
which allow intuitive assembly of applications by manipulation of icons.

The world of software development will naturally reorganize into multiple layers, much as the
hardware components market has (integrated circuits, chips, cards, etc.). The traditional
computing organizations will provide the lower level components needed by information
professionals, but additional levels of solution building may take piace in either computing or end
user organizations. This division of effort would do much to alleviate our perennial programmer
shortage, because much needed software could then be assembled and used and passed on to
others by less technical, more application domain oriented people. To support this new order, we
need an object-oriented software architecture such that the modularity and interfacing mechanisms
at each level fit the skills and interests of a distinct part of the reusable software components
market.

8-6

There will still be some critical applicationg which must be developed by computing professionals,
for example when high performance and tight integration with a production environment are
required. But these applications too will benefit from increasingly robust and efficient object tools.

8.6. Conclusion

As object technology and its tools mature, so too will our understanding of how to manage a large
and complex body of interrelated software components. Recalling an idea stated at the beginning
of this paper, we see that reusable software components are corporate assets worthy of our best
management skills. A repository of such software components, which is really an embodiment of
an organization's collected expertise, will be an investment to sustain ottr future software efforts

_ and help us meet the competition we face.

We should not wait for mature tools and standards before pushing the technology to more
widespread use. We must learn as much as possible and be ready to exploit the competitive
opportunities which will arise as new types of applications and appropriate tools emerge.

To do this, the authors strongly recommend that each DOE site organization embark on a software
reuse program as described in Section 8.4. This should be done by 1993 with a minimum
investment of 2-3 b'TEs. The reuse group's efforts to create an object repository for the
organization should be coordinated closely with any enterprise modeling efforts already under way
using information engineering methodology. We feel that we cannot be ready to make timely and
effective use of object technology if we do not make this technology investment soon.

8-7

References

[AHME91] Ahmed, Shamim, Albert Wong, Duvvuru Sriram and Robert Logcher, A
Comparison of Object-Oriented Database Management Systems for Engineering
Applications, Massachusetts Institute of Tech, .)logy Research Report R91-12, May
1991.

[ARNO91] Arnold, Patrick, Stephanie Bodoff, Derek Coleman, Helena Gilchrist, and Fiona
Hayes, "An Evaluation of Five Object-Oriented Development Met_hods", Hewlett
Packard Laboratories Technical Report HPL-91-52, June, 1991.

[ATKI89] Atkinson, Malcolm, Francois Banchilon, David DeWitt, Klaus Dittrich, David
Maier, and Stanley Zdonick, "Object-Oriented Database System Manifesto," Proc.
of the First International Conference on Deductive and Object.Oriented Databases,
Elsevier, Berlin, 1989.

[ATWO89] Atwood, Tom, OODBMS Column in Hotline on Object-Oriented Technology,
several issues in 1989-1990

[BLAK90] Blakeley, Jose', Craig Thompson and Abdallah Alasqhur, OQL(X)' Extending a
Progra_rrzning Language X with a Query Capability, Texas Ins,truments Information
Technologies Laboratory, Technical Report 90-0701, November 20, 1990.

[BOOCgl] Booch, Grady, Object-Oriented Design with Applications, Benjamin/Cummings,
Redwood City, CA, 1991.

Jl

[COAD91a] Coad, Peter and Edward Yourdon, Object Oriented Analysis, 2nd ed., Yourdon
Press, Englewood C';ffs, NJ, 1991.

[COAD91b] Coad, Peter and Edward Yourdon, Object-Oriented Design, Yourdon Press,
Englewood Cliffs, NJ, 1991.

[COX 90a] Cox, Brad, "There is a Silver Bullet," Byte, October 1990.

[COX 90b] Cox, Brad, "Planning the Software Industrial Revolution," IEEE Software,
November 1990.

[COX 91] Cox, Brad, Object-Oriented Programming, 2nd ed., Addison-Wesley, Reading,
Mass., 1991.

[CUNN_',5] Cunningham, Ward and Kurt Beck, "A Diagram for Object-Oriented Programs," In
Proc. of the Conference on Object-Oriented Programming, Systems, Languages,
and Applications, Portland, OR, 1986.

t'-DABR90] Dabrowski, Christopher, Elizabeth Fong and Deyuan Yang, "Object Database
Managemen_ Systems: Concepts and Features", National Institute of Standards and
Technology, Special Publication 500-179, 1990

[DECH91] de Champeaux, Dennis, "A Comparative Study of Object-Oriented Analysis
Methods," Hewlett Packard Laboratories Technical Report HPL-91-41, April 1991.

w

R-f-1

[DEMA78] De Marco, Tom, Structured Analysis and System Specification, Yourdon, Inc.,
New York, 1978.

[DUFF90] Duff, Chuck and Bob Howard, "Migration Patterns," Byte, October 1990.

[GIBS90] Gibson, Elizabeth, "Objects Born and Bred," Byte, October 1990.

[HARM90a] Harmon, Paul, "A Brief Overview of Software Methodologies," Intelligent
Systems Strategies, Vol. VI, No. 1, January 1990.

[HARM90b] Harmon, Paul, "Object Oriented Systems," Intelligent Systems Strategies, Vol. VI,
No. 9, September 1990.

[HARM91a] Harmon, Paul, "A Brief Overview of Software Methodologies," Intelligent
Systems Strategies, Vol. VII, No. 1, January 1991.

[HARM91b] Harmon, Paul, "The Year in Review: The Market for Intelligent Software,"
Intelligent Systems Strategies, Vol. VII, No. 2, February 1991.

[HARM91c] Harmon, Paul, "CASE and the Future of Expert-Systems Building Tools,"
Intelligent Systems Strategies, Vol. VII, No. 4, April 1991.

[HARM91d] Harmon, Paul, "What's Happening in Computing," Intelligent Systems Strategies,
Vol. VII, No. 8, August 1991.

[HARM91e] Harmon, Paul, "The Object-Oriented Market in the Fall of 1991", Object-Oriented
Strategies, Premier Issue, october 1991.

[HUMP89] Humphrey, Watts, Managing the Software Process, Prentice-Hall, Englewood
Cliffs, New Jersey, 1989.

[LYNG91] Lyngbaek, Peter ct. al., "OSQL," Hewlett-Packard Laboratories, Technical Report
HPL-DTD-91-4, January 15, 1991.

[KIM 89] Kim, Won and Frederick Lochovsky (eds.), Object-Oriented Concepts, Databases,
and ApF.lications, ACM Press, New York, 1989.

[MARQ91] Marquess, Philip, "Paradigm," DEC Professional, March 1991.

[MEYE88] Meyer, Bertrand, Object-Oriented Software Construction, Prentice-Hall,
Englewood Cliffs, NJ 1988.

[MOOD91] Moody, Scott, "Library. Clashes", Object Magazine, vol. 1 no. 1, May/June 1991,
pp. 13-18.

[MOOR91] Moore, Ken, Craig Thompson, and William Kent, eds.
"X3/SPARC/DBSSG/OODBTG Recommendations for Standards in Object
Information Management", Revision 7, Accredited Standards Committee X3,
INFORMATION PROCESSING SYSTEMS, Document No. OODB 90-R7.

[PRIE91] Prieto-Diaz, Ruben, "Making Software Reuse Work: An Implementation Model",
ACM SIGSOFT Software Engineering Notes, vol. 16 no. 3, July 1991, p 61-68.

Ref-2
L

[RUMB91] Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy and
William Lorenson, Object-Oriented Modeling and Design, Prentice Hall,
Englewood Cliffs, NJ, 1991.

[SHLA88] Shlaer, Sally and Stephen Mellor, Object-Oriented Systems Analysis, Prentice Hall,
Englewood Cliffs, NJ, 1988.

[STEF86] Stefik, Mark, Daniel Bobrow and Kenneth Kahn, "Integrating Access-oriented
Programming into a Multi-paradigm Environment," IEEE Software, 1986.

[THOMA91] Thomas, David A., "Object Utopia: a View of Object-Oriented Computation in the
21 st Century," Object Magazine, November/December 1991, pp. 10-18.

[THOMt x) 1] Thompson, Craig, "Object Data Model Reference Model", Revision R7,Accredited
Standards Committee X3, INFORMATION PROCESSING SYSTEMS, Document
No. OODB 89-01R7.

[VERI91] Verity, John and Evan Schwartz, "Software Made Simple," Business Week,
September 30, 1991, pp. 92-100.

[WIRF89] Wirfs-Brock, Rebecca and Brian Wilkerson, "Object-Oriented Design: A
- Responsibility-Driven Approach," In Proc. of the Conference on Object-Oriented

Programming, Systems, Languages, and Applications, New Orleans, LA, 1989.

[YOUR77] Yourdon, Edward and Larry Constantine, Structured Design, 2nd cd., Yourdon,
Inc., 1977.

[YOUR90] Yourdon, Edward, "Auld Lang Syne," Byte, October 1990.

[ZDON90] Zdonick, Stanley and David Maier, ,_eadings in Object-Oriented Database
Management Systems, Morgan Kaufmann Publishers, San Mateo, CA, 1990.

- Re_3

Appendix A:

Glossary1

Some of the terms used in this report are found throughout the literature, occasionally with
conflicting meanings. This Appendix contains short, informal definitions of key concepts and
terms.

Abstract Data Type:

A programming technique that defines a data space, hiding procedures and details the
- programmer does not need to know to manipulate the data. The definition of an abstract

data type consists of an internal representation along with a set of procedures required to
access and manipulate the data.

Active Database:

A database system in which retrieval and update operations result in invocation of
procedures. Such procedures, known as triggers, are associated with particular fields.

_. When the field is accessed, the trigger is activated.

Attribute:

' Attributes are properties of an entity. An entity is said to be described by its attributes. In a
database, the attributes of an entity have their analogues in the fields of a record. In an
object database, instance variables may be considered attributes of objects.

Class:

A generic description of an object type consisting of instance variables and method
definitions. Class definitions are templates from which individual objects can be created.

Class Object:

A class definition. In many OOPL and ODBMS implementations, class definitions are
objects that are instances of a generic class, or metaclass.

Class Hierarchy:

_ Classes can naturally be organized into structures (tree or network) called class hierarchies.
In a hierarchy, a class may have zero or more superclasses above it in the hierarchy. A
class may have zero or more classes below, referred to as its subclasses.

1Source: C. E.Dabrowski et al., "Object Database Management Systems: Concepts and
Features," National Institute of Standards and Technology Special Publication 500-179, April
1990; reprinted with permission from Elizabeth N. Fong, National Institute of Standards and
T.rhnrdr_v

App-1

Class Library:

A set of related classes belonging to a specific domain. For example, a graphics library
may exist, consisting of classes of graphical objects.

Code Reuse:

The ability to use a single piece of code for more than one purpose in a computer
application. When a superclass definition is inherited by a subclass, the code associated
with the superclass definition, including method definitions, is reused in the subclass.
Code reuse has the effect of reducing the amount of code needed to implement an
ap_dication.

Composite or Complex Object:

An object which is made up of other objects. Composite objects consist of collections of
parts, each of which is itself an object. Each part is in an "Is-Part-Of" relationship with the
object of which it is a component.

Concurrency Control:

A mechanism that regulates access to objects and prevents users from executing
inconsistent actions on the database.

Data Abstraction:

A programming technique by which the internal representation and operations of an object
are made only partially visible, allowing only certain information relevant to a particular
application to be seen. The actual methods by which computations are performed remain
hidden from external view. See also encapsulation.

Data Model:

The data model is a specification of the structure of the database, the operations and the
integrity rules.

Database Schema:

The complete set of individual schema definitions which describe the logical structure of a
database. In an ODB, the database schema is expressed in the set of class definitions for a
database.

Dynamic Binding:

Also known as run time binding or late binding. Dynamic binding refers to the association
of a message with a method during run time, as opposed to compile time. Dynamic
binding means that a message can be sent to an object without prior kmowledge of the
object's class.

Encapsulation:

The packaging of data and procedures into a single programmatic structure. In object-
oriented programming languages, encapsulation means that an object's data structures are
hidden from outside sources and are accessible only through the object's protocol.

App-2

Entity:

A collection of information items which can conceptually be grouped together and
distinguished from their surroundings. An entity is des_nibed by its attributes. Entities
can be linked, or have relationships to other entities.

Extensible Database Management Systems:

A class of DBMS incorporating additional data modeling capabilities together with data
management services needed for application domains which cannot easily make use of
conventional DBMS.

Extensibility:

The ability to dynamically augment the database schema. This includes addition of new
data types and class def'mitions for representation and manipulation of unconventional data
such as voice data, image data, and data associated with artificial intelligence applications.

Generalization:

- Refers to the relationship between a superclass and its subclasses. A superclass is a
generalization of its subclasses.

Handle:

A pointer to, or address of, an object. A handle is a unique, and nonchangeable reference
to an object. In some systems, the term handle is interchangeable with the term object
identity.

Inheritance:

A mechanism which allows objects of a class to acquire part of their definition from another
class (called a superclass). Inheritance can be regarded as a method for sharing a
behavioral description.

, Instance:

An individual occurrence of an object.

Instance Variable:

An attribute of an object. A class definition may s0ecify the set of instance variables that
constitute the data structures for objects of the class.

Message:

See message passing.

App-3

Message Passing:

The means by which objects communicate. Individual messages may consist of the name
of the message, the name of the target object to which its being sent, ar:_ arguments, if any.
When an object receives a message, a method is invoked which perfom_: _:_operation that
exhibits some partof the object's behavior.

Method:

A method is the body of code executed in response to a message. The methods associated
with a class definition effectively describe the behavior of all the instances of the class.

Multiple Inheritance:

The ability for a class to inherit from more than one superclass. Thus, a class may inherit
instance variables and methods from multiple superclasses.

' OLject:

An objectisthebasicunitofcomputation.An objecthasa setof"operations"anda "state"
thatrememberstheeffectofoperations.Classesdel'meobjecttypes.Typically,objectsare
def'medtorepresentthebehavioralandstructuralaspectsofrealworldentities.

Object ID (objectidentity):

A permanentuniqueidentifierthatisassignedtoeachobject.The identifierisindependent
ofthevalueoftheinstancevariablesoftheobject,andremainsconstantdespiteanychange
intheobject'sstate.ObjectIdentityissometimesusedinterchangeablywiththeterm
handle.

Object Server:

An Object Server is the software system which supports transaction management and
storage management functions for objects.

Part Hierarchy:

A hierarchy of component objects which form parts of a composite o.!:,je_t. A composite
object will be made up of objects which may themselves have c(_r:_i?onents. This is
distinguished from a class hierarchy which consists of classes related ff_',,:,_,,ghinheritance.

Persistence:

A property of data or objects implying that it has a lifetime greater than the process which
created it.

Persistent Object Store:

The object database, or ODB.

App-4

Polymorphism:

Polymorphism refers tO being able to apply a generic operation to data of different types.
For each type, a different piece of code is defined to execute the operation. In the context
of object systems, polymorphism means that an object's response to a message is

_ determined by the class it belongs to.

Protocol:

The set of messages an object will respond to. The term protocol can sometimes be used
interchangeably with the term public interface. In an ODBMS, protocols are specified in
class definitions.

Referential Integrity:

In a relational database, referential integrity means that no record may contain a reference to
the primary key of a nonexisting record.

_

Run Time Binding:

See Dynamic Binding.

Shadowing:

, The definition of a method in a class description to replace a method that would otherwise
be inherited ¢,om a superclass. When a message is sent to an object that is an instance of
the subclass, 'e method defined in the subclass is invoked. The shadowed method in the
superclass is not invoked._

Specia|ization:

Refers to the relationship between a subclass and its superclasses. A subclass is a
specialization of its superclasses.

State"

The set of values for the instance variables of an object. When the values of any of the
object's instance variables change, the object's state is altered.

Subclass:

Whe_-,a class inherits the instance variables and methods from another class, it is referred to
as its subclass.

.- Superclass:

The class from which the instance variables and methods of a subclass are inherited.

App-5
-

Appendix B:

Object-Oriented Languages

Several of the following language descriptions of object-oriented languages have been taken from
[MARQ91]:

Ada
Ada is actually an object-based language. Although Ada supports data abstraction and
information hiding, it does not provide inheritance or dynamic binding. Typically, class
definitions are placed in a package specification.

There are toolsets which are an extension of the Ada language and provide many of the
object-oriented capabilities of languages such as C++ and Smalltalk. One such product is
Classic-Ada from Software Productivity Solutions of Indiatlantic, Florida. Classic-Ada
translates object-oriented constructs such as class definitions and polymorphic functions
into Ada source code which can then be compiled. Other toolsets offered by the vendor
support persistent objects, interactive browsing and debugging, and reusable class
libraries.

Simula
Simula 67 was the first object-oriented language. A hybrid language based on Algol 60, it
introduced encapsulation and inheritance. It supports coroutines, in which an object can
perform actions independently of other objects. Popular in the Scandinavian countries, a
number of compilers are conm_rcially available.

Smalitaik
Originated at the University of Utah and later at Xerox PARC in the early 1970s, SmaUtalk
evolved into its present form at Xerox PARC later in the decade. It combines many of the
ideas from Simula with the typeless style of LISP. It is a pure language which even
represents integers as objects. In Smalltalk, classes themselves are objects which are
instances of a higher level class, i.e., a mctaclass.

C++
This language is a hybrid extension of C developed at AT&T Bell Laboratories. Dynamic
binding is available only when requested. When defining a class, those methods which are
subject to redef'mition by descendant classes are specified as virtual. For ali other routines,
the compiler generates static calls. There is no automatic garbage collection in C++.
Typically, this is performed through the definition of constructor and destructor functions
for each class of objects. C++ is rapidly becoming the de facto standard of object-oriented
languages due to the proliferation of the C language; however, development in C++ may be
more difficult than in other languages such as Smalltalk.

CLOS
The Common LISP Object System (CLOS) is a hybrid extension of the Common LISP
standard adopted by the ANSI X3J13 committee. CLOS introduces genetic functions as a
means to invoke methods associated with an object. By using genetic functions, CLOS
can write methods that specialize multiple parameters. These multi-methods are intended
for those operations whose implementation depends upon the type of more than one
argument. Auxiliary. methods (i.e., before, after, around) can be used to extend existing

App-6

methods by attaching supplemental procedures to them rather than modifying them. The
metaobject protocol allows software developers to provide new of different behaviors of
classes, e.g., methods of object creation, inheritance strategies. CLOS is a powerful
prototyping language favored in the artificial intelligence community, but its popularity
does not extend into the commercial sector.

Eiffel
, Eiffel is a pure object-oriented language which embodies many of the ideas in Bertrand

Meyer's Obiect-Oriented Software Construction. Eiffel supports multiple inheritance and
strong type checking, and parameterized types, i.e., referred to as genericity in Eiffel. It
includes Boolean assertions that can be evaluated at run-time. Assertions can be used to
verify that an object's properties. Using assertions, pre- and post-conditions can be
associated with a method. The former gives those events that must be satisfied before
calling the routine; the latter dictates certain events that must occur after the routine has
completed. Eiffel is a limited following is the United States; however, ESPRIT has
recently announced a major research initiative to generate a library of class objects for MIS-
related activities in the Eiffel language. This should promote interest in the Eiffel language
both here and abroad.

App-7

Appendix C:

Recommended Readings

Object.Oriented Analyst's

Coad, Peter and Edward Yourdon, Object-Oriented Analysis, 2nd ed., Yourdon Press, Englewood
Cliffs, NJ, 1991.

Cunningham, Ward and Kurt Beck, "A Diagram for Object-Oriented Programs," In Proc. of the
Conference on Object-Oriented Programming, Systems, Languages, and Applications, Portland,
OR, 1986.

Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy and William Lorenson,
Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

Provides an overview of the Object Modeling Technique (OMT). Offers several detailed
examples of their analysis technique. While their data modeling is similar to that espoused
by [Shlaer and Mellor, 1988], the authors provide more thorough coverage of providing
the behavior that an application must exhibit.

Shlaer, Sally and Stephen Mellor, Object-Oriented Systems Analysis, Prentice Hall, Englewood
Cliffs, NJ, 1988.

Relies heavily on the relational data model. It concentrates on data modeling and neglects
the modeling of behavior. Several reviewers have suggested that this method more closely
resembles semantic data modeling than object-oriented analysis.

Object-Oriented Design

Booch, Grady, Object-Oriented Design with Applications, Benjamin/Cummings, Redwood City,
CA, 1991.

Coad, Peter and Edward Yourdon, Object-Oriented Design, Yourdon Press, Englewood Cliffs,
NJ, 1991. [The companion to Object-Oriented Analysis.]

Cox, Brad, Object-Oriented Programming, 2nd ed., Addison-Wesley, Reading, Mass., 1991.

Meyer, Bertrand, Object-Oriented Software Construction, Prentice-Hall, Englewood Cliffs, NJ
1988.

The first few chapters provide the motivation for adopting the object-oriented paradigm for
software. Remaining chapters discuss the Eiffel programming language.

Wirfs-Brock, Rebecca and Brian Wilkerson, "Object-Oriented Design: A Responsibility-Driven
Approach," In Proc. of the Conference on Object-Oriented Programming, Systems, Languages,
and Applications, New Orleans, LA, 1989.

App-8

Wirfs-Brock, Rebecca, Brian Wilkerson, and Lauren Wiener, Designing Object-Oriented
Software, Prentice-Hall, Englewood Cliffs, NJ, 1990.

Recommended.

.z

Object-Oriented Programming

Cox, Brad, Object-Oriented Programming, 2nd ed., Addison-Wesley, Reading, Mass., 1991.

Ellis, Margaret and Bjarne Stroustrup, The Annotated C++ Reference Manual, Addison-Wesley,
: Reading, Mass. 1990.

The ANSI Base Document for the C++ programming language. Not for beginners.

Goldberg, Adele and David Robson, Smalltalk-80: The Language and its Implementation,
Addison-Wesley, Reading, Mass. 1983.

Keene, Sonya, Object-Oriented Programming in Common LISP, Addison-Wesley, Reading,
Mass., 1989.

_

An excellent text on object-oriented programming in the Common LISP Object System
(CLOS) even though CLOS specifications have changed since its publication. There is
little mention of the metaobject protocol since the text predates its specification.

Lippman, Stanley, C++ Primer, Addison-Wesley, Reading, Mass., 1989.

Weiner, Richard and Lewis Pinson, An Introduction to Object-Oriented Programming and C++,
Addison-Wesley, Reading, Mass., 1988.

Object-Oriented Database Management

- Kim, Won and Frederick Lovchovsky eds., Object-Oriented Concepts, Databases, and
Applications, ACM Press, Reading, Mass., 1989.

A collection of papers on various aspects of object technology. Slightly dated, this
publication is geared to academia.

Parsaye, Kamran, Mark Chignell, Setrag Khoshafian, and Harry Wong, Intelligent Databases:
- Object-Oriented, Deductive Hypermedia Technologies, Wiley & Sons, New York, 1989.

Zdonick, Stanley and David Maier eds., Readings in Object-Oriented Database Management
Systems, Morgan Kaufmann, 1989.

A collection of papers on various aspects of object data management. An excellent
reference text, but not suitable for beginners.

-, App-9

Recommended Periodicals

International OOP Directory, SIGS Publications, phone 212:274-0640.

Detailed encyclopedia with reprints of significant articles, company briefs, comprehensive
product listing, service directory, and extensive bibliography. Excellent single-source
information reference. Second edition due soon.

Journal of Object-Oriented Programming, ISSN #0896-8438, published bimonthly by SIGS
Publications, Inc., 310 Madison Avenue, Suite 503, New York, New York 10017, phone
212:972-7055.

Object-Oriented Strategies, focused on O-O products, from languages and tools to operating
systems and databasez (newly split off from ISS, below)
Intelligent Software Strategies, focused on expert systems intelligent CASE, natural language,
neural networks

An excellent source of product reviews and comparisons and state-of-the-art surveys on ali
the topics covered. Both above newsletters from (Paul) Harmon Associates, about $370
per year. Circulation info: published by Cutter Information Corp., phone 617:648-8700.

Object Magazine, focused on technical, business, and organizational issues involved in adopting
object technology. $25 per year for individuals, $59 for institutions. Subscriber Services, Dept.
OBJ, P.O. Box 3000, Denville, NJ 07834-9970.

Recommended Conferences

OOPSLA - Object-Oriented Prong Systems, Languages, and Applications
¢1o- academic oriented than the others.

Object World
For the commercial world.

SCOOP - Seminars & Conference on Object-Oriented Programing. Both West (spring) and East
(late summer/fan) versions. Commercial world oriented.

App- 10 ,_

Appendix D:
Consultants

This is a partial list of consultants on object technologies, with a few annotations. In addition to
these, many of the tool and database vendors have excellent technical staff, many of whom are
willing to give short presentations on object technologies and their respective products.

Knowledge Systems Corporation phone 919:481-4000
114 MacKenan Drive, Suite 100
Cary, North Carolina 27511-6446

J Reed Phillips, Sam Adams, Ken Auer. Smalltalk.

Palladio Software phone 414:789-5253
Suite 360
16535 W. Blue Mound Road
Brookfield, Wisconsin 53005

Jon Hopkins, frequent speaker at object conferences. Presented seminar at Energy
Systems Symposium, April 1991.

- Technology Exchange Company phone 617:944-3700
Route 128
One Jacob Way
Reading, Massachusetts 01867

C++ training. Beta version of their OOP & C++ course offered at Energy Systems in
1990.

The Object People, Inc.
91 Second Avenue
Ottawa, Ontario

- Canada K 1S 2H4

Smalltalk

Berard Software Engineering, Inc. phone 301:417-9884
18620 Matenay Road

: Germantown, Maryland 20874

• Object-oriented software engineering

App- 1 1

Semaphore Training phone 508:794-3366
800 Turnpike Street
North Andover, Massachusetts 01845

C++

Instantiations, Inc. phone 503:242-0725
921 SW Washington
Suite 312
Portland, Oregon 97205

C++ and SmaUtalk

Elite Systems
7400 SW Barnes Road #911
Portland, Oregon 97225

OO design and C++

Quality Software Engineering phone 503:645-6698
P. O. Bo,. 303
Beaverton, Oregon 97075-0303

L

OO design and C++ _

Pantheon Systems, Inc. phone 505:626-8639
P. O. Box 230835
Portland, Oregon 97223

Smalltalk

Rational Consulting phone 303:986-2405
3320 Scott Boulevard
Santa Clara, California 95054-3197

Grady Booch. C++ and Ada.

Robert Fulton phone 404:894-7409
Professor of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

CALS, IDEF
t,

[,
r

App-12

i

Appendix E:

Object-Oriented Products2

The following table is an extensive listing of objea-orient_ products available as of
late 1991. The table is taken from the premier issue (October 1991) of the Object-
Oriented Strategies newsletter, courtesy of Editor Paul Harmon and Associate
Editor Curtis Hall, who granted us permission to use it. For more information
about this newsletter, see Appendix C.

OBJECT-ORIENTED PRODUCTS BEING SOLD IN THE US

In the course of each year, we will try to review In this issue, we include tables on four groups of
ali the OO products on the market and provide in- products:(1) OO ApplicationDevelopment Environ-
formation so that readers can keep up with the ments and Tools, (2) OO Interface Development
variety and features of the products in each niche. Tools, (3) OO Design Tools, and (4) OO Databases.

Table 1 -- Object-Oriented Application Development Environments and Tools
Name of Product Price Hardware Comments
(Vendor) (Operating System)

Application Manager $395 IBM PC and compatibles, For developingSmalltalk/Vapplications. Includes
Smalltalk/286 i$475 Macintosh. functionsto allowdevelopersto view andaccessthe
Smalltalk/VPM and $395 subsetof classesand methodsthat are considered
V/Win partof an applicationpackage;providessoftware
Smalltalk/V-Ma¢ engineeringsupportfor applicationdevelopment.
(Coopers& Lybrand Sourcecontrolandchange browsersalso available.
Soflpert Systems Div.)

ENFIN/2 $995- Three environments OO development environment (based on an enhanced
(Enfin Software Corp.) $4,900 supported: Smalltalk paradigm) containing class browser,

OS/2/Presentation respecter, interactive debugger; includes: set of
!Manager, DOSNVindows, reusable classes and methods; 4GL development
and Unix/Motif. tools such as interactive interface builder, graphical

reportgenerator,businessgl;aphicobjects,an SQL
queryeditor,anda DB andtable definitionfacility. A
programgeneratorisalso availableas an add-on
package.

,,,

LabVIEW 2 $1,995 Mac with 4 mb RAM; 80 Graphic programminglanguage tordevelopinginstru-
(NationalInstruments) mb hard drive mentationapplications. Featureshierarchicalmenus,

recommended, wirestretching,and completeclipboardcapabilities.
Includesgraphicalcompilerfor generatingoptimized
machinecodefromblockdiagrams, abilityto link-in
externalcode routines.

Object Designer $495 IBM PC/AT and Availableinthreelanguage versions:TurboPascal
(Chen & Associates) compatibles;requires 5.5; C++, and C++ andTurbo Pascal 5.5. Features:

640K RAM and EGMVGA objecthierarchies,objectvariable definitions,and
graphics, objectmethodspecifications;integrateddata

dictionary,continuouserrorchecking,and code
generation.

•) 1991HarmonAssoc=ates.Ali rightsreserved.

2Source: Paul Harmon, ed., Object-Oriented Strategies, Premier Issue, October 1991. Used with
permission by Associate Editor Curtis Hall.

App-13

i , dm lml,i ml mlmlmm | ,mmmm m m mm lm m ¿m mm mlk_mm dlm ,mmm mm m m m,
OCTOBER 1991

Table 1, cont.--Object-Oriented Application Development Environments and Tools
Name of Procluct Price Hardware Comments
(Vendor) (Operating System).... ,,

ObJectCraft(V. 2.0) $399 IBM PC/ATor compatibles Lets usersdevelopOO programsvisuallyby "drawing"
(ObjectCraft, Inc.) (DOS); VGAJEGA a program's objects,flow, interface,and DB

graphics, connectionson screen. These diagramscan be
automaticallyconvertedto compilableC++ orTurbo
Pascal 5.5 code. Featuresinclude:predefined
interfaceobjects(buttons,switches,etc.), capabilities
for librarydevelopment,andthe abilityto import
existingC++ files andwriteC++ methodsinsidethe
ObjectCraftenvironment.

ObJectPlus $995- IBM PC/AT orcompatibles OO analysisand designtoolandcodegenerator
(ProtoSoftInc.) $4,500 (DOS); requiresMS operatinginWindows;availablefor Ada, C, C-H-,and

Windows. ObjectPascalcode generation. Featuresincludefull
cycle support,and DBintegrationwithOracle, dB2, etc.

Objectworks Smalltalk $3,500 386 PCs(DOS), Programminglanguage/toolset.Supportsportabilityof
ObJectworksC++ (Windows),Apollo,Sun, HP sourcecode, objects,and binarycode. Features:wide
(ParcPlaceSystems) 9000series300 (Unix), rangeof applicationportability,reusableclasslibrary,

DECstation,Mac, Sun completesourcecode to class library. C++ version
$3,000 SPARCstation. supportscreationof abstract/concreteclasses,

C++ versionavailableonly traditionalC data structuresand procedures,type
for Sun3 & 4 and checking,multipleinheritance,dynamicmemory
S PARCstations. allocation,data abstraction.

......

Prograph (v. 2.5) $495 Any Mac with 2 mb RAM; OOP environment thatallows developer to "draw" "-
(TGS Systems) hard disk; system 7.0, 6.0, application. Includes: graphical dataflow language

A/UX. and built-in sourcecodedebugger forbuilding "clickable" .-
applications,interpreter/compiler, WYSlWYG editor for
associated methods, ¢ustomizable interface elements,
full single-inheritancesupport. Also includes DB engine
for creatingmuitiuserflatfile,relational,or objectDB
applications.

......

Object-Oriented Varies DecVAX (VMS), Sun, and CK)SD/C++NotationEditorsupportsthe OOSD notation
Structured Design/C++ by Apollo (Unix) workstations, ifor designingC++ applications.Featuresspecific to C,+.+
Notation Editor platform have beenadded. The editorprovidesfullsupportto
(Interactive classes,singleand multiple inheritance,member
Development functions, templates, global and local scoping, etc.
Environments) Future enhancements will connect designs created

with this editor to the Software Through Pictures (IDE)
multi-user repository for functions including quality
assurance, code and design generation, and reuse of
design and code.

, , =

SPOKE $13,000 Sun SPARCstation. OOP environment with multiple inheritance, dynamic
(Expertelligence Inc.) classes, generic functions. Written in C and generates ._

C code. May be used in conjunction with ,
Expertelligence's Aotionl interface builder:

,,

Teamwork iVaries Available on a wide Modeling and design tool for several application
(Cadre Technologies, widely variety of operating development areas: information modeling m helps
Inc.) platforms, systems analysts and DB designers model the

entities, relationships, and attributes of ali application
data at the conceptuallevel; systemsanalysism for
real-time structured analysis; and systemsdesign m
for employing structureddesign techniques.

,,,

© 1991HarmonAssociates.Ali rightsreserved.

i mi i =, m i

App-14

OCTOBER ",_1
.,_

Table 2 --Object-Oriented Interface Development Tools

Name of Product Price Hardware Comments
(Vendor) (Operating System)

Action! $1,995- MicroExplorer,Macintosh, Basedon ExpertObjectCode (a Lispcode containing
(Expertelligence) $35,000 Sun SPARCstation (Unix), the Flavorsdefinitionof each of the 13 objectsfound

IBM PS/2 (Presentation in the standard Macintosh imerface, windows, menus,
Manager). keyboard events, etc.). Allows "point-and click"

development of GUIs which include connections
Ibetween interface objects and underlying functional
code. Features: inspectors,browsers,and dynamic
class editors;supportsmultiple inheritance, exception
handling, tauri-method dipatch, and modularity.
Applications developed on one platform may be
ported to others without modification. !

, ,

AppMaker $295 Mac Plus or larger running Tool for creating and changing Macintosh applications
i(Bowers Development System 5.0 or later, also quickly with a minimum of programming. Provides
Corp.) available for A/UX point-and-click user interface development, including

(MacUnix) and Apple generation of complete, "ready-to-run" source code in
IGS. Language system _ascalor C (for entire user interface or selective
(MPW or THINK,etc.) modules).Features:GUI editorforarrangingelements
requiredfor compilins and on screen;codegeneratorcan be customizedto
linkingof generatedcode, supportindividualprogram,methodsto supportcross-

_latformdevelopment,orto -".ddlanguages;resource
editorletsyouopen and enhanceexistingapplications
aswell ascreate new ones; includeslibraryof over70
routinesin sourcecode form.

CommonView 2 $399- IBM PCs and compatibles. Applicationframeworkof existingand reusableC++
(ImageSoft Inc.) $599 classesfor developingGUI-based applications.

Allowsdevelopersto create a single,portableGUI that
can run underWindows,PresentationManager, HP
New Wave, OSF/Motif, and Mac. Pre-testedobjects
may be reusedto create customized(application-
specific) objects.

C talk/Views $450 IBM PCsor compatibles: ForMS Windows programdevelopment in C. The
(C-NSInc.) requires 512 K RAM. mostcommon elementsof Windowsprogramsare

iRequiresMS C compiler, packagedas reusablesoftwarecomponents,Allows
MS Windows 2,1 or later, Windows functionsto be converted intostandard C
MS DevelopmentKit, code.
Workswith mostC

C++/Views $495 compilers. For developing Windows 3.0 applications in C.H-.
(CNS Inc.) IBM 286,386, or Features:65 C++ classes encapsulating Windows

compatibles; requires MS functionality, class hierarchy browser supporting
Windows 3.0 and SDK, single and multiple inheritance, source/file editing,
C++ compiler/reprocessor multiple rooted hierarchies, adding/deleting classes,
2.0. application/library management, automatic make file,

and class generation and documentation.
,.,

MacApp (v. 2.0) $275 Mac Plus, SE or IIwith 2 OOtoolkit consisting of an object library from which
(Apple Computer Inc.) mb RAM and hard drive, usersmay modifyexisting objects for creatingMacintosh

Requires Mac applications, including scrollable, resizable windows,
Programmer's Workshop and multi-page printing. Applications "inherit" the look
(MPW) 3.0 and MPW ;andfeel of standard Mac-based applications directly
Pascal 3.1, MPW C 3.1 from the MacApp code. Includes tools for source
and MPW C++ 3.1 or code browsing and creating and editing windows and
Think Pascal 3.0. dialogboxes. Operates on ali Mac hardware and runs

under MuttiFinderandthe AJUXoperating system.
.........

© 1991HarmonAssociates.Ali rightsreserved.

i i

PREMIER ISSUE App-15

OCTOBER 1991
li i

Table 2, cont.--Object-Oriented Interface Development Tools

Pri'ce "
Name of Product Hardware Comments
(Vendor) (Operating System)

MacDialog Editor ;$325 Mac +, SE, or II; MacOS Mouse-drivendevelopment toolforcreating interfaces
(Quintus Corp.) 6.0, MacProlog6.0 or for Mac-basedPrologapplications, including:radios,

later. Hard disk buttons,checkboxes,menus,text fields,editfields,
recommended, icons,picturebuttons,and picturecheckboxes.

Supportsmultiple scrollablemenus.

NeXtStep NA NeXt machine, IBM PS/2, Window-baseddevelopmentenvironmentconsistingof
(NeXt Inc.) and RS 6000. four components: Window Server and Workspace

Manager D for file and system navigation; Application
Kit -- a set of approx. 25 software classes that define
interactive objects such as windows, buttons, and
strollers;and InterfaceBuilder-- usespreviouslycreated
softwareobjectsto develop user interfaces. UsesDisplay
PostScriptsystemfor both screen display andprinting.

, ,

ObjectVision $99.95 IBM PCs and compatibles. Allows developer.'_to create MS Windows applications
(Borland) visually by combining declarative style logic (decision

trees and intelligent prompting) with a form-oriented
interface, visual programming techniques, incremental
development method, and interpreter with graphical
toolset.

...... , ,

Object/1 $995 IBM AT or 386; OS/2 and For developing graphical interfaces for OS/2
(Micro Data Base Presentation Manager or Presentation Manager and MS Windows 3.0
Syst6ms Inc.) DOS/Windows 3.0; 4 mb applications. Includes OOP language rooted in C, '

RAM, EGA/VGA, mouse, nearly 300 classes, and 3,000 methods. Applications
may operate stand-alone using TBL DB engine
(Kno.wledgeManand GURU DB), or the client side for
MDBS IV, MSoft/Sybase, or ORACLE.

,,

Turbo Vision $149 IBM PCs and compatibles. Set of utilities and object libraries for use with the
Development Toolkit Turbo Vision (Turbo Pascal6.0) OO, event-driven
(Blaise Computing, Inc.) framework. Includes resource editor for interactively

creating and modifying dialog boxes and other
resources, a utility to convert Turbo Vision resources
into Windows resource script files, and an object
library that extends Turbo Vision's capabilities.

.....

Table 3 --Object-Oriented Design Tools
i

Name of Product Price IHardware Comm'ents

(Vendor) i(Operating System)
I

OOATool $1,995 IBM PC (DOS/Windows Providesfive-layer automationsupport for OO analysis
Commercial Version 3.0), OS/2, Mac; Unix as described in Coad/Yourdon Object-Oriented
OOATool version in development. Analysis, second edition, including: documentation
Small Project Version tools -- templates, custonlizable document
(Object International) $,.-55 Same as above, generation, and a variety of specifications capture

I points; support for larger models, including collapsible
subjects, layer combinations, "hot" overview windows,
and views with filters; "on-the-fly" and on.command
model critique capabilities; direct connectivity with
other tools via a human-readable "SGML" tagged
language; windows-and-menus interaction; and
several examples to.f.acilitate technology transfer.

.. ,.

© 1991 Harmon Assoctates. Ali rights reserved.

App-16

OCTOBER 1991 •
=,fin-, ii ,i i|l i i i

Table4--Object-Oriented Databases
, ,,

Name of Product Price Hardware Comments
(Vendor) (Operating System) ,,

G-BASE/W $5,000 Single-user,Lisp-based Heterogeneous,client-serverarchitecturefor
(Object Databases, Inc.) workstationversion;Sun, CAD/CAM, CIM, CASE, etc.,and high-speed

Apollo, Symbolics, TI transaction processing applications. Features:
MicroExplorer and multiple inheritance for code reusability; abstract data

Explorer, Mac. modeling; decision support for "what-rf?"scenarios; G-
LOGIS, a logic programming facility combining

G-BASE/GTX Varies LMulti-user, Lisp-based PROLOG and Lisp functionsforcomplete DB
(ObjectDatabases,lhc.) by iversion;Vax/VMS, Sun3 inferencing;fault toleranceand simultaneous,on-.line

platform and 4. C++ version backup. Inaddition,variousadd-onpackagesare
scheduledfor early 1992 available, suchas G-BASE/SQL, which allows

shared, common DB accessvia an Oracle sewer.
,,,........

GemStone (Ver. 2.0) $12,000- Sun3 and4, DecVAX Multi-user,client-serverarchitecturefor same or
(ServioLogicCorp.) $92,000 (VMS), and IBM RS6000 heterogenousconfigurations.Features:ability to

platforms;IBM PC, Mac storebothslotandmethoddescriptionstogether;
II, and VT100 data definitionanddata manipulationlanguagesfor
workstations.Also supportingapplicationsin C, C++, Smalltalk, and
supports TCP/lP and COBOL;graphicaltool for creatingclassdefinitions.
DECnet protocols. Implementation in X Windows/OSF Motif provides

mouse-driven interface for direct manipulation of
relationships between classes; usercan define
classes and their instance variables, create and
manipulate class hierarchies, and define sets for

" holding objects.
.....

IDB Object Database 152,500- IBM PC (DOSNVindows), For stand-alone or networked applications; supports
(Persistent Data $6,000 Mac (OS 6.0 and 7.0), controlled sharing of information across
Systems) NeXT (v.2.0), Apollo heterogenous networks with any mix of supported

(HP/Domairl OS), HP platforms, including DOS/Windows3.0, Sun, and
(Unix), and Sun HP/Domain OS. Application areas include CASB to
workstations (Unix). advanced office automation, including multimedia.

.........

ITASCA $3,995 Apollo, HP, IBM, DEC, Based on ORION prototypedeveloped by MCC.
(ItascaSystems Inc.) Sun, andSiliconGraphics ExecutesroutineswritteninC, Fortran,and Lisp.

workstations;requires16 ApplicationswritteninC++, C, or Lispcan call Itasca
mb RAM. via interfaceroutines. Persistentobjectsand

methods developedusingone languagecan be
called.by implementationwritteninother languages.
Features:dynamicschemamodificationm enables
network-wideDB accesswhile changes,suchas
addingor removingclasses,or changingclass
hierarchiesor inheritance,are made at any site;
implicitsecurityauthorization-- usersauthorizedto
readdata atcertainsecurity levelsautomaticallyhave
accessto new objectsat that level or lower;dynamic
bindingof versionreferences-.- allowsone objectto
dynamically"pointto" the mostrecentlyreleased or
anotherdesignatedversion;supportfor privateand
shared DBs-- objectsmay be "checkedout"of
shared DBsfor use in privateDBs, where their
accessthenapproachessingle-usersystem
performance.

--- i i i i,ll •

© 1991HarmonAssociates.AIInghtsreserved

ii

PREMIER ISSUE App-17

OCTOBER 1991
i • i i i i i i i i .l|i

Table 4, cont.---Object-Oriented Databases
iiii li

Name of Product Price Hardware Comments
!(Vendor) (Opera_ingSystem) ,,

Objnctivity/DB $3,000- IBM 386,486 (DOS and For applicationsinvolvingcomplexdata types,
(ObjectivityInc.) $30,000 Wir_ows 3.0), Sun3, relationships,concurrency.Fullydistributed

SPARCstation(Unix),HP architecturewithtransparentheterogenoussupport
' 9000 series (HP-UX), across ali platforms. Allows integration of design and

IBM RS/6000, DEC RISC, Idnguage tools for network-based, multi-user
VAXAJItrix,VAX/VMS, applications. C and C++ interface for application
Sony News,Silicon developers.
Graphicsworkstations.

,,,

ObjectStore $25,000 Sun 3 and 4 (Unix); Allowsintegrationofexisting C librariesand applications
(Object Design) additional platforms/ withnew oneswritten in C-H-. FeaturesSchema

systems under Designer,an interactive,graphicaltool for developing
development: HP, OS/2 and manipulatinglargeclass matrices. Supportssource-
(X Windows), and MS !eveldebug,_ingand hasa graphical,DB browser/query
Windows 3.0. c_q:_abilityI_,,:facilitatingdevelopment. Queryoptimizer

helpsminimizenumberof objectsexaminedin response
query. Version andconfigurationsupportsallow
developersto maintaindif;,erentversionsof a designat
the individuaJobject level.

....

ONTOS DB Varies Sun 3, 4, SPARCstations, For network-based,data-intensiveapplications
(OntosInc.) by Apollo,RS/6000, rangingfrom telecommunicationsandmultimediato

platform DECstation(Ultrix),and manufacturing,geographicalinformationsystems,
OS/2 platforms, and defense. Allows storageof different ty,,:>esof

information:data,text,graphics,pictures,vok:e,video,
etc. Providesinterfacesfor C++, C, SQL, and DB
administrationm objectlanguage supportand
graphicalutilitiesfor schemadesigntools-- DB
Designer,ONTOS SQL, and ONTOS Studio.

Statice $10,000 Symbolicsmachines Persistentstorageallowsobjectsto be storedoutsideof
(Symbolics, Inc.) Site. (Lisp), virtualmemory,enablingapplications runningon

$40,000- different workstationsto share the same code. Has
$50,000 methodsfor attachingproceduresto types,thereby

associatingprogramsand data. Full commonalitywith
the Genera-Lispenvironment,allowsintegrationwith
otherLispapplications,suchasSymbolic'sJoshua
expertsystemsprogramminglanguage.

Versant $15,000 Sun 3 and4 workstations Intendedfor applicationareas suchas engineering
(Versant Object (Unix), IBM RS 6000. and office automation,etc. Objectsmay be created
TechnologyCorp.) to containdata thatcan be closely linkedto

applications;objects(softwaremodules)are reusable
andeasily modified. Consistsof four modules;
Versantm a distributedobjectmanager andobject
storage systemforhandlingobjectsand performing
jl/O functions;a C++ class libraryand setof toolsthat
includea schemautilitythat allowsC++ programsto
accessa DB; a C library;and VersantView --a
developmenttoolfor browsingDB objectsand classes.

.... ,., | i i -- -iii

© 1991HarmonAssociates.Ali rightsreserved.

i

App-18

OCTOBER 1991
iii

Object-Oriented Product Vendors

Apple Computer Enfin Software Corp. Objectivity Inc.
MacApp ENFIN/2 Objectivity/DB
20525 Mariani Ave., M/S 33G 6920 MiramarRd., Ste. 307 800 El Camino Real, 4th FI.
Cupertino,CA 95014 San Diego,CA 92121 MenloPark, CA 94025
(800) 282-2732 or (408) 562-3910 (619) 549-6606 (415) 688-8000

Blaise Computing Inc. Expertelligence Inc. Ontos In¢
Turbo Vision Deve/opment Too/kJt Action/, SPOKE ONTOS DB
819 BancroftWay 5638 HollisterAve., 3rd FI. Three BurlingtonWoods
Berkeley, CA 94710 Goleta, CA 93117 Burlington,MA 01803
(800) 333-8087 or(415) 540-1938 (805) 967-1797 (617) 272-7110

Borland International Inc. ImageSoft Inc. ParcPlace Systems
ObjectVision Common View2 Objectworks
1800 Green Hills Rd. 2 Haven Ave. 1550 PlymouthSt.
P.O. Box660001 Port Washington,NY 11050 MountainView, CA 94043
ScottsValley, CA 95067-0001 (800) 245-8840 or (516)767-2233 (415) 691-6700
(800) 331-0877 or (408) 439-4825 Itssca Systems Inc. Persistent Data Systems, Inc.
Bowers Development Corp. Itasca DB IDB Obje<. ,__tabase
AppMaker 2850 MetroDr., Sre.300 75 West Chapel Ridge Rd.
P.O. Box 9 Minneapolis,MN 55425 Pittsburgh,PA 15238
LincolnCenter,MA 01773 (612) 851-3155 (412) 963-1843

(508) 369-8175 MDBS Inc. ProtoSoft, Inc.
Cadre Technologies Object/l 17629 El Camino Real, Ste. 202
Teamwork Two ExecutiveDr., P.O. Box248 Houston,TX 77058
222 Richmond St. Lafayette, IN 47902 (713) 480-3233

Providence,RI 02903 (317) 463-4561 Quintus Computer Systems
(401) 351-5950 National Instruments MacDia/og Editor
Chen & Associates LabV/EW 1310 VillaSt.
Object Designer 6504 B_idgePointPkwy. MountainView, CA 94041 '
4884 ConstitutionAve., Ste. 1E Austin,TX 78730 (415) 813-3800

BatonRouge,LA70808 (512) 794-0100 Servio Logic Corp.
(504) 928-5765 NeXT Inc. GemStone
CN5 Inc. NeXtStep 1420 Harbor Bay Parkway, Sre. 100
C ta/k/Views 3745 Deer Creek Rd. Alameda,CA 94501
7909 Shady Oak Rd. Palo Alto, CA 94304 (415) 748-6200

Minneapolis, MN 55344 (415) 424-0200 Symboli¢$ Inc.
(612) 944.0170 Object Databases, Inc. Statice
Coopers & Lybrand G-Base EightNew EnglandExecutivePark
App/ication Manager 228 Broadway Burlington,MA 01803
SoftPert SystemsDivision Cambridge,MA02154 (617) 221-1000
One Main St. (617) 354-4220 TGS SYSTEMS
Cambridge,MA 02142 Object Design Prograph
(617) 621-3670 ObjectStore 2745 Dutch Village Rd., Ste. 200
Interactive Development One New England Executive Park Halifax, Nova Scotia B3L 4J1,
Environments Burlington, MA 01803 Canada
Software Through Pictures (617) 270-9797 (902) 455-4446

595 Market St., 10rh FI. Object International, _nc. Versant Object Technology Corp.San Francisco,CA 94105 OOAToo/ Versant
(415) 543-0900 8140 N, MoPac Expwy.,4-200 4500 BohannonDr.

Austin,TX 78759-8864 Menlo Park, CA 94025
(512) 795-0202 (415) 325-2300

i=. i |1 ii

PREMIER ISSUE Al::)p_| 9

Appendix F:

Object-Oriented Database Products:
Status as of November 1991

DOE C._on_et
Lloyd Arrowood, Martin Marietta Energy Systems; 615:574-8700; arrowoodlf@ornl.gov

The following pages contain a detailed summary of the status of six object-oriented database
products that are available in November 1991. The original version of this table was produced in
1990 as part of the NASA-sponsored Advanced Launch System project by Don Rudisill, Bob
Owens, and Ann Tipton of Martin Marietta Astronautics Group in Denver. The table was updated
in late 1991 by Lloyd Arrowood.

Method of information gathering
For the original version of the table: Each of the products was reviewed, and then information
obtained from sales presentations and spending 3 to 5 hours with each vendor was summarized. A
composite list of features was created that contained ali the features which any of the vendors
provided. Each vendor was asked to respond to their capabilities in each of the areas from this
composite list of features.

For the revised version of the table: Each product was reviewed and its vendor was interviewed to
determine all information which should be changed. Ali vendors made updates. Thus the
following tables do not describe the features of an ideal object-oriented database, but rather they
describe the features actually present (or f'trrrdyplanned) in products as of November 1991.

Products reviewed 1

Objectivity from: Objectix-_ty Phone 415:688-8000
800 El Camino Real, Suite 290
Menlo Park, CA 94025

Object Store from: Object Design Phone 617:270-9797 _,
Ooe New England Executive Park
Burlington, MA 01803

Ontos from: Ontologic Phone 617" 272-7110
Three Burlington Woods
Burlington, MA 0 I803

Versant from: Versant Phone 800:962-5328
4700 Bohannon Drive
Menlo Park, CA 94025

GemStone from: Servio Corporation Phone: 510:814-6200
Suite 110 800:243-9369
950 Marina Village Parkway
Alam,:xla, CA 94501.

ITASCA from: ITASCA Systems, Inc. Phone 612:851-3155
2850 Metro Drive, Suite 300
Minneapolis, MN 55425

App-20

Objectivity
Current release: v 1.2
Next release: vl.5 (December 1991)
Contact: Mike Mitrowski
Date contacted: FAX received October 31,1991. Follow-up on November 1,1991.

OBJECTIVITY PERFORMANCE
Fetch overhead Objectivity has designed their database for balanced performance

for use in engineering or scientific application areas. That means
the database management system performance must be acceptable
across several types of users and operations. Additional
performance issues considered included: opening a working set of
data ("cold start"), opening and modifying a working set larger

I than allocated swap space, opening several objects from several
different databases stored on several different servers, and
committing transactions of large amounts of data to several
databases.

Query performance Named and keyed objects supported for fast lookup. B+ Trees
supported in Release 2.0. Another significant aspect of
performance is whether objects are opened on demand or whether
the entire database must be read into memory before searching can
begin. Objectivity is extremely fast in accessing objects because
they are only opened on demand.

Paging speed As fast as the disk will allow.
Commit overhead Worst case overhead is writing dirty pages from the cache to the

disk. ShzSowing approach is used, which involves moving a
pointer from the old data to the new data on the disk. Was
essentially i_,stan:aneous on a single node.

In memory performance Memory speed plus the overhead of one test and one indirect
_ointer.

ICS

OBJECTIVITY SECURITY

[Audit Trail I release 2]Access control C2 securit), at release 2, intentions to upgrade to B2 later

App-21

Objectivity

OBJECTIVITY DATA ORGANIZATION /REPRESENTAT_._ON
Versions linear and branching
Configuration Associations support highly complex relationships between objects
management without database or file boundaries. These relationships are typed,

and provide a mechanism for referential integrity of the data.
Objectivity/DB provides associations that can be one-to-one, one-
to-many, many-to-one and many-to-many. In addition,
unidirectional associations are provided for performance.
Propagation of operations along these association links between
objects is provided. This mechanism is useful for more than just
configuration management.

Customers establish their own configuration management policies
and use versioning primitives within Objectivity/DB to implement
those policies.__.

1Nested Transactions some support in current release
IDynamic arrays yes with a capacit), of 2 gigabytes
IQuery facilities Iterators: scan ali instances of a class, aq objects in a many to

many association, ali objects at the next level h_ the hierarchy
(contains), ali names in a scope. I_rators are not ordered. Can
delete current object inside an iteration.
SQL where clause in release 2.ii

cofiections NIH library now, mole support in release 2.

OBJECTIVYFY STORAGE MODEL

Tuneable to application Cache sizes, page sizes can be controlled. Clustering can be
requirements controlled at various levels in the federated data base.
_ts Federated database capacity 8x1018

64K databases / federation
64K containers / database
Container capacity 2 gigabytes at Release 1.0
Varrays / object 2 gigabytes at Release 1.0
(no restrictions in size of varray in release 2)

64 bit object lD's, (_drcss space for objects).
Backup/recovery Backup (incremental at release 2) restore, diagnose, checiq_int, '

rollback and micro-transactions (undo)
iUnix file system POSIX compatible
Raw device storage not used for'portability reasons

App-22
_

Objectivity

OBJEC-'ITV/TY APPLICATION DEVELOPMENT ENVIRONMENT

Schema generation The DDL preprocessor generates the .h.
Schema evolution Dump and load utilities can assist.

More support in release 2.
Browser Yes and allows you to mor.itor locks.

query yes
change values _,es
who calls no
who sends no

-- i i |ll I

class hierarchy yes
Debugger (source code) macros for dbx, 3rd.party
Application Prototypinl_ compatible 'with several 3rd party solutions

form editor '"'
1 II Illl I

I [_raphic.seditor '"' (ICS)

4th GL '"'

Incremental Compiler Saber C+. highly recommended when av_iilable.
Administration tool In the browser

OBJECTIVITY DISTRIBUTED

2 phase commit yes
Change notification release 2

i iii li ii i ii

Personal database yes
Deadlock detection timeout, wait forever on short u'ansactions in release 2

Notified if the object was checked out for a long transaction.
I.x_ckin_ at each leve'l of the federated system
Long transactions] yes
Architecture ! Fully distributed data and control, heterogeneous machine and
features/limitations operation system support via on-demand translations.Supports

databases distributed across nodes (multiple servers) with
association links across databases. Supports working sets that

= exceed swap space limitations. .
Heterogeneous machines _'es
Relational gateways future
Long distance slow links no

OBJEC"FIVrI_ OTHER HOSTS
iii

IMac

ther Workstations Dec VMS in release 1.1. 3rd major worl_tation vendor supportedin release 2. HP, Sun, IBM, Sony, SG!
IPc DOS, PS/2 ,, , _

OBJECq'IVITY C++ Interface

[Virtual function support]yes [Parameterized t_r_s]no, as compilers support

App-23

Object Design
. _,,,,a_release: v 1.1
Next release: v 1.2 (November 1991)
Contact: Frank Broskovetz
Date contacted: November 1, 1991

OBJECT DESIGN PERFORMANCE

Fetch overhead Unit of fetch is the pa_e or segment as specified b_rthe user.
- Qt/ery performance High level of optimization. The compiler generates code for

several different strategies, and the appropriate one is executed at
runtime.

Paging speed Normally no pointer update is needed. Pointers must be updated
if a collision occurs, due to conflicting assumptions among several
open databases about address allocation. Pointers are written
back with the updated values to reduce the need for adjustment on
the next fetch.

Commit o_,erhead Cost is just that of Writing modified dam and the commit mark to
journal. DB update i_ done during idle time.

In n_nx_ performance As fast as dereferencing a C pointer.
I was shown preliminary results from running Rick Cattell's
benchmarks. Object Store was faster than the predicted optimum
on the warm tests, and within about 20-30% of the predicted on
the other tests.

Tuning s_tistics ' yes --
AcLaptive, , Adaptive pointer relocation (,seepaging speed) "

OBJECT DESIGN SECURITY

A_" _ [Versions'can be used to track changers of objects. The application

Iwould be responsible for tracking who has viewed or read an
object.

Access control ' Similar to Unix world, _roup, and user con/i'ol.

OBJECT DESIGN DATA ORGANIZATION / REPRESENTATION
Versions ! Linear and branching. Access to number, or most recent.

I

Compare and rnerse.
Configuration Configuration object. Can _opagate operations across'
management relationships through bidirectional pointers.
Nested Transactions yes

e/y faciliti_ Nested queries containing any condition expressible in C++ are
supported.

c°Uecti°ns i Are implemented as parameterized types. ' _

App-24

Object Design

OBJECT DESIGN STORAGE MODEL
Tuneable to application The server parametersfile allows changes to size of journal disk
requirements buffers and server cache. Cache manager controls the size of lccal

cache on client machines.
Limits none

IBackuplrecovcry IImport/exportfa_lityavailable.

Unixfilesystem Iyes
Raw devicestorage]DependsuponI/Ocharacteristics,butgenerallybetterthanUnix

Ifilesystemperformance
OBJECT DESIGN APPLICATION DEVELOPMENT ENVIRONMENT

Schemageneration IGraphicalschemadesignerwhichproducesC++ code.
Schemaevolution IShouldbeavailablewithrelease2.O

Browser l yes
query l yes
change values ! no ,,

who calls [nowho sends no
class hierarch'

(source

editor future

no
;S.

OBJECT DESIGN DISTRIBUTED

2 phase commit yes
Change notification no
Personal database yes, optimizedfor local performance
Deadlock detection Can predict and stop before timeour.
Locking Locking is at page level and is transparent to the user.
Long transactions yes, others can read the previous version until the new version is

checked back in
i

Architecun_ Multiple server, multiple clients
features/limitations Object design has integrated database technology and the C and

C++ programming languages to the extent that most traditional
code for _.cccssing the data base is not necessary. Objects are
declared, as persistent and transaction boundaries are defined
directly ir__heC++ code. Everything else is basically transparent
to the application developer. Existing C and C++ libraries can be
linked in with no changes.

Heterogeneous machines 1992
Relational links Release 2.0 or 2.1

ii

Long di.'stance slow links yes

App-25

Object Design

OBJECT DESIGN OTHER HOSTS

Mac] 1992

other workstations Sun 3s and 4s, RS 6000s, DEC Ultrix, and HP/UX (beta).
Others, including DEC VMS and SGI, are planned

Pc OS/2 in 1992; Windows 3.0 (beta)

OBJECT DESIGN C++ Interface

App-26
r

Ontos
Ctment release: v2.1
Next release: v2.2 (lst Q 92); v3.0 Gate 1992)
Contact: Joshua Duhl
Date contacted: OOPSLA '91

ONTOS PERFORMANCE
Fetch overhead Objects can be fetched either individually, in aggregate clusters or

highly efficient memory managed pages. Fetches are optimized to
user RPCs or Inter Process Communication if client and server are
on the same host.

Query performance In a number of independent benchmarks against other Object
Databases Ontologic claims that ONTOS has consistently out
peffomaeA the competition in the amount of time it takes to activate
a model from the database.
Besides the intrinsic object activation protocol ONTOS supports
Object SQL. ONTOS will use indices to provide significant
optimizations of this language to further increase ad-hoc query
performance.

Paging speed ONTOS manages client memory to minimize Operating System
page faults. Ontologic believes that no single memory
management technique is capable of satisfying a diverse range of
applications, e.go, applications manipulating very large numbers of
small objects will not perform well using techniques that support
the management of a smaller number of large objects. Therefore
ONTOS permits the selection of appropriate memory manager(s)
for optimal application performance.

Commit overhead ONTOS journals after images. Data modified by >theapplication is
written to disk asynchronously immediately following completion
of the commit. Consequently the application program experiences
no commit delay.
Also, by employing memory managers the amount of server
processin$ is minimized due to less need to re-orsanize the cache.

In memory Performance Reference traversal is as fast as a C language pointer de-reference.
Tunin_ statistics In future release.
Adaptive The availability of a broad range of client memory managers means

that an application can be tuned for optimal performance. If the
Ontologic supplied managers are not sufficient they can be
substituted by user-written methods.

ONTOS SECURITY

Audit trail A client program can obtain an object from the database which
contains the set of ali objects which were modified by other clients
during a client's own transaction.
A transaction audit trail is notplanned in the near term.

Access control Area level security in release 3.0. Also a notion of roles and
associated authorizations.

App-27

Ontos

ONTOS DATA ORGANIZATION /REPRESENTATION
Versions Versions may be included in release 3.0. Both linear and branched

versions will be supported, along with the ability to make objects
immutable.

Configuration Release 3.0 may support configuration management. Primitives
management will permit objects to maintain their associations with

configurations and render confil_urations immutable.
Nested Transactions Yes. Serve to isolate client program changes to data.
Dynamic arrays yes
Query facilities Objects can be queried using embedded OSQL. The syntax of

which is:
SELECT object_expression_list
FROM aggregate_expression_list
WHERE boolean_expression

lt is possible to specify member functions in any expression. An
object expression can contain an optionally fully qualified property
name, or a procedure invocation.
An aggregate expression can remm a type name, a named
aggregate, an aggregate value specification, or a procedure
returning an aggregate.

The boolean expression must evaluate to either a TRUE or
FALSE.

collections: ONTOS supports additional aggregate types besides Dynamic
Arrays. These are lists, dictionaries, and sets. These can be either
persistent or non-persistent and contain any type of user or system
defined object. They use very efficient access mechanisms

.. employing linear hashin 8 and balanced binary trees.

ONTOS STORAGE MODEL

Tuneable to application] Selection of appropriate client memory managers provides an

requirements [ability to optimize application performance.Limits database can hold 2E64 objects
Current limits (scheduled to be removed) are:

a logical database name, 256 characters
database area file name, 80 characters

n_rv com risin a database, 80 or more
system across a ne_oT"k'_ A

database is composed of any number of UNIX files spread across
the network. Every area is serviced by a ONTOS Server process.
An Area can not grow beyond the size of the UNIX disk partition
in which it is contained.

Areascanbeaddeddynarnicall_,toadatabase.
Raw deviccstoragc None_,et

App-28

Ontos

ONTOS APPLICATION DEVELOPMENT ENVIRONMENT

Schema generation Schemas can be generated in three ways:
-Use the Advanced Decision Technology's CASE product called
trFECH to graphically des_be a conceptual model of the
application and generate C++ class definitions and member
function code.
-Edit a C++ class definition file and "compile" it into the database
using the ONTOS utility program called "classify".
-Graphically edit the schen_ using the ONTOS X-windows Motif
_hema editor.

Schema evolution Addition of class properties and member functions to Types for
which instances exist in the database is fully supported.
Instance migration and schema evolution will be part of Release
3.0.

Browser Yes, and X-windows Motif graphical schema editor.
query),es
change values),es
who calls no, but will support Saber's environment in Release 2.2, which

does
who sends no

class hierarchy yes, displayed in user-specified graphical formats
Debugger (source code) An interface to the GDB debugger is provided.
Application Prototyping Currently can use the PTECH CASE tool to provide the capability

to generate application prototypes before generating C++ ONTOS
code. Release 2.2 will include Studio I/O, a GUI application
development tool.

form editor In Release 2.2 (see note above)
graphics editor R2.5 [
4th GL Not planned)'ct (currentl)' in alpha) IIncremental Compiler Incremental linking technology from Saber is fully compliant with

ONTOS (and will be qualifying the ParcPlace incremental
compiler).

Administration tool),es

App-29

Ontos
ONTOS DISTRIBUTED

2 phase .co..mmit ! yes
Change notification Achangedchangedsinceobjectthe setstartcanofbea transaction,iterated over:to determine objects

[Personal database yes
IDeadlock detection The ONTOS server detects deadlocks and takes appropriate action

to roUback the youngest transaction and inform the application.
Release 2.2 will have the only distributed deadlock detection of
any commercial databaseproduct, as. far.as they .kn°w"

Locking There are 3 types of locks: read, write intent, write. Locks need
not be specified. Locks are not directly inherited (but can be
programmed) and read locked objects are upgraded to write locked
object if they are written. Locks can be placed on individual
objects or groups of objects. There's both object-level and page-
level locking.
ONTOS supports optimistic and pessimistic concurrency control
and a third "time-based" model of control, lt provides the
capabili_ to customize conflict resolution behavior.

Long transactions yes
Architecture One global, large address/tble persistent store spread across several
features/limitations machines. The database owns the areas and servers. No concept

of a master database with sub-domains owne.d by specific users.

Heterogeneous machines [R3.0
Relational _ateways Not yet
Long distance slow hnks No Asynchronous chent/server communication is availal_]e'_yet.

ONTOS OTHER HOSTS

Workstations Sun 3, Sun 4, DECstation 3100 and higher, Apollo DN 3XXX
and 4XXX, IBM RS6080, OS2.
In R2.2 VAX/VMS (single process version).

t In progress (by Q1 92}: sco UNIX, HP 9000/700 series.
Mac Waiting for release of MAC OS V7.0.

Pc OS/2. Intention to port to DOS Windows 3.0.

ONTOS C++ Interface

Virtual function support i Member functions and triggers can be dynamically invoked from a

Iclient application through the database without the necessity of
being compiled into the application.

Exception handling Proprietary support of fully integrated exception handling
mechanism.

Parameterized types Available as 3rd party vendors provide support in their compilers.
ONTOS supports the ability to dynamically add and maintain types
at runtime.
Aggregates are parameterized. C++ introduces templates as
parameterized types and will be supported.

ONTOS C Interface

[Availabihtl¢ [None planned.]

ONTOS SmaUtalk Interface

[Availability I In pro_ess. I

App-30

Versant
Current release: v 1.6
Nextrelcase: vl.7 (December 1991); v2.0 (June 1992)
Contact: W. Edward White
Date contacted: Telephone conversation on November 5, 1991.

VERSANT PERFORMANCE
Fetch overhead Uses dual caching. Pages are retrieved from disk on the server,

objects areplaced in the client cache (client and server can be on
the same or different host machine), using virtual memory
caching.

Query performance Pre-fetching and optimized traversal and scanning. B trees and
hash tables on attributes. Queries are parsed by a query optimizer
to determine the most efficient access path.

Paging speed
Commit overhead Using Cattell benchmarks, 20,000 objects were committed in 4.85

seconds on a SparcStation 2 and 2.41 seconds on a RS 6000.
In memory performance You can refer to the memory location of an object with a pointer or

a link (an indirect reference that is converted to a pointer when
dereferenced).

statistics
mana

_ VERSANT SECURITY
Audit trail I Because short and long transactions can be named and logged,

Idatabase changes can be audited.
Access control Access control is secured at operating system and database levels

using an encrypted password and user name access control list.

VERSANT DATA ORGANIZATION / REPRESENTATION
Versions Versioning is supported at the object level; versions can be both

linear and branching; versions can be accessed by most recent,
with or without status, or by version #.

Configuration Status is maintained (working, released, transient).
management Configuration of versions is maintained even when versions

evolve across database boundaries if ali of the objects in a
configuration are checked out in a single request.

Nested Transactions Short transactions can be nested inside long transactions. Short
transactions can not be nested inside other short transactions;

savepoints can.
D_namic arrays yes
Query facilities Distributed queries are supported with 2 phase commit across

databases. Index support allows speed up. Available from both
language interfaces and navigator. Predicate and associative
queries can be fomaed in C++ as a string argument using attribute
names, relational operators, and values.

collections NIH library with fixes; notion of logical containers allow better
m'formance of read/write operations on complex objects.

App-31

Versant

VERSANT STORAGE MODEL

Tuneable to application Lots of control on how the data is stored, clustering, buffer sizes,
requirements cache sizes. Object cache "tunes" objects retrieved to meet

application requests exactly.
Limits A VERSANT database is a physical storage area that contains the

object instances. A database is a set of volumes, not a frie, and
physically consists of pages, each 16k in size, arranged into
extents. When you create a database, you define extent size
(default 20 pages).
A database can hold up to 2E48 objects plus classes (a class is an
object).
2E 16 databases

an object can be 2E32 bytes
Unix file system),es
Raw device storage)'es

VERSANT APPLICATION DEVELOPMENT ENVIRONMENT

Schema generation automatic from .h fries
Schema evolufon On leaf classes only for now. Automatic support for addition with

default values, and deletion.
Browser Versant View

query Versant OSQL
change values),es
who calls no

i

who sends no

class hierarchy),es (single and multiple inheritance)
IDebugger (source code) 3rd party, including ObiectCenter (formerly-Saber C++)
[Application Prototyping Versant Screen
I form editor Versant Screen

graphic s editor Versant Screen
4th GL Versant Screen

Incremental Compiler 3rd party
Administration tool),es

App-32

Versant

VERSANT DISTRIBUTED

2 phase commit),es
Change notification You can choose to be notified of certain events.

Specifying broken lock notifies you when your soft lock has been
broken; request pending notifies you when someone else is
waiting for your lock; object available notifies when a reserved
object is ready; version creation notifies when a new version is
created of an object you are monitoring; object read notifies when
an object you are monitoring is accessed; object update notifies
when a monitored object is updated; and object deletion notifies
when a monitored object is deleted. Notifications are sent in the
form of electronic mail.

Personal database Each workstation can have local personal databases. Concurrency
ctrl and logging can be turned off in this database to increase
performance.

Deadlock detection Timeout (notified if a IonS transaction)
Locking Read and write locks and nolock option for short transactions.

Locks are set at the object level. A write lock on an object
implicitly sets intention write lock on class. When objects are
checked out in a long transaction, locks persist and are restored
during the recovery process if the system is disrupted. Several
persistent lock types are supported: read lock, write lock, monitor

1 mode checkout, snapshot mode (will become a new version).

Persistent locks can have priorities. Specifying a hard priority
prevents the lock being broken by a conflicting request. A soft
priority can be broken by a conflicting request for a hard lock.
You can specify queuing options in case another user has already
locked the object and notifies you when it is available. An object
can be checked out of a group database into a personal database.
If checked out and without locks, objects can be checked back in
as new versions. If checked out with persistent locks, they will be
checked in as updates.

Long transactions yes; checkout copies objects to personal database
Architecture The data base system uses a client-server model in networked
features/limitations computing environments. You can create a group database on a

server that can be accessed concurrently by multiple clients.
Databases and applications may be developed on a workstation and
then migrated to one or more group databases on servers. A
workstation can also take on the role of a server. Data can be
retrieved from multiple servers.

Every object has a logical object identifier (OLD). Objects can be
moved from one database to another without changing their OlD.

Heteroseneous machines Transaction-level heterosenei _ provided.
Relational sateways Under development.
Long distance slow links

App-33

Versant

VERSANT OTHER HOSTS
Mac no

Pc Plan to support OS/2 and WINDOWS 3.0
Workstations Sun 4; RS 6000; HPs, Sequent, DEC (beta)

VERSANTC++ Interface

[Virtual function support]yes]Parameterized qcpes I_'es

App-34

Gemstone
Current release: v2.5
Next release: v3.0
Contact: Adrian Blakey
Date contacted: FAX received November 13, 1991. Follow-up on November 15, 1991.

GEMSTONE PERFORMANCE
Fetch overhead GemStone provides both remote procedure call application

interfaces and a linked application interface. Object transmissions
can be bulked. The user can also specify clamps upon a class,
instance variables, or specific instances to prevent unwanted d.ata
from beinl_ automatically transferred to the ap.plication.

Query performance Associative access queries (select:, detect:, reject:, collect:) receive
major performance improvements by the creation of indexes.
Computationally intensive queries which require examination of
disconnected objects (where neither localized navigation nor
associative access are possible) can be performed with the speed of
a compiled language by adding user-actions written in C to
GemStone.

Paging speed The use of GemStone's clustering mechanism allows the user to
co-locate objects in a manner which is appropriate for the
commonly performed queries and .retrievals"

Commit overhead In release 2.5, database configurauon parameters can significantly
improve commit performance.

In memory performance
Tuning statistics GemStone provides statistics on individual object size, ownership,

class, and access protection as well as the amount of space used by
object headers versus data and the number of flee pages present
within the database.

a Adaptive GemStone automatically modifies the internal storage design of
objects as they pass crucial size botmdaries, decomposing large
objects into trees of smaller objects for fast modification and
retrieval.

GEMSTONE SECURITY
Audit trail GemStone does not currently maintain an audit trail. However,

writing a log of object touches is supported by the internal
architecture and is used within Servio's engineering lab for internal
debugging of GemStone.

Access control User accounts with password protection for database session
login.
Object access protection settings of: (none read write) for owner
group and world.
Object hiding is supported by dynamically specifmble namespaces.
The namespaces may be inserted and removed from user accounts
at any time and are themselves protected by the access protection
settings listed above.

App-35

Gemstone

GEMSTONE DATA ORGANIZATION /REPRESENTATION
Versions GemStone currently allows users to create their own versioning

systems on top of Opal, but does not provide kernel level support
for versions.

Configuration same as versions
mana_ernent
Nested Transactions future

I III III I

Dynamic arrays),es
Query facilities GemStone provides both application programming interface

support for embedding queries and database behavior to perform
queries. GemStone Forms and GemStone Graphical Query
(available to early ship customers), will simplify interactive
querying.

collections: Similar to SmaUTalk. Associative access methods are provided for
predicate-based element retrieval on sets and bags. Fast set union,
intersection, and difference methods are also provided.
Indexes based upon element value or nested element value can be
dynamically created, queried about, and removed.

GEMSTONE STORAGE MODEL

I Tuneable to application future
requirements
Limits database can store 2 billion objects

i objects can be up to 1 billion bytes or references to other objects

Unix file system]),esRaw device storage yea

App-36

Gemstone

GEMSTONE APPLICATION DEVELOPMENT ENVIRONMENT

Schema generation Visual Schema Designer
Schema evolution iGemStone currently allows classes to be redefined with existing

instances able to swap their reference to the new class definition.
Additional support for schema evolution is being provided
incrementally.

Browser Inside of GemStone Organizer, a top level 'environment' based on
the folder/directory model that allows users access to all tools as
well as a structured browser that acts as a catalog of data and
application objects.

query Specification of queries by graphically designating selection
criteria in the graphical query tool. The GemStone SmallTalk
Interface (GSD provides a workspace for interactive query
execution. The topaz command line interface also has these
capabilities.

change values The GSI provides a window-based instance inspector which
allows value modification.

i

who calls no
who sends no

class hierarchy
Debugger (source code)),es
Application Prototyping

form editor),es
graphics editor),es
4th GL OPAL

Incremental Compiler yes
"A'dministration tool A database administrator tool which allows the DBA to create and

modify user accounts, assign default namespaces and access
authorization settings, and specify _oups of users.

App-37

Gemstone

GEMSTONE DISTRIBUTED

hase commit future
hange notification future
ersonal database future

I detection future
[Long transactions futureLocking mechanisms GemStone provides 3 types of locks: read (shared), write, and

exclusive. In addition, 2 levels of granularity are available (object
and collection locks).

Architecture GemStone provides a mechanism for performing methods inside
fcature_/limitations theserverprocess.
Relationalgatcwa,'; bridgetoSybase,In_res,Oracle,DB2i | i i

Heterogeneousmachines currentlysupportsheterogeneousclients
Longdistanccslowlinks Gcmstoncsupportsaremoteprocedurecallintcrfaccwhichcanbc

usedtodayforlongdistanceslowIL',&sifusedinconjunctionwith
SLIP.PersonalDatabaseupanddownloadmake sense,butlong
distanceremotediskI/Oforlotsofsmallinteractivequeriesmay
notmake sense.One oftheadvantagesofGemStone's
architectureistheabilityfordatabaseprocessingtotakeplaceona
sepazatcCPU fromtheapplication.Thismakeslongdistance
slowlinkusagemorefeasible.An applicationatoneendofaslow
linkcaninvokearelativelylargeamountofprocessingwithin
GemStoneattheotherendofthe5nk.Communicationvolume,
and therefore elapsed time, can be reduced by moving functionality
to GemStone.

GEMSTONE OTHER I-IOSTS

[1 8° 1Pc Client support through SmallTalk 80 and V/286

GEMSTONE SmallTalk Interface

[Virtualfunct°nsupprt IyeSparameterizedtypes yes]

GEMSTONE C++ Interface

Description The C++ interface supports C++ version 2.1 and is implemented
as a pre-processor for header files based on standard C++ syntax
and can be used with compilers from multiple vendors. A
comprehensive, proven class library is provided as part of the
interface. The interface supports both dynamic object faulting and
explicit object storage and retrieval. The C++ interface is built on
top of GemStone's C interface, thereby making the full
functionality of the C in,efface available to the application
develoFer.

Virtual function support The C++ interface currently doesn't store C++ member functions
in GemStone. However, Opal (GemStone) methods can be
created, modified, and executed from C++.

Parameterized types 'The C++ interface will directly support parameterized types at such
time as the C++ language supports them.

App-38
-,_

Itasca
Current release: v2.5
Next release: v3.0
Contact: Sandy Miezwa
Date contacted: FAX received October 28, 1991.

ITASCA PERFORMANCE

Fetch overhead Memory management in ITASCA uses both page and object
buffers. ITASCA has a traditional database page buffer scheme
that contains pages with multiple object. Desired objects move
from the page buffer to an object buffer, lt is at the object level
that communication occurs to the client whether local or over the
network.

Query performance Query optimization includes determining the query graph traversal
order, parallel processing of the query graph branches, and the
selection of subquery evaluation sites. Optimization uses statistics
on the distribution of data in the database.

,

Paging speed Paging is minimized through the use of object buffers at both the
client and the server.

,

Commit overhead Commit overhead is minimized by using an UNDO log and
assuming most actions will commit.

In memory peffon'nance The object buffer then provides ITASCA with enhanced in-
memory performance because it contains only frequently
referenced objects.

Tuning statistics ITASCA utilities gather class and attributes statistics for use during
query optimization. Class statistics include the number of
instances of a class and its subclasses. They also include the
number of disk pages containing instances of a class and its
subclasses. Attribute statistics include the number of unique
values of an attribute for a class and its subclasses, minimum and
maximum values of the attributes for a class and its subclasses, the
index heist, and the number of index pages.

Adaptive Parallel execution of query graph branches occurs on multiple sites
automatically. ITASCA automatically chooses the site with the
largest estimated data set as the site to process a subqueryor merge
partial results.

ITASCA supports automatic distribution of code in the form of
methods. The schema stored on each site contains ali methods.
An authorized user can update an algorithm for a method an
commit it to the shared database. ITASCA automatically
distributes that updated code to each site in the network that has a
partition of the shared database. Code distribution will occur even
if a site is not working at the time through a spooling mechanism.
Methods execute directly on the local machine--only data moves
among machines at execution time.

No single site acts as a master site, thus ITASCA's architecture
has no single point of failure. This is important for maintaining a
database system with high availability in a networked workstation
environment. ITASCA has neither a central data server nor a
central name server.

App-39

Itasca

ITASCA SECURITY
Audit Trail As of November i 99 i, ITASCA does not have a bu_lt-inaudit

trail. A customized audit capability can easily be created by
refining the system-level methods to capture audit information.
These system-level methods include make-object, delete-object,
make version, promote, demote, checkin, checkout, and others.

Access control ITASCA has a sophisticated security authorization t_hnique tied
to the class hierarchy, lt suPlXa'ts both positive and negative
authorizations at any level in the class hierarchy. For example,
granting access to ali objects but one requires only two
authorizations: a global grant followed by a spe_fic denial.
Authorization extends to classes, instances of classes, attributes,
and methods. Also, inheritance of authorization based on the class
hierarchy reduces the work of database administration.

ITASCA DATA ORGANIZATION /REPRESENTATION
Versions ITASCA supports version control of objects. A new version of an

object promotes the original or parent object to restrict further
changes to the parent. Promoting an object version to a released
status restricts any deletion of the object. ITASCA uses generic
versions to dynamically reference the most recent or default
version of an object,

Configuration ITASCA does not promote a single form of configuration
management management. It provides versioning, dynamic schema evolution,

change notification, and private databases that could be customized
into a configuration management suitable to the problem domain.
Change notification, in 1TASCA is either flag-based or message-
based. Flag-based notification will identify an updated object
upon querying the object for such information. It is a passive
notification scheme. Message-based notification, on the other
hand, is an active notification scheme. It wiU execute a method (or
code) upon an update or other change to an object. Such methods
can send mail messages or invoke other functions.

ITASCA does not need configuration management to track
application use of methods. Methods are stored in the database
and are bound at run-time. A change to a method does not require
the recompilation or relinldn[of application code.

Nested Transactions Nested sessions are supported which allows for nested
transactions. Sessions can also be shared which results in multiple
processes/users sharing locks. Long-duration transactions are
supported. Long-duration transactions allow users to check
objects out of the shared, distributed database into their private
databases. Users can then change the objects in the private
databases without affecting the shared database or other users.

i Then, at any later time, the user can check the updated object or
objects back into the shared database.

.D),namic arra),s These are supported

App-40

i

Query facilities ITASCA supports both interactive and pro_tic queries on
either the private database, the shared database, or a global query
encompassing both the private and shared database. The system
can also integrate queries with long-duration transactions, lt is
possible to specify a CheckinTree or CheckoutTree as a parameter
of the query. Using these parameters will cause the selected
objects and related objects to checkout or check-in automatically at
the end of the que_ execution.

Collections:

1TASCA STORAGE MODEL

Tuneable to application 1TASCA supports physical object movement among distributed
requirements sites, indexing and clustering to tune the storage mode. It also

allows extension of the database manager through refinement, by
class, of system methods such as make-object, delete-object,
make-version, promote, checkin, checkout, and others.

_ts The maximum number of classes in a single distributed database is
4.3 billion. The maximum number of attributes per class is 16.7
million. The maximum number of instances per class is 4.3 billion
multiplied by the number of private databases in the system. The
maximum number of sites in a single distributed database is
32,767. The maximum number of private databases on ali sites in
a single distributed database is 32,767. The maximum size of a
long-data object (audio, image, text, and others) is the size of a
ph_,sical disk partition.

Backup/recovery CPU failure recover is implemented with undo logging. This
logging keeps the inverse of changes in an incremental log.
ITASCA applies this log to the database at recovery time.
Recovery goes backwards from the stat at the time of the failure to
a consistent database state. The undo operation will roll back
incomplete transactions to get to the end of the last completed
transaction. Optional mirror writing of data provides for
protection against media failure. Upon a primary or backup disk
failure, ITASCA issues a warning and sends electronic mail to the
s_,stem manager warning of the failure.

Unix file s_,stem The ITASCA database is a UNIX file and uses the file s_,stem.
Raw device stoml_e Not available as of October 1991

App-41

Itasca

ITASCA APPLICATION DEVELOPMENT ENVIRONMENT

Schema generation The ITASCA Schema'Editor allows generation and modification of I
schema from an OSF/Motif compliant graphical user interface Ithrough the use of dialogs. See the next section on schema
generation.

Schema evolution ITASCA supports dyfi_c schema modificatiori to Create a
flexible environment for changing or customizing a database
system. Authorized users can add and remove attributes or change
the subclass/superclass relationship at any time. Authorized users
can also add or remove partitions of the shared database at any
time. All this can be done interactively without affecting other parts
of ITASCA at the time changes occur to the schema. There is no
need to "bring the system down" to restructure the database. .

Browser
query As of November 1991, queries may only be executed at the

command lineorfrom.withina program. _......
change values As of November 1991, values may only be chariged at the

command lineorfrom within apro_un
'whocalls Assumethisreferstoacrossreferencecapability.Forapplic'_ttions

thatusemethods,thisisnotneededforconfigurationmanagement
sinceITASCA managesmethodsaspartoftheschemaand
supportslateorrun-timebindinl_ofmethods.

who sends Assume thisreferstoacrossreferencecapability.Forapplications
thatusemethods,thisisnotneededforconfigurationmanagement
since ITASCA manages methods as part of the schema and

.... supports late or run-time binding of methods.
class hierarchy The ITASCA Schema Editor allows browsing _e class hierai'chy.

Schema changes may also be made directly from the Schema
Editor.

Debuggei" (source' code) Yes. Use your favorite C debugger for C application code.
Methods and LISP application code can use the debugger provided
by the underlying Common L!S P. .

Application Prototyping
form editor Not available as of November 199'[.

i ii i iii

graphics editor Not available as of November 1991. ..
4th GL Not available as of November 1991.

Incremental Compiler Yes_ M&hods c_ be added, rern0_,ed, or cgmpIled at any time."
DB Administration tools Graphical tool to perform such functions as disk initialization, disk

compression and usage, performance tuning, lock monitoring, and
connection monitoring.

-

App-42

Itasca

ITASCA DISTRIBUTED

2 phase commit Yes

Change notification Passive notification assigns a set of events to an instance of anotifiable class. These events can be either update or delete.
Should an event occur on the instance, references to it become
reference inconsistent. Querying checks for this inconsistency.
Approving changes returns references to a reference consistent
state.

Active notification assigns a set of events to an instance of a
notifiable class. These events can be either update, deletion,
making a new version, check-in, or checkout. Should an event
occur on the instance, the default is to send electronic mail
describing the change and the user who made it. Refining this
method and related methods allows alternate actions. Replacement
methods can perform completely different operations than sending
electronic mail. These methods may perform other operations on
the database. In this respect, they. behave much like daemons.

Personal database Multiple private databases can exast at a server site. Data can move
between the shared database and private databases. Enhanced
locality of reference in the private database converts a possible
distributed transaction to a local transaction. This reduces the need
for authorization, concurrency control, and locking, resulting in
near single-user system performance. Authorization is at the
private database level for objects in the private database and not at
the object level. A work group may also share a private database.
Private databases are partof lon[-duration transactions.

Deadlock detection A transaction may wait for a lock to become available until a
deadlock is detected. The length of the deadlock time-out can be
specified by the user. When a deadlock is detected, control is
passed back to the user/application indicating the last action was
cancelled. The user/application can decide to re-execute or abort
the transaction.

Locking Pessimistic concurrency control at the object level implements
serializability, allowing simultaneous, independent transactions to
execute in parallel. This allows transactions to request a lock on
concurrent updates on the same objects.

App-43

Long transactions Checking out an object from the shared database to a private
database starts a long-duration transaction for that object.
Checking the object into the shared database ends the long-
duration transaction for the object. Long-duration transactions can
last any length of time: minutes, hours, days, weeks, and so on.
Any number of short duration transactions can occur between any
given checkout and check-in. Any number of checkins can occur
after a single checkout. Check-in/checkout can be done with a
general query as well as by identifying specific objects.
Composite objects check-in/checkout in the same way as simple
single single objects. Non-versioned objects physically move
between shared and private databases during checkout/check-in.
versioned objects have new versions made in the target private
database at checkout time leaving the parent object in the shared
database. Refinement of check-in/checkout methods on a class by
class basis allows additional class or application specific
operations.

Architecture The ITASCA database management system has features belonging
features/limitations to any database system. This includes persistent storage for data

and schema, concurrency control and locking, transaction
management, multiple security levels, and logging and recovery
for both CPU and disk media failure. Additional features of
ITASCA include long-duration transactions, shared and private
databases, distributed version control, distributed transaction
management, distributed query management, distributed change
notification, object migration, dynamic schema modification, and
an extensible architectta¢.

Shared and private databases exist in a distributed enviromnent in
ITASCA. The shared database is distributed across workstations
(sites) in a network. An ITASCA server controls the partition of
the shared database at each site. ITASCA clients provide
transparent access to the various partitions of the shared database.
The architecture allows any number of private databases at each
distributed database site. ITASCA stores the schema redundantly
at each site to improve perfommnce, including code in the form of
methods. Management of schema updates is automatic for ali
sites, including sites that were off-line during any changes.
ITASCA stores each instance of data in one site. The system or a
user may move the data from one site to another.

No single site acts as a master site, thus ITASCA's architecture
has no single point of failure. This is important for maintaining a
database system with high availability in a networked workstation
environment. ITASCA has neither a central data server nor a
central name server.

Heterogeneous machines As of November 1991, the distributed system must be a '
homol_eneous set of machines.

%

App-44

Relational gateways MCC/ITASCA participated in a prototyped Intempembility
demonstration approved by the SQL Access Group. Remote Data
Access (RDA) is the technique used to pass information between
clients and servers in a database environment. ITASCA RDA/SQL
is not a product at this time, but their participation illustrates the
technology that will be applied in the near future (see the July 22,
1991 issue of UNIX Today for more information).

distance slow links Not available as of Noven{ber 1991.

ITASCA OTHER HOSTS

Mac Not available as of November 1991.
Other Workstations Sun-3, Sun-4, Apollo, Hewlett Packard, DECstation, and Silicon

Graphics.
, PC Intel 386/486 SCO is scheduled.

App-45

Appendix G:

XCUT: AN OBJECT - ORIENTED SYSTEM FOR
THE PROCESS PLANNING OF MACHINED PARTS

Allied-Signal Inc., Kansas City Division 3

Contacts: Steve Brooks (816) 997-4329
Michael Wolf (816) 997-2999
FAX: (816) 997-3331

The Kansas City Division of Allied-Signal Aerospace Company is developing an object-oriented
system. XCUT, for the process planning of machined piece parts. The system is currently focused
on operation planning for prismatic parts on multi-axis CNC milling machines. The system is
expected to reduce flow time by automating time consuming calculations, to reduce cutting tool
inventory by presenting appropriate tools for selection from a standard set, and to improve quality
through extensive geometry checks and data validation.

A process plan is the sequence of operations necessary to transform raw material into a finished
part. XCUT represents a process plan as a sequence of activity objects that are defined
recursively. That is, each activity can be a single task to be performed, or a sequence of other
activities. This approach allows data to be associated with either an individual task or a group of
tasks. For example, an individual task that changes the geometry of the part has an associated
solid model, a manufacturing feature, that represents the volume to be added to or removed from
the part. Individual tasks may be grouped together according to the resources they are associated
with, such as a machine shop, machine tool, part fixture, or cutting tool.

XCUT will be integrated with the business environment around it by direct links to external,
relational databases that contain resource information. Those databases will provide the means to
validate references in the process plan, such as document numbers, charge numbers ao,' part
numbers, lt will also permit ad hoc queries into large reservoirs of information such as cutting tool
and tooling assembly databases and support stores.

XCUT maintains a persistent definition of products, and process plans in an object-oriented
database. The information stored in the database is an implementation of the Product Data
Exchange Specification (PDES), an international standard. XCUT incorporates the PDES models
for product definition, geometric shape, form features, and process plans, among others. PDES
data models specify the definitions of objects as well as an ascii exchange file format for
transferring instances of those objects. Each object in the XCUT database has methods for storing
and retrieving itself from the database and for reading and writing itself to an exchange file.

XCUT will sh__reits object-oriented database with two other advanced manufacturing projects at
the Kansas City Division, the advanced numerical control planning system ANC, and the
inspection planning system IPPEX. Ali three systems will share the same information, providing
seamless integration between process planning, NC, and inspection. XCUT will generate process
plans which call out tasks for NC analysts and inspection planners. ANC will scan the process
plan for NC requests and generate tool paths, which are added to the database. IPPEX will scan
the process plan for inspection requests and add inspection tasks to the activity tree.

3 Operatedfor the UnitedStatesDepartmentof EnergyunderContractNo. DE-AC04-76DP00613

App-46

Since the object-oriented database used by XCUT is shared with two other projects, the design and
implementation of the database is a shared effort. The three development teams use data modeling
diagrams to communicate definitions of objects and their relationships and attributes. Once the data
models are approved, the diagrams are translated to the EXPRESS language, an ascii
representation used by the PDES community to communicate data models. The implementation of
the database has been automated by a program that parses the EXPRESS files and generates C++
code and the database schema. The code generated by the parser produces ali methods necessary
for accessing objects from the database and for importing and exporting objects to data exchange
files.

XCUT is linked with a solid modeling system to provide the spatial reasoning capabilities needed
in process planning. The solid modeler provides visualization graphics and is used to identify the
set of manufacturing features removed form or added to the raw material to make the f'mished part.
The definitions of ali solid models used by XCUT are stored in its object-oriented database and are
recreated in the solid modeler at run time.

XCUT is being developed on UNIX workstations and is written primarily on C++. lt uses Motif
and X Windows as its user interface, and PHIGS for its 3D presentation of solid models, lt is
coupled with the Ontos object-oriented database and the Parasolid solid modeler.

For more information, contact:
S. L. Brooks, M. L. Wolf
Allied- Signal Aerospace Company
Kansas City Division
P. O. Box 419159
Kansas City, MO 64141-6159

App-47

Appendix H:

IPPEX: AN AUTOMATED PLANNING AND
PROGRAMMING SYSTEM FOR SAMPLE-POINT

DIMENSIONAL MEASUREMENT

Allied Signal Inc., Kansas City Division 4

Contact_: Curtis Brown (816) 997-3548
Michael Wolf (816) 997-2999
FAX: (816) 997-3331

The Kansas City Division of Allied-Signal Inc. is incorporating object-oriented techniques to
automate the generation of inspection process plans and part programs for measuring piece parts
with coordinate measuring machines (CMMs). The Inspection Planning and Programming EXpert
(IPPEX) system requires an integrated environment involving a product definition system,
decision making mechanism, resource databases, and a graphical user interface. The system is
expected to reduce flow-time for the creation and modification of inspection process definitions,
CMM part programs, and support documents. The IPPEX system will also reduce the cost of
non-conformance by generating unambiguous instructions, structured inspection plans, and
standard and consistent measurement approaches and therefore increase the acceptance of this
measurement technology along with increased machine utilization.

Given the inspection scope, IPPEX will plan the sequence of operations necessary to verify that
the manufactured part conforms to requirements. These operations will contain activity objects that
will identify resources such as measuring machines, pat set-ups, and probe configurations, and
tasks such as establish datum reference frame and measure feature. The process plans will also
contain inspection techniques based upon the feature's current measurement criteria. The
inspection techniques determine the number of sample points, the distribution of these sample
points, and the selection of the appropriate substitute geometry algorithm. Based upon this
inspection process plan, a Dimensional Measurement Interface Standard (DMIS) formatted CMM
part program will be created along with the appropriate part set-up and probe configuration support
documents.

IPPEX will interface to external relational databases that contain business information. Those data-
bases will provide the means to validate references in the process plan, such as personnel,
document numbers, charge numbers, part numbers, and machine backlog, lt will also permit
programmatic queries for resource information such as CMM attributes, sensor components, and
fixture data.

IPPEX maintains a persistent definition of products and process plans in an object-oriented
database. The information stored in the database is an implementation of the Product Data
Exchange using STEP (PDES) data models for product definition, geometric shape, form features,
tolerances, and process plans.

IPPEX will share its object-oriented database with two other advanced manufacturing projects at
the Kansas City Division, the XCUT process planning system for machining, and the advanced 7
numerical control system ANC. Ali three systems will share the same information, providing

4 Operatedfor the UnitedStatesDepartmentof EnergyunderContractNo. DE-AC04-76DP00613.

App-48

seamless integration between process planning, NC, and inspection. XCUT will generate process
plans which call out tasks for NC analysts and inspection planners. ANC will scan the process
plan for NC requests and generate tool paths, which are added to the database. IPPEX will scan
the process plan for inspection points for feature verification or part acceptance and add inspection
tasks to the activity tree.

IPPEX implements a product modeling environment which encompasses a feature-based tolerance
modeler, for representing explicit geometric dimensions & tolerances, integrated with a
commercially available solid geometric modeler. The product modeler provides visualization
graphics, associates tolerance feat;.tres with geometry, and provides spatial reasoning capabilities
such as datum reference frames, optirrlal inspection sequencing, and sensor movement. The
definitions of the solid nominal geometry along with its tolerance information used by IPPEX are
stored in its object-oriented database and are recreated in the product modeler at run time.

IPPEX is evolving from its conceptual prototype into an object-oriented system, lt is being
developed on UNIX workstations and primarily using the C++ language, lt uses Motif and X
Windows as its user interface, and PHIGS for its 3D presentation of solid models, lt is coupled
with the Ontos object-oriented database, the Parasolid solid modeler, and the CLIPS expert system
tool.

For more information, contact:
C. W. Brown & M. L. Wolf
Allied Signal Inc.
Kansas City Division
P. O. Box 419159
Kansas City, MO 64141-6159

App-49

Appendix I:

STEP "HAPPENS"5

Allied-Signal Inc., Kansas City Division 6

Contact: John Zimmerman (816) 997-2932
Noel Clu'istensen (816) 997-3984

A true object-oriented STEP prototype implementation project has met its first major milestone.
Allied-Signal Inc., Kansas City Division, under prime contract to the U.S. Department of Energy,
has reached this milestone with only one-and-a-half staff years of effort.

John Zimmerman and Noel Christensen undertook this translation project when their management
indicated they were interested in more than just "models hanging on the walls." As Zimmerman
notes, management wanted to "see STEP happen." So they "made STEP happen." They put
STEP to work demonstrating a production- quality solid model transfer. An object-oriented
transfer, no less.

The Advanced Manufacturing Development System (AMDS) project reached its first milestone by
exchanging a solid model between dissimilar solid modelers, then generating production-quality
NC cutter paths from the transferred data.

The goal of the AMDS project is to develop a next-generation STEP part database and application
environment to produce advanced manufacturing applications. (See Figure 1.) The project seeks to
demonstrate STEP file transfer and STEP database usage, support advanced numerical control
(NC) and inspection applications, and improve STEP by providing feedback from experience.

AMDS has demonstrated that it can transfer a STEP boundary representation part from the SDRC
solid modeler GEOMOD to the object- oriented database (OODBMS) ITASCA (from a company of
the same name), then to Spatial Technology's solid modeler ACIS, where it is used with Spatial
Technology's STRATA milling package to create production-quality NC cutter paths.

This demonstration was accomplished using independently developed STEP environments at
SDRC and Allied-Signal Kansas City.

DEVELOPMENT PROCESS

Chia-Hui Shih at SDRC developed a prototype STEP environment in which she used a relational
database (SDRC's PEARL) as an intermediate form. She generated translation routines directly
from the EXPRESS STEP definitions. GEOMOD is B-spline-based, so the B- spline data was
translated into STEP analytical surfaces (planes and cylinders) and then into a STEP physical file.

5 This articleoriginallyappearedin ProductDataInternational(ISSN 1050-7043),vol.2, no. 5, September1991.
Used with permissionof BarbaraD. Warthen,Editor,WarthenCommunications,N5303BroughtonRoad,Albany,
WI 53502-9725.Phone & FAX:(608)862-1702.
6 Operatedfor the UnitedStatesDepartmentof EnergybyAllied-SignalInc., KansasCity Division,undercontract
numberDE-AC04-76-DP00613.

App-50

MANUFACTURIN G
STEP DATABASE

DESIGNERS
STEP

GENERATOR

t INTERNATIO NALDATA STANDARD
(STEP)

Figure 1. Allied-Signal STEP Environment.

in Kansas City, Christensen developed a prototype STEP environment which uses an object-
oriented database (the ITASCA OODBMS) as an intermediate form. He also generated database
definitions and translation routines directly from EXPRESS. Christensen received STEP physcial
files from SDRC and translated them into ITASCA. ITASCA became home base for the STEP
data. Christensen then hand coded a custom translator to move the STEP data from ITASCA to the
Spatial Technology ACIS solid modeler. Once in ACIS, the Spatial Technology STRATA milling
package was used to generate production quality NC cutter paths from the solid model.

PROGRESSIVE

The Allied-Signal project is progressive. Christensen achieved maximum productivity by
programming in the Intellicorp KEE and ITASCA object-oriented languages. He used these high-
productivity languages to write software that generates STEP fla.tfile pre- and post-processors and
database schemas directly from the STEP EXPRESS definitions. He did not need to embed
database calls in his programs because no database calls existed" the ITASCA database
management system, for ali practical purposes, is invisible to the programmer.

Zimmerman notes that the pre- and post-processors (application programs) are stored in the
, ITASCA database. Confusing? Traditionally, databases store data. Application programs -

including pre- and post-processors - are usually stored separately from databases, the repositories.
Zimmerman points to the object- oriented paradigm, which allows information to be stored within
(encapsulated in) objects. The information can be methods, which can be the procedures that

App-51

traditionally make up application programs. So the programs (the pre- and post-processors in this
case) can be embedded in the database objects.

VALUE

Is this of any value - or is it merely the "latest and greatest" new technology? Definitely the
former, Zimmerman asserts. By storing methods within objects, synchronization problems
disappear, for example. The correct version of the processors and database always exist, because
they are ali generated from one source and are one unit.

The AMDS demonstration was a STEP Level 2 transfer- but a
Level 2 which is a stepping stone to a Level 3. (Level 1 is a flat file exchange. Level 2 uses a
database as a temporary working form. In Level 3 the database is permanent and is used by
multiple applications.)

This project is, Zimmerman and Christensen reiterate, an internal development project. Its goal is
to "demonstrate STEP capability."

Did they succeed?

"We made STEP happen! Our management saw STEP actually being used to generate produc6on-
quality data. This one demonstration did more to remove the mystery from STEP that,, three years
of modeling." A der,aonstration transfer involving Level 2 and object- c iented databases, no less.

ON-GOING ACTIVITIES

Zimmerman notes that until fairly recently, solids were seen as the basis of CAD/CAM system.
Now features are becoming more prominent. Allied-Signal Kansas City Division, through the
AMDS project and its involvement in STEP, is now placing more emphasis on features.

AMDS continues to expand. Developers plan to support four major new application areas:
o generative inspection planning
o generative process planning
o feature-based tolerancing
o constraint-driven geometry creation

This suite of applications is to be supported from one integrated STEP-compatible database.

BENEFITS

Zimmerman comments,
This project increased our confidence in STEP and gave us something tangible to

show our management. We discovered the advantages of using high-productivity
programming and the object-oriented paradigm to implement STEP. We reviewed the
STEP models more critically than we ever had before. The greatest benefit coming from
the project so far has been the acceptance of STEP by the developers of advanced
manufacturing applications at our plant. These developers are now asking for more STEP
database capabilities than we can deliver!"

App-52

Zimmerrnan and Christensen are both active members of the IGES/PDES Organization.

Project Name: Advanced Manufacturing Development System

Customer: Department of Energy, Process Development Order 70581900

Major project milestones:
FY90: Technology selection
FY91: STEP-based solid model transfer
FY92: STEP-based form feature transfer and integration with USAF Rapid Design System

(RDS)

Object Products used:
- Intellicorp KEE: Object-based knowledge shell
- rI'ASCA: Object-oriented database management system (OODBMS)

App-53

Appendix J:

Rapid Response Manufacturing (RRM)
Martin Marietta Energy Systems - Oak Ridge

Contact: William D. Cain, Engineering, cainwd@oml.gov, 615:574-3235

Project Sponsor: DOE - TCI funding through a CRADA agreement with NCMS
Project Type: Research, Development and Deployment
Start Date: July 1, 1992
End Date: July 1, 1997
Manpower Effort: Y-12 will provide 6-8 FTEs/yr for 5 years; NCMS Joint Venture

Companies will provide an average of 30 FTEs/yr for 5 years

Pro iect Overview;

MMES is in the process of establishing a Cooperative Research and Development Agreement
(CRADA) with the National Center of Manufacturing Sciences (NCMS) to participate in its joint
venture Rapid Response Manufacturing (RRM) Project. The RRM Program is an effort to enable
engineers to effectively reduce the design and fabrication time needed to manufacture products
rapidly in response to market demand. The objective of RRM is to develop an advanced systems
environment which will enable engineers to more rapidly design and manufacture machined parts.
A five year program is planned. The technical emphasis will be on feature-based product modeling
and knowledge-based applications as a means of attaining rapid response manufacturing. Insofar
as possible, RRM is to be built on a foundation of commercially available capabilities such as
solids modeling, knowledge-based shells, and database systems. The focus on the program is on
designing and making products of faster, better, and cheaper through application of these
technologies.

The manufacturing companies involved in this NCMS managed joint venture are Ford, GM, TI,
and United Technologies. Vendor companies include Aries, Cimflex Teknowledge, Cimplex
Corporation, ICAD, Parametric Technology Corporation, and Spatial Technology. Partial funding
for this effort will be provided by the National Institute of Standards and Technology (NIST)
through Advanced Technology Program (ATP) funding. The total project cost for the five years is
budgeted for about $50 million.

Proiect Descriotion:

RRM will be accomplished by coordinating and extending the application of integrated product and
. process modeling, knowledge-based applications, and direct manufacturing in a cooperative

environment. Each participant will measure progress relative to the following seven system
capabilities that will reduce design-manufacturing cycle time, improve the quality-to-cost ratio,and
improve reliability:

* Establishing complete models of design and process data.
* Improving access to product and process knowledge.
* Accurately producing the first part. I_
* Developing products in a single iteration.
* Developing portability of product models among manufactures.
* Creating new designs from mathematical variation of proven designs.
* Manufacturing parts directly from design models.

App-54

Each manufacturing firm has selected a different product family for development. MMES will
- focus on turned parts and milled/drilled parts.

A major part of the MMES emphasis will focus on establishing a sharable product and process
database to support the various diverse applications for design and manufacturing. The reason for
this is that currently product data is being maintained in several disjoint poorly conceived databases
and presentation formats. Frequently the only access to product data is a paper copy of an
engineering drawing. The only electronic representation available is wrapped up in an inaccessible
proprietary CAD vendor's database. Manufacturing data is similarly maintained. Product data is
transferred between applications through human interpretation of paper drawings or CRT displays.
This project will demonstrate that there exists a neutral conceptual schema for product information
which is implementation independent and capable of supporting the various applications which use
or create it. The emphasis will be on the creation of a product model where the engineering
drawing is viewed as a method of presenting product data. The implementation will be object
oriented and will conform to emerging standards (STEP) as much as feasible.

Initial Work:

One of the goals of Martin Marietta Energy Systems is to manufacture higher quality less expensive
parts faster. To achieve this, engineering, planning, manufacturing and quality functions must be
integrated in a seamless environment. This requires developing a highly sophisticated, flexible,
complete and reliable product and process data information system. The initial work in this area
will be a development effort to provide a base-line product and process data base system utilizing
current technologies for the communication of product definition data between dissimilar design
and manufacturing applications. This base-line database will utilize existing STEP models
wherever possible.

In particular, the initial effort will involve:

1. creating a minimally redundant product data information schema which is
application and implementation independent. The latest work within STEP will utilized
wherever applicable.

2. the use of object-orient data base and programming techniques.

3. supporting the product definition information requirements of at least two non-
homogenous manufacturing applications which share common product data.

4. demonstrating the creation, maintenance and use of electronic product design
' data.

5. providing test information feedback to STEP

6. identifying incomplete or missing concepts and capabilities within existing
vendor supported software. Particular emphasis will be placed on the identification of
incompatibilities (both conceptual and application specific) which prevent data integration.

7. recommendations for implementing this system in a production environment.

App-55

Appendix K:

DATABASE MODERNIZATION STUDY
FOR STRATEGIC COMMAND, OMAHA

Sandia National Labs, Albuquerque

ContacI; Laurence Phillips (505) 844-7332

This study is being conducted to determine the advantages and disadvantages of modernizing the
databases used during the development of large scale plans. The impetus of the study came from a
desire to streamline the planning process. Our thesis is that moving to an environment that pelxnits
steps in the planning process to be executed concurrently would give the greatest gain, and that the
enabling technology is modern databases. 17

Our concept of operations is that planning is analogous to specifying, designing, manufacturing,
and producing a part: Although the steps in the two processes are different, the sequential value-
added approach is the same. Both processes are described in terms of steps, each of which must
be completed before the next can begin. Errors that require rework in any earlier steps halt current
operations while ali data is fed back for correction, then reworked through ali intervening steps
back to the error detection point.

Correcting this state requires a simultaneous view of the thing being designed by ali the enterprises
involved in the process so that errors or non-cost-effective decisions can be detected by
downstream processes as they are made. The core requirement in operationalizing concurrency is a
data communication standard that allows the different operational enterprises to view the data
simultaneously.

We are currently testing the hypothesis that storing planning data in a more modern extended
relational or object-oriented database would not only allow concurrent planning operations but
would also greatly reduce database administration, maintenance, and quality control workloads.
We are using the Statice object-oriented database from Symbolics to explore the implementation
and concurrent use of actual planning data in a modern data environment. Initial experimentation
of the object-oriented approach using Intellicorp's KEE product showed that the approach was
feasible. Important attributes of the research system include attribute-level versioning and
(promised) portability to Sun/Unix workstations. The study is projected to run through the end of
FY94.

For further information, contact:
Laurence R. Phillips
Division 6601
Sandia National Labs
Albuquerque, NM 87185

App-56

Appendix L:

"INTELLIGENT" PROCESS CONTROL

Los Alamos National Laboratory

Contact: John Marinuzzi (505) 667-8254

THE CHALLENGE

Los Alamos activities require the operation of many complex chemical processing and
manufacturing systems. We are continually trying to improve our operations for our own benefit
and because the DOE "modernization" program calls for Los Alamos (and ali other facilities) to
strive toward the "factory/laboratory of the future" and make major gains in regard to productivity,
quality control, waste minimization, safety, flexibility, and cost effectiveness. One promising
approach to improve- ment in ali these areas is the application of Artificial Intelligence technology

: to the program of building automatic, "intelligent," process control systems.

THE APPROACH

The historical procedural approach to computer modeling coupled with classical or modern control
practice has resulted in extremely limited "intelligent machine systems." Such systems show little
or no ability to change or adapt their behavior in response to complex process changes. Moreover,
development, modification and maintenance of these conventional software systems is
prohibitively difficult.

During the last seven years, Los Alamos has invested millions of dollars in developing Neutral
Network/Artificial Intelligence capability at the Laboratory. This technology, which is based upon
Object Oriented Programming techniques, has been significantly improved in the last few years in
terms of capability, equipment, cost, and commercial availability. We are extending this
technology to develop a very high level modeling and process control system for use at Los
Alamos.

Neutral networks are being used to recognize and abstract knowledge from complex data. More
conventional Artificial Intelligence techniques, based upon object oriented programming, are then
used to model this and other knowledge into an "intelligent" control system. Los Alamos has been
developing this control system for two years. Some of this technology is mature enough for
production use and promises significant gains in productivity. Commercial products from Gensym
Corporation, Intellicorp, and Sun Microsystems are used in this effort.

IMPORTANCE TO LOS ALAMOS, THE DOE, AND COMMERCIAL PROGRAMS

Our intelligent process control program is directed toward Los Alamos activities. We expect to
achieve significant process improvements in areas of safety, inventory control, quality, production,

J and costs. However, many elements of this intelligent machine control work are generic in nature
and are immediately applicable to other Laboratory man/machine process control and
manufacturing programs. Some of these techniques can also be readily applied to commercial
applications.

App-57

For more information, contact:
John Marinuzzi
Los Alamos National Laboratory
Knowledge Systems Laboratory
MEE-3, MS J580
Los Alamos, NM 87545

App-58
=

Appendix M:

KOALAS: An Architecture for Intelligent Control
Systems

Los Alamos National Laboratory

Christopher Barrett, Analysis Division / Simulation Applications
(505) 665-3405 email: cbarrett@lanl.gov

Kathryn Berkbigler, Computer Research and Applications
(505) 667-8377 email: kpb@lanl.gov

Descriotion:

KOALAS is an architectural approach to the design of intelligent control systems that combines
more conventional control theory with artificial intelligence techniques for automated reasoning, lt
structures the process of abductive reasoning for state estimation in complicated environments and
separates state estimation from control reasoning processes, lt is unique in that it explicitly isolates
deductive functions, which are best performed by computers, from inductive functions, which are
often best performed by human operators. Moreover it structurally defines the relationships
between deductive inference, inductive inference, and hypothesis testing in the control system.
The components of the architecture include a sensor data manager which performs hypothesis
testing functions such as multi-sensor data association, a simulation module for predicting future
system state, an evidence manager which merges ali the available evidence and adds operational
constraints, and an advice generator which recommends control actions to the operator.

The architecture also includes a role for the human operator as an interpretive, inductive component
that is involved in the process of using sensor data to form the situation assessment. The operator
may supply hypotheses which can be used to focus the attention of the sensors and reasoning
system on areas where more information is needed. The human additionally can perform a
supervisory control function, accepting or rejecting any recommended control actions or assumed
state.

As an integral part of the design process, our focus is on the modeling and simulation of the
various components that will comprise the fielded control system. We use object-oriented
techniques throughout.

We are currently using the ProKappa development environment from Intellicorp to support some
- of our object-oriented software development and for the rule-based expert system used in the

advice generator module. The KOALAS architecture supports multiple interacting intelligent
objects whose implementations may distributed across multiple platforms, so distributed object-
oriented computer simulation is required.

The KOALAS architecture is currently being applied on several projects, including automated
, multi-sensor integration in tactical naval aircraft. In these projects we are developing techniques

for achieving coordinated action by multiple vehicles using data fusion techniques with distributed
intelligent controllers sharing only state information.

App-59

For more information, contact:

Christopher Barrett
MS F606

Kathu'_:,Berkbigler
MS B265

Both at: Los Alamos National Laboratory
Los Alamos, NM 87545

App-60

Appendix N:

GOOSE: A Generalized Object-Oriented Simulation
Environment for Developing Dynamic Models

Martin Marietta Energy Systems - Oak Ridge

Contact: Delphy Nypaver, 615:574-2969

GOOSE, a software prototype for a full), interactive, generalized, object-oriented simulation
environment, is being developed at the Oak Ridge National Laboratory. Dynamic models may be

' easily constructed and tested; fully interactive capabilities allow the use to alter model parameters
and complexity without recompilation. This environment provides access to powerful tools, such
as numerical integration packages, graphic displays and online help. Portability has been an
important design goal; the environment, written in Objective-C 7, was originally developed on a
UNIX platform and was easily ported to personal computers. GOOSE version 1.4 introduces new
enhancements, such as the capability of creating "initial", "dynamic", and "whendo" methods. The
concept of modularity used in other advanced simulation packages such as ACSL 8 allows one to
build a complex model easily from a collection of previously written components. The object-
oriented approach extends this idea to take full advantage of component definitions, allowing
precompilation, optimization, and efficient testing and validation of individual modules. Once a
library of components has been defined and compiled, system models can be built and freely
modified without recompilation.

This is an ongoing effort to create a software library of nuclear reactor component models for the
new simulation environment. The most important characteristics of this library are: 1) modularity,
with different levels of model complexity, and 2) generality, so that different reactor designs can
be simulated. Control algorithm and human models will be included. The models created are
being tested and validated against other codes or plant data whenever they are available.

Other contacts:
S. J. Ball L. Guimaraes and M. Abdalla
Oak Ridge National Laboratory The University of Tennessee
P.O. Box 2008 Department of Nuclear Engineering
Oak Ridge, Tennessee 37831-6010 Knoxville, Tennessee 37996-2300

Reference
Ford, C. Ed, Carlos March-Leuba, Lamartine Guimaraes, and Daniele Ugolini, "GOOSE, a

" Generalized Object-Oriented Simulation Environment for Developing and Testing Reactor Models
and Control Strategies", Proceedings of the AI'91 Frontiers in Innovative Computing for the
Nuclear Industry, pp. 694-704, September, 1991.

7 The StepstoneCorporation,Objective-CCompilerVersion4.3 UserReferenceManual(1991).
8 Mitchelland GauthierAssociates,AdvancedContinuousSimulationLanguage(ACSL)ReferenceManual 10.0
(1991).

App-61

Appendix O:

ADVANCED SCIENTIFIC COMPUTING
ENVIRONMENT TEAM

J. P. Church,AdvisoryEngineer
ScientificComputationsSection,SavannahRiverTechnology Center

WestinghouseSavannahRiverCompany,Aiken,SC29808

I. QB_E_

The mission of the ASCENT (_A.dvanced Scientific Computing Environmen.T.) Team is to
continually keep pace with, evaluate, and select emerging computing technologies to define and
implement prototypic scientific computing environments that maximize the ability of scientists and
engineers to manage scientific data. These environments are to be implemented in a manner
consistent with the site computing architecture and standards and strategic plans for scientific
computing.

A broad, long term, goal of the ASCENT Team is to provide a computing environment that will let
scientists and engineers function at the higher level of abstraction that is their actual area of
technical expertise. The scientist/engineer should be able to solve problems by interacting with
conceptual representations drawn directly from the scientific and engineering domains. In this
environment the scientist/engineer (i.e., the "problem solver") builds the problem model with
reusable virtual objects having associated attributes and behaviors, including any real or artificial
constraints. The problem solver could then test the model by perturbing it interactively and
observing quantitative (archivexi experimental measurements; simulated or computed data) and/or
qualitative (trends, approximations) responses. Such an environment would greatly aid the
solution and understanding of scientific and engineering problems.

Some specific examples may help clarify these ideas. A thermalhydraulics analyst should be able
to interact with his9 desktop terminal to build a RELAP model of a Savannah River Site (SRS)
reactor by dragging icons of pumps, pipes, vessels, heat structures, etc., to assemble the
completed model. The icons would contain the data, correlations, relationships, physics, etc.
pertaining to the actual object they represent. The analyst could then specify a flow transient that
reproduces the flow changes imposed during an actual reactor test, compute the results, call up the
archived experimental results and display them alongside the computed results, execute other
approximate models for the same conditions (e.g., FLOOD code), and display those results to
compare with the RELAP and experimental values. The analyst should be able to easily compute
correlations and then display and compare trends of both experimental and computed results.
Similar analyses could be performed using various reactor physics and charge design codes,
Reactor Monitoring System data or Control Computer data, and simulator response.

Another example might be an engineer who needs to know the location of the safety rods in one of
the SRS reactors. He would be able to interact with his desktop terminal to request a
representation of a reactor facemap, choose a pull-down menu to select safety rods, and request a
pnntout and/or screen display of the X-Y coordinates of all, or any subset of, the safety rods. If r
the engineer were analyzing the risk of safety rod failure, he could select a number of rods from the

9 Throughoutthisdocumenttheuseof wordsdenotinggenderis forconvenienceonly. The readershould
substitutethe conceptof "theproblemsolver"in suchusage.

App-62

1

facemap display, either singly or by drawing a shape around a group, and choose a pull-down
menu to indicate that those rods were assigned 'inoperable' condition. The engineer could then use
sc_ee_-iicons representing computer codes and databases to build a procedure that would determine
the reactivity worth of the perturbed safety rod complement, and, depending upon the series of

• codes and recursions specified, could complete the probabilistic analysis of risk. The engineer
could interrogate the meteorological database, display a windrose for each stability class, use the
mouse to select and perturb a portion of any windrose, and re-do the analysis. Alternatively, the
engineer could interrogate the real-time wind data being gathered by the onsite weather towers, and
examine alternate evacuation plans by selecting highways with associated attributes of carrying
capacity (population source depletion capacity) to minimize both population and maximum
individual dose following a postulated major core melt accident.

II. PROPOSED SYSTEM
t

The major trends in computing hardware and software technology clearly indicate that the future
"computer" will be a network environment that comprises supercomputers, graphics boxes,
mainframes, clusters, workstations, terminals, and microcomputers (i.e., a full complement of

, clients and servers). This "network computer" will have an architecturally transparent operating
system allowing the applications code to run on any box(es) supplying the required computing
resources (e.g., cycles, storage). The environment will include a distributed database and database

J managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al,
databases.

The benefit of this proposed environment is that it will provide full flexibility to take advantage of
the latest advances in hardware and software and, at the same time, maximize the ability to process
scientific information and minimize the time required to develop products. And the newly hired
S/E will be able to contribute much more quickly to SRS research and development programs.

III. PRO(_RAM

To reach this long term goal we have implemented a stepwise pro_'ession from the r_r_,s_nt
assemblage of monolithic applications codes running on disparate hardware platfomas and
operating systems,

The initial components of this program include:
• Development of a prototype distributed computing system based on Unix, X Windows,

network computing hardware (heterogeneous environment), distributed databases, and
distributed f'fle systems.

• Development of portable graphics tools
• Initiation of training to implement and disseminate above tools and methods.

The first item and second items are well underway with significant new capabilities already
provided to the applications community onsite. Portable graphics tools are being developed using
used Object Oriented Technology concepts and are the subject of this Appendix. More complete
information about our program has been published in external reports.l°, 11

J

10 j.p. Church. "AdvancedScientificComputingEnvironmentGroup-NewScientificDatabaseManagement
Task-ProgramPlan (U)'. WSRC-TR-91-70(February,1991).

11 j.p. Church. "ProgressReport:AdvancedScientificComputingEnvironmentGroup-NewScientificDatabase
ManagementTask (U)". WSRC-TR-91-420(June, 1991).

App-63

IV. GRAPHICS TOOLS AND APPLICATIONS

As discussed above, the ASCENT Team is developing a core set of graphics tools to be used in the
scientific computing arena at SRS. These tools are intended to make application development
easier, human interfaces more intuitive, and application codes more portable by separating the
calculations from their input and output. The graphics tools are being developed using industry
standards such as the C Language, X Window System, X Toolkit, Motif TM Graphic Tool Kit, and
Unix. Each tool is intended to be the standard graphical user interface for the site and to provide
the capability for applications output to be viewed from anywhere onsite. The tools are being
developed using Object Oriental,xiTechnology concepts.

The reactor facemap tool is discussed next. This tool was used in the subsequent development of a
Reactor Monitoring System application (to display online reactor data) and a Graphic Reactor
FaceMap function (to create input for charge design) which are also discussed below. ,

IV.1 FaceMap Tool

The first graphic tool completed, FaceMap, displays a reactor facemap 12. The FaceMap tool has ,

been tested with certified Senior Reactor Opera!ors to identify 'human engineering discrepancies'.
The prototype was developed using the Motif .= Graphic Tool Kit, but the production version of the _
tool was written as a widget based on the Xtoolkit Intrinsics. This facilitated packaging the tool as
a separate reusable entity that is distinct from the application.

iV. i. 1 FaceMav Features_
_

The FaceMap tool provides 'pointer tracking' and 'enter notify' capabilities. 'Pointer tracking'
places a crosshair on the facemap at the center of the hex that the mouse pointer is in. The
crosshair runs the length and width of the facemap. This makes it easier to determine which x,y
location the pointer is in. Pointer tracking also highlights the particular hex by drawing a line
around the outside of the hex. 'Enter notify' notifies the application when the mouse pointer
moves to a new hex position. An example of a use of this feature would be an application which
displays the online computer number corresponding to the position of the pointer.

The tool can outline portions of the reactor facemap (positions, clusters, gangs, sectors and
systems), display the facemap in grayscale as well as color, and produce PostScript output for
printing the facemap. The facemap will also print on an inexpensive black-&-white PostScript
printer and will simulate grayscale.

Presently, the FaceMap tool runs on IBM RS/6000, DEC RISC, HP 700, and Sun SPARC
workstations running their individual versions of Unix; VAX systems operating with VMS; and a
Mac Ilci with A/UX (the Mac X Window System must also be installed). FaceMap can be
displayed on any box (including Mac's and PC's) having X server software.

IV.2 FaceMap TooI Applications

IV.2.1 Reactor Monitorin_ System

The Reactor Monitoring System (RM, RMS) facilitates monitoring and interpreting reactor
operation by providing for collection, storage, and retrieval of reactor operating data. The
FaceMap-RMS application prototype provides a full graphic display of a facemap of temperatures, ,-

12 j.C. Roberts. "InteractiveGraphicalReactorFacemapTool. PatentDisclosureNo. SRS-91-230(May23,
1991).

flows, powers, or any other dimension of the reactor assemblies. This application was extended to
display a sequence of historical data at various frame rates. The result is that the ,display of online
reactor data can be viewed from anywhere on the local area network.

IV.2.2 Granhic Reactor FaceMan (FM _Function. -

The latest FaceMap tool application developed is intended to replace the text-based RM function
used to facilitate data input to a reactor charge design code. The RM function creates an image of a
reactor facemap during charge design. That image is then process,cd to point to desired data
records to describe a specific reactor charge for physics codes calculations. The text-based RM
function is a pseudo-graphic that is difficult to use, imposes unnecessary constraints on the user,
and is prone to user error.

' The new graphics function, named FM, replaces the RM function. Although the RM function will
continue to be available, it is expected that user productivity obtained with the new FM function
will be so greatly increased that a user will be able to set up a charge design much more rapidly, by
a factor of 10-20 for simple problems and as much as 100 times faster for very complicated
problems, than previously possible. Early tests show that goal is achievable.

The new function permits multiple axial-level reactor maps, creation of assembly types through an
assembly editor, mapping between 2-character mnemonic label and corresponding reactor input
data record, cutting and pasting between axial levels, and cutting and pasting of positions, clusters,
sectors, systems and gangs.

The new FM function has five panels controlled by the user: (1) FaceMap Panel to display the
facemap and status information; (2) Assembly Palette Panel to display a list of the current
assemblies that can be put into positions on the facemap; (3) Assembly Editor Panel to create
assemblies by specifying a name, type, mnemonic, color, and GLASS record; (4) Preferences
Panel to specify if boundaries (gang,sector, or system) are to be shown, if hexes are to be
outlined, if assemblies are to be labeled (OLC, mnemonic, or type), if the pointer is to be to tracked
with crosshairs and hex highlighting, etc.; (5) Selector Panel to identify specific groupings of
reactor positions.

These panels are discussed more fully below.

IV.2.2.1 FaceMap Panel

The FaceMap Panel, shown in Figure 1, is the main working area for the FqVlfunction, lt is used
to display the current charge, select positions and it contains the application menus. Shown in
Figure 1 is a fictitious example charge with the options menu activated. When a user presses the
mouse button on a particular position, that position becomes selected. A selected position will
have a white outline around it. Once the position is selected the user may piace an assembly into
that position or perform an Editing function such as Cut, Copy and Paste.

App-65

Figure I. FaceMapPanel for the JOSHUA FM Function

IV.2.2.2 Assembly Palette Panel

The Assembly Palette Panel is shown in Figure 2. The Assembly Palette contains a menu of
assemblies that already exist, i.e., have already been created and for which complete named data
records exist in the read-path hierarchy. The user selects assemblies from this list by clicking (with
the mouse) on an assembly name in the Palette. The response to this select procedure depends on
the state of the application. If positions in the reactor map were previously selected, then the
assembly type from the Palette will be placed in each of those reactor facemap positions. If no
facemap positions were selected, then the assembly from the Palette will be loaded into the
Assembly Editor.

Figure 2. Assembly Palette Panel for JOSHUA FM Function

IV.2.2.3 Assembly Editor Panel

The Assembly Editor Panel, shown in Figure 3, is used to define (i.e., create and edit) assemblies.

Figure 3. Assembly Editor Panel for JOSHUA FM Function

App-67

An assembly definition consists of a name, type, mnemonic and color. The name identifies the
d_',ired GLASS record of ceU averaged cross section data. The type and mnemonic are used only
for compatibility with the current set of codes and make the FM function backwards compatible
with existing RM-creatext records. The color permits the charge designer to graphically
differentiate between assembly types. When the user creates an assembly type and presses the
apply button, :he assembly is placed in the Assembly Palette.

IV.2.2.4 Preferences Panel

The Preferences Panel, shown in Figure 4, is used to set the application display to the users
choice.

Figure 4. Preferences Panel for JOSHUA FM Function.

Sector, system, gang and cluster boundaries may be toggled and, when 'on', will be displayed on
the FaceMap Panel as white lines. The positions of the FaceMap can be displayed with OLC#,
mnemonic, type or no label. Pointer tracking, a crosshair that follows the mouse and spans the
length and width of the FaceMap Panel, can be toggled. A black outline can be placed on the
positions of the FaceMap Panel to help differentiate two similar colored adjacent positions.

IV.2.2.5 Selector Panel

The Selector Panel, shown in Figure 5, is used to specify symmetry options and identify specific
groupings and type of reactor positions. This panel consists of four small facemaps, each of
which represents a specific grouping of reactor positions; namely, gangs, sectors, systems,
clusters. The user selects a grouping by pressing the mouse button while the pointer is inside a
particular grouping. To copy sector # 1 to sector #3, the user 'selects' sector #1 and chooses copy
from the Edit menu on the FaceMap display. Then the user selects sector #3 and chooses paste
from the same Edit menu. Extended selections can be made by holding down the shift key while
pressing the mouse button.

Figure 5. Selector Panel for JOSHUA FM Function

The selector also has two sets of toggle buttons which affect symmetry (e.g., 60° , 120° , 180° ,

360 °) and position type. The symmetry option changes the way selecting works. With 60°
symmetry a selection is replicated in each sector. The position type toggles affect which type of
positions (assemblies, control rods, safety rod assemblies) are being referenced with the selector
panel. For example, if gang 2 and the Control Rod toggle were selected then the positions
referenced would be ali the control rod positions in gang 2.

v. FUTURE

Consistent with ASCENTs charter, the Team will continue to focus on the following
interconnected data management tasks: (a) I/O data management or symbol manipulation, which
comprises the interface between the user and the I/O data base; (b) computational data management,
which comprises the interface between the numerically intensive part of the computer code and the
corresponding computational, or 'internal', data base; and (c) interface, or flow of data, between
the I/O data base and the computational data base.

App-69
_- F

Appendix P:

OUTLINE OF RESEARCH PLAN FOR THE
LOS ALAMOS NATIONAL LABORATORY

TASP MODEL

Contact: Doug Roberts (505) 667-4569

1. Background _:

The Los Alamos National Laboratory (LANL) Technical Assessment and Selection Panel (TASP)
modeling effort began in the summer of 1990, shortly after the formation of the DOE TASP
committee. Prior to starting work at developing a TASP model, LANL conducted a survey of
existing models to determine if there were any that could meet the TASP analysis requirements.
When it was determined that none of the existing models could sufficiently address the issues
attendant to TASP and Complex 21, LANL developed a prototype model specifically designed to
address plutonium reconfiguration issues. The initial prototyping effort resulted in a model
prototype that was deemed effective in addressing TASP reconfiguration issues. It should be
noted that the relatively short prototype development period was possible because of previous,
similar modeling work performed at LANL.

Since that time, the TASP model has been enhanced on an as-needed basis to address new analysis
requirements as they arose. The original prototype was designed to address plutonium issues
only, and so a significant amount of effort has been spent making the model more generic so that
uranium, lithium, tritium, and HF, material processing can be more easily modeled. Also,
additional modeling requirements have been identified as the user base has expanded.

In parallel with the support efforts for the LISP-based version of the TASP model, LANL is
investigating alternative software and hardware environments for future implementations of the
model. The intent is to develop a new version of the TASP model that will be faster and easier to
use. Recently, several new software development environments have become available which
appear to have several advantages over the current model software environment. These advantages
include

• increased speed
• increased portability across hardware platforms
• greater ease of use
• richer development environment
• less cost.

2. Model Description

2.1. General Description

The TASP model is an object-oriented discrete-event / continuous simulation system designed to
address TASP reconfiguration issues. The current implementation was developed using KEEl3

13 KEE (Knowledge Engineering Environment) is a la'ademark of IntelliCorp of Mountain View, California.

App-70

and LISP software. The model currently is running on Sun Microsystems 14 SPARC
workstations. The nature of the TASP Complex 21 project requires that the analysts evaluate
different technologies and their impact on production, waste generation, and facility utilization. In
order to supply the analysts with this information, the model is sufficiently detailed that the impact
of one technology over another can be measured.

To evaluate the overall impact of technology comparisons, it was necessary to directly model the
technologies. Therefore, the TASP model is at the level of detail of individual processing
operations, or processes. Examples of these processes are machining, casting furnaces, anion
exchange columns, etc. To assist the analyst in this task, the model was designed to allow
flowcharts to be quickly input and modified.

. Within the scope of the Complex 21 study, it is necessary to predict primary material flow rates to
determine if production schedules can be met. lt is also necessary to predict the flow rates of
secondary and tertiary residue and waste streams since waste generation will be an important driver
in the design of Complex 21. For this reason, a mass balance approach to system modeling was
adopted by the TASP model. A full mass balance characterization of each process being evaluated
allows the analyst to accurately predict overall facility behavior, and to measure the full impact of
technology comparisons in terms of residue and waste generation, as well as in terms of product
throughput.

To accurately predict residue and waste stream generation, the analysts using the TASP model have
identified several specific types of waste-generating behavior that the model was required to
emulate. These fall into two categories: periodic waste generation, and process waste generation.
An example of periodic waste generation is the gloves and paper wipes produced from periodic
glove box maintenance, wipe-down, and material inventory. In some cases this occurs every 30

" days. An example of process waste generation is when acid is added to the system during aqueous
residue recovery operations. Each liter of acid added to the system results in a defined number of
cubic feet of cement required in waste disposal operations. Both types of waste generation are
emulated in the TASP model.

After ali of the technologies have been identified that will comprise a given portion of Complex 21,
the facilities will need to be sized and load-leveled to meet the build and retirements schedules. The
TASP model can assist the analyst when sizing facilities.

One method of sizing makes use of the utilization factor for a process. The utilization factor is
defined as the percentage of the available processing time in a given period that the process was
busy. If, after a simulation sizing run, the analyst observes that one process had a high utilization
factor (perhaps 90%) and the processes downstream for it ali have low utilization factors, then a
probable bottleneck in the system has been identified. The analyst can then add processing
capacity to the process in question (perhaps by adding another piece of equipment in parallel) and
re-run the simulation. This iterative use of the model is called "load levelling."

A similar measure used in sizing a facility is to measure the queue of material upstream of each
process. Those processes with large queues will be suspected bottlenecks.

2.2. Current State of Implementation (March 1992)

The TASP model is presently in use by analysts at Los Alamos, Livermore National Laboratory,
and at Martin Marietta Energy Systems at the Y- 12 Plant in Oak Ridge. In addition, analysts from

14 Sun Microsystems is a regisUered trademark of Sun Microsystems, Inc. of Mountain View, California.

App-71

the Savannah River Plant have been using the model at Los Alamos until they have their own
internal capability. We are presently in discussion with personnel at the Pantex Facility in
Amarillo, Texas, for potential model application there.

To date, the model has been primarily used for plutonium analysis. In the last three months,
however, Y-12 personnel have initiated lithium and uranium analysis efforts. Preliminary
verification and validation efforts have been completed, with the assistance of Livermore
personnel. The formal documentation and verification and validation tasks are planned to begin at
Los Alamos soon.

3. Current Status

3.1. Model Status

The TASP model has been developed to the stage where it can address most (of the now known)
plutonium analysis issues in site return, purification, and manufacturing technologies. Since
aqueous plutonium processing has not yet been completely modeled, there may be new
requirements places on the model in order to complete aqueous plutonium modeling. The model is
starting to be used at Y-12 to address lithium and uranium issues, and several new features have
been identified that must be incorporated into the model before it can be used to perform a complete
set of lithium or uranium reconfiguration runs. A prioritized list of additional features for the
model is being maintained and implemented at Los Alamos.

3.2. Analysis Status

The data set supporting the Design Guidance Manual for the proposed future Plutonium facility has
been delivered to Fluor Daniel Corporation (the prime contractor for the reconfiguration effort).
Efforts are continuing to fill remaining holes in the data for the Complex-21 Plutonium model.
Because the Plutonium flowsheet is still changing, progress toward a complete data set has been
slower than expected. Nonetheless, the model is currently being used to determine material flows
throughout the Plutonium flowsheet and to assess the impact of reagent recycle on the Nitrate
Aqueous Recovery module. Progress in the Uranium data set and flowsheet is proceeding rapidly,
with two new users now being trained in the use of the TASP model. Progress in the Salt
Flowsheet and data set has reached the stage where the TASP model can be used by Y-12 analysts
to study technology trades proposed by the TASP Salt Working Team.

A second generation database manager has been created with Apple's HyperCard t,tility to both
manage TASP-Complex-21 data and to automatically create TASP model input fries from that data.
At present, the most recent data for Site-Returns, Manufacturing, Chloride, and Nitrate operations
in the Plutonium model have been entered into the database. The database has successfully created
valid Baseline, Scenario, and Disassembly-Schedule input fries for Plutonium Chloride operations;
input fries for other section are under development. Future plans include adding the ability to read
data from the existing Macintosh/IBM-PC Excel databases, the ability to read data from existing
input files, and the automatic generation of module flow diagrams.

A modelling workshop was held in mid-March to detail progress in the TASP modelling effort.
TASP model users from Lawrence Livermore, Los Alamos, Savannah River Site, and Y-12
provided presentations. Fluor Daniel also provided a presentation on the architect/engineer
perspective. Future actions were defined, focusing upon documentation needs for a user manual
and a quality assurance plan.

3.3. Quality Assurance Program

A quality assurance plan is being developed for the TASP model to meet the requirements of Ios
Alamos software development standards. Documentation will be supplied on code specificatic,ns,
design description, and verification and validation of code results. Once developed in a draft foxrn,
these documents will be circulated to user groups for comment. User comments are needed _o
ensure consistency of Los Alamos QA requirements with those of user sites.

App-73--

_

Appendix Q:

ROCKY FLATS PLANT SIMULATOR

EG&G Rocky Flats

Contacts: Cheryl Steinmeyer (303) 966-7407
Terry Hill (303) 966-4065
FAX: (303) 966-2241

Deseriotion:

The Rocky Flats Plant Simulator (RFPS) is an object oriented, discrete event, Artificial Intelligence
(AI) software system used to model activities supportive of the Rocky Flats Plant mission.
Originally started as the Defense Program Simulation_oeky Flats Plant (DPS/RFP) project, the
system will be utilized to answer high-level, what-if questions concerning residue elimination,
shipping, liquid waste treatment. _aste management, nuclear material storage, and plutonium
discard limit scenarios. Models are developed in a SUN/UNIX workstation environment, using
Common List Processing (Common LISP) and Knowledge Engineering Environment (KEE) •
programming tools.

The project began in 1988 with emphasis placed on modeling the manufacturing, aqueous recovery
and pyrochemical processing buildings. With the recent change in the Rocky Flats mission, the
modeling efforts have been reMirexted to include residue elimination, stabilization of liquid stored in
bottles and tanks, nuclear material consolidation, liquid waste treatment, waste management,
shipping, and laboratory operations. Current development is on the liquid stabilization effort as (
well as improvements to the core of the model and the pre and post processors.

The detail of the simulation includes individual pieces of equipment, equipment downtime,
operating personnel, certifications, reagent usage, residue and waste generation, storage,
plutonium discard limits, and detailed process decisions. RFPS will assist in obtaining an in-depth
understanding of the capabilities and capacities available, identify and resolve system limitations
and bottlenecks and develop the consequences of undesired or projected events.

Since the change in the plant's mission, the need for RFPS has increased greatly. RFPS will assist
in answering questions such as "What if we do not start up this building?"; "What if we use
process x to eliminate residues?"; What if we move ali of the nuclear material out of one building
and store it in another?"; What if we must operate with x number of operators?"; and "What if we
cannot ship any waste for x years?".

For further information, contact:
Cheryl Steinmeyer, Terry Hill
EG&G Rocky Flats
P. O. Box 0464
Building 371
Golden, Colorado 80402-0464

Appendix R:

AUTOMATICALLY PROGRAMMED METROLOGY

Martin Marietta Energy Systems Inc., Oak Ridge Y-12 Plant

Contacts; Claude Begley (615) 574-3221
Ed Klages (615) 574-1869

, Rob Wilson (615) 576-3678
FAX: (615) 574-5458

Description

An inspection system, Automated Programmed Metrology (APM), which automates and integrates
the planning and program creation activities for inspection on coordinate measurement machines
(CMM) has been designed and is currently being productionized at the Oak Ridge Y-12 Plant.
APM integrates electronic product definition, inspection planning and CMM programming. Each of
these tasks, implemented in the Model Enhancement Module, Inspection Plan Generator, and

' Program Generation Module rely on a integrated object oriented data structure to accomplish their
tasks. Modern object oriented programming methods using the C++ language axe being used to
implement the APM system. User interface is provided through the CAD system interface, where
the base geometric and tolerance information is gleaned, and through a set of Motif windows
which present inspection plan and program information in a format which is both easy to read and
to manipulate. APM will be integrated with the plant's design and manufacturing electronic file
system, thus tieing it into the business stream.

The Model Enhancement Module of APM allows part files from Y-12's manufacturing CAD
" system to be supplemented with additional information needed to support inspection activities. A

design engineer, using menus integrated with the CAD system, specifies information such as
relationships between tolerance symbols and part geometry. The resulting model, a combination of
the original CAD data and the supplemental data, is represented in an object oriented structure
which integrates all part aspects needed to support inspection. The intent of the Model
Enhancement Module's design is that it be easily adaptable to most traditional CAD or solid
modeler systems. This will insulate the core inspection functionality from the implementation
modeler. APM thus does not require that the modeler be in compliance with a complex
representation, such as PDES, but rather that it provide a basic set of interface routines thus
allowing use of the information which it can provide.

The Inspection Plan Generator of APM allows a dimensional inspection engineer to create a high
level inspection plan. The inspection engineer enters a variety of administrative information and

• selects tolerances to included in the plan. Since the Inspection Plan Generator is integrated with the
object database created by the Model Enhancement Module, the system can automatically access
tolerance and geometric information, apply inspection rules contained in its knowledge base and
then present a recommendation for an inspection strategy. The inspection engineer can query the
system as to the logic used in arriving at a strategy and if desired override the strategy. This
combination of system and inspection engineer input allows for a largely automated but still
flexible system.

The Program Generation Module of APM allows a CMM programmer to generate a program plan,
which is a detailed version of the inspection plan, and subsequently generate an inspection
program. When creating the program plan the CMM programmer enters additional administrative

2.,

App-75

information, determines the inspection probe configuration, and specifies parameters such as
search and retract distance. The CMM programmer adds detail regarding touchup and intermediate
probings required to support the measurements comprising the inspection plan. As in the
Inspection Plan Generator, the Program Generation Module uses a rule base to suggest
programming strategies, preferred coordinate systems, ordering of measurements, parameter
values, and methods for making intermediate probings. Upon completion of the program plan the
CMM programmer can request that a collision-free DMIS program be automatically generated -
ready for simulation or postprocessing to a specific CMM for execution.

In summary, APM is production oriented inspection system designed to integrate inspection
activities from planning to program generation, lt makes use of current object oriented technology
and windowing interface technology on UNIX workstations, lt has been designed to provide the
right mix of automation, flexibility and adaptability.

For more information, contact:

Claude Begley
Martin Marietta Energy Systems, Inc.
P.O. Box 2009

Oak Ridge, TN 37831-8125 _

App-76

Appendix S:

Electronic Notarized Document System (AMENDS)
Martin Marietta Energy Systems, Oak Ridge

ContaCt: Mary Theofanos, fft@msr.epm.ornl.gov, (615) 576-6660

_Dcscripti0n:

This project designed and developed a prototype electronic notarized document system to address
the needs of the "paperless office". The prototype involved two major efforts. The first effort
required research and development of a mathematically secure electronic signature capability based
on national encryption standards to provide unforgeable and authenticatable legal signatures. The
second, focused on the design and development of a records mangement system to provide an on-
line document storage and retrieval system incorporating the electronic signature capability to
protect against document falsification.

J The electronic signature facility prototyped in AMENDS provides for 3 levels of authentication.
: The first level of signature authentication is designed to emulate the process of an individual

signing a document. This signature uses an arbitrated signature scheme, incorporating a message
digest algorithm (referred to as MD4) applied to the document, applying DES as the encryption
technique to the digest, ali using a secure communication protocol based on the Kerberos
approach. The level 2 authentication provides a notary capability, similar to the notary in the paper
world. Finally, the third level address the problem of alterable documents by incorporating an
archiver and introducing write-once-read-many (WORM) optical disk storage technology.

The projects first phase developed a proof-of-concept prototype using open systems standards and
a client-server architecture running on a POSIX development platform (Stm workstation)
demonstrating the electronic signature capability and a baseline document management system.
The second phase enhanced the prototype by adding the following features to the records
management system:

- a graphical user interface
- a means of creating, managing and querying electronic documents
- a means of creating and editing document forms
- a means of creating and editing document routings
- a means of document query by word combinations
- a means of monitoring and managing long-term storage requirements.

The project included research into the use of object-oriented technologies for the design and
development of the system in order to evaluate the value of object-oriented technology. Thus the
software implementation language is C++ and the database managment system is an object-oriented

= DBMS (CDM) demonstrating the use of object-oriented technology. Several OODBMSs were
examined and tested before selecting CDM. A comparison of several of their individual features is
presented in the System Design Documentation. In addition, considerable metrics have been
developed and collected showing the value of the object-oriented technology in this application.
For instance, the average number of lines of code generated per labor month was 686.

Currently, AMENDS addresses the needs of the paperless office as envisioned by MICOM and
provides document coordination and version mangement including auditing capabilities as well as
security through electronic signatures. Thus AMENDS can be the primary integration tool for data

App-77

resource management. In addition, the base system has been ported to MICOM Unisys 5000
UNIX equipment and distributed for a networked environment.

Several enhancements have been proposed for future phases. These would extend the capabilities
in order for AMENDS to become a complete integration tool for information resource management.

Deliverables for the project include:
- Electronic Signatures Document, K/DSRD-472, June 1990
- Prototype Electronic Records Management Software Design Document, K/DSRD--471, July

1990
- Proof-of-Concept Prototype, September 1990
- Final System Design Document
- User Documentation

A Sun workstation prototype system is available for demonstrations.

Project Sponsor: Department of the Army, US Army Information Systems Command - MICOM

Project began: March 1990, scheduled for completion Spring 1992

Principal Investigator: Mary F. Theofanos, Data Systems Research and Development (DSRD) ti

Address: Martin Marietta Energy Systems
P. O Box 2003
Oak Ridge, TN. 37831--7346

FAX: (615) 574-9955

App-78

i

Appendix T:

OBJECT ORIENTED DEVELOPMENT OF
AN EXPERT SYSTEM FOR PRIORITIZING15

/ P. Craig Hopson
Westinghouse Savannah River Company 16

Savannah River Site, Aiken, SC 29808

Abstract

Prioritizing list of diverse entities such as projects, tasks, documents, recommendations or physical
locations is a necessary part of business at DOE facilities. A key issue is whether or not this
necessary but often problematic activity of prioritizing is performed in a methodical, defensible and
traceable manner. Sound methods of prioritizing are often not employed because of their
complexity or difficulty in implementation. To overcome these problems, WSRC is developing an
expert system, First Priority, which will provide individuals or committees a comprehensive
process for prioritizing lists of any sort in the difficult case where there are several goals which are
hard to compare and measure. A set of windows, editors, and pull-down menus guide the user in
building and modifying an (inverted) weighted tree structure which represents the goals the
prioritization is to advance. The process has four stages which are generally followed in order.
They are

• building the goal tree,
• ordering the goal tree nodes,
• weighting the goal tree nodes, and
• designing measurement methods for each leaf node

Based on the resultant structure an evaluation module is generated to evaluate the items of the list.
This list is then prioritized and grouped into user-defined categories, taking into account cost or
other resources. Additional First Priority tools provide sensitivity analysis, graphical display of
data, and reporting.

Implementation

First Priority is being developed for the Apple Macintosh using MPW C++from Apple Computer
and Apple's object oriented application framework call MacApp. This decision was made for
several reasons. First, nearly everyone who would have a need to use First Priority at SRS has a
Macintosh on his desk. Because the Macintosh user interface is consistent from application to
application , the amount of time required to become productive with the program will be
minimized; limited to learning the methodology. Targeting the Macintosh also allows us to take/

advantage of Apple's leading edge object-oriented technology including MacApp, an extensive
class library written in C++ which implements the Macintosh interface, and other assorted

, development tools such as view and resource editors and class browsers.

15 Savannah River Site document number WSRC--RP-92-480

16 This contribution was prepared in connection with work done under Contract No. DE-

AC09-89-SRIS035 with the U.S. Department of Energy.

App-79

t

Once the decision was made to pursue an obje<:t-oriented implementation of First Priority, it
became apparent that a new design methodology would have to accompany that paradigm shift;
available methodologies simply don't work for OOD. We are investigating a new methodology for
software development called Solution Based Modeling (SBM). SBM is a complete methodology
for developing object-oriented software from requirements analysis through product development.
Its notational system, the visual Design Language (VDL) allows analysis, design, and
programming concepts to be expressed graphically and in a manner that allows formal verification
of the requirements. _

App-80

Appendix U:

Y-12 Capabilities System

Martin Marietta Energy Systems, Oak Ridge
t

Primary Contact: C. Ray Riggs, Y-12 Program Management, riggscr@oml, (615) 574-5814
Computing Contacts: Betty Lou Alspaugh, alspaughbl@ornl, (615) 574-9235

Deanna Barnett, bqq@oml, (615) 576-4202

The Y-12 Capabilities System is a multimedia, multi-purpose information system being developed
to support technology transfer efforts. The Y-12 Capabilities System currently shows users a wide
range of the Y-12 Plant's diversified capabilities, from a broad overview of the plant to such
detailed specifications as machine accuracy, machine features, and where to get additional
information. Text and high resolution color photographs are currently being used to depict the
plant's capabilities. An important project requirement is portability, that is, delivery of the system
on a notebook-sized personal computer capable of showing 256 colors at 640x480 resolution.
Future plans are to add animation and/or video capabilities along with sound to enhance the system

J and to populate the dBASE databases which feed the system to cover more Energy Systems
capabilities.

Depending on the user's interest, the Capabilities system can lead the user through a hierarchy of
information. This hierarchy starts with an overview of the plant's capabilities, e.g. from the
concept and design phases, through manufacturing capabilities and QA, to technology transfer.
Also included at this level is a list of unique capabilities, that is, a list of activities, systems,
programs, and applications which are considered some of the specialties of the Y-12 Plant. Much
of this hierarchy of information is maintained in dBASE database fries.

The Y-12 Capabilities system was written using Information Builder's Level5 Object product to
' run on an IBM or compatible PC under the windows environment (Windows 3.0 or higher).

Level5 Object is an object-based expert system shell that provides an interactive windows-based
user interface. Level5 Object also offers an interface with relational data base models (dBase and
FOCUS products), hypertext capabilities, graphical development, and debugging tools.

The ease of developing the user interface was one of Level5 Object's strongest features. Not only
is the user interface easy to develop, it's also fairly easy for users to use. Windows-type
pushbuttons are used to allow the user to progress through the information hierarchy. Very little
documentation is needed to run an application. Deriving the data from a database, rather than from
internal classes, was also fairly easy, thought it took several tries to make Level5 utilize the
database's index file for quick retrieval of data. Level5 Object does have some problems utilizing
the inheritance feature from class to class and this is definitely a indrance. Hopefully the next

! version of the product will correct the inheritance problem and will make Level5 Object a true
object-oriented system.

Milestones: Project Initiation: Aug. 1991
Prototype completed: March 1, 1992
First phase of the production system completed: April 24, 1992

Programmers' Address"
Martin Marietta Energy Systems
P. O. Box 2009

Oak Ridge, TN 37831-8227

"_ App-81

Appendix V:

KATIE

Martin Marietta Energy Systems - Oak Ridge

Contact: Abigail G. Roberts
Martin Marietta Energy Systems, Inc.
Y-12 Plant, P. O. Box 2009, MS-8066
Oak Ridge, TN 37831-8066
Phone: 615:574-5701
Fax: 615' 574-0334

Knowledge-based Assistant for Troubleshooting IndustrialEquipment (KATIE)

The primary feature of KATIE is the interactive delivery of technical information to the end-user.
The system's knowledge base consists of step-by-step maintenance, repair and calibration
procedures; video images of each procedure step; the text of maintenance manuals with links to i/
procedure steps; and an expert system front-end which performs initial problem isolation.

KATIE uses an IBM PC/AT with video capture, compression, and display board; video mixer
board; VGA-type monitor;, and 380 Mbyte ESDI hard drive with 8 Mbyte memory. KATIE was
developed using DOS, Smalltalk V/286, and C.

Project completion date was September 1990.

Knowledge-based Assistant for Training and Information Exchange (KATIE. version 2)

This system is being developed for the Y-12 Security Division as an interactive training program
for DOE certification and recertification of security operators. The system uses the original
KATIE format with additional audio and video features.

KATIE is a multimedia application using a 486 33MHz PC with a VGA monitor and 16 Mbyte of
memory; a video capture, compression and display board; an audio processing board; and a dual
90 Mbyte Bernoulli drive.

The current status on this project is entry of Y-12 Security training information and Security
specific software enhancements.

° App-82

Appendix W:

Trim-Sol Multimedia Training System

Martin Marietta Energy Systems - Oak Ridge

J

Contacts:
Larry Hopper 615:576-5271 Computing & Telecommunications Division
J. T. Greer 615: 574-1317 Y-12 Development Division

Descrivtion:

Starting in March 1991, the Trim-Sol multimedia training system was developed to help train
individuals at the Y- 12 Plant in the proper procedures for collecting, purifiying, and redistributing
Trim-Sol machine coolant.

The system was implemented using the Guide Product from OWL on a IBM-compatible personal
1 computer and Windows 3.0. The first phase of the system used hypertext and "active" pictures to

present information and procedural assistance. The system has several windows: one for the text
" of the formal work procedure, several mouseable buttons for navigating through the document,

one for graphics and video, and another window for definitions of works used in the procedure.
' By clicking on navigation buttons or highlighted words or phrases, the user can learn about the

procedure or be assisted in performing it.

Use of a computer-controlled video cassette recorder was evaluated during the summer, and it was
determined that addition of video would take several months to develop. The system could be
beneficial without video, so it was delivered to the Fabrication Division for use late in 1991.
Addition of video segments is still a possibility for future development, but the need is reduced due
to the changing mission of the Y-12 Plant.

App-83

Appendix X:
._.

OBJECT ORIENTED TRAINING
AT THE SAVANNAH RIVER SITE17

E. L. Funderburk
t

Westinghouse Savannah River Company 18
Savannah River Site, Aiken, SC 29808

Description:

Training is an essential element of the effort to introduce the implement Object Oriented technology
and its benefits at the Savannah River Site. The Scientific Computing Resource Center (SCRC),
operated within the Savannah River Technology Center as focal point for scientific and technical
computer training, currently offer a limited selection of courses aimed at computer professionals
who wish to learn about the Object Oriented paradigm and how to apply it to the entire range of
their development activities, from analysis and design to coding and implementation.

The SCRC operates on a zero based budget, and must fund its activities through direct charges to
the student. This approach has proven to be cost-effective, in that the typical course cost to the
student is roughly equivalent to what the tuition alone would have cost for an off-site offering. ,
The travel and living expenses associated with an off-site course are avoided, as is the time away
from the job to travel to and from cities in which such courses are offered.

The following describes the current course offerings, as well as key courses currently being
planned for the near future.

Introduction to the Object Oriented Paradigm

Description: This is a one-day, language-independent, comprehensive seminar for technical
managers, analysts, software designers, and programmers whos wish to understand the
fundamental concepts and advantages of the Object Oriented paradigm.

Content:
Upon completion of the course, the student will:

- Understand the advantages that the Object Oriented paradigm brings to the issues of:
- code reuse
- portability
- code maintenance
- the development of very large systems.

- Understand the software life cycle using the object oriented paradigm.
- B_ome familiar with graphical notation as used in the object model.
- Trace the software development process from analysis through design and implementation
- Have an understanding of the basic concepts of object oriented programming such as data

abstraction, encapsulation, inheritance, and polymc phism.

17 SavannahRiver SitedocumentnumberWSRC-RP-92-481
18 This contributionwaspreparedin connectionwith workdoneunderContractNo. DE-AC09-89-SR18035

withthe U.S. Departmentof Energy.

App-84

Object Oriented Analysis and Design

Description: This course is designed for students who have completed the suite of C++
programming courses offered on -site, or completed a medium to large software project in some
object oriented language. At lease a reading knowledge of C++ is required.

)
Content:

- Students will successfully analyze a sample problem demonstrating their understanding of
such object oriented design issues as:

- abstraction
- generalization versus specialization
- composition
- state and object models.

- Based on the above analysis, students will produce a conceptual design which includes the
appropriate:

- classes
- subsystems
- interactions

- Followed by a detailed design which will include
- inheritance
- composition
- delegation
- state transition.

J C++ for Non-C Programmers

Description: This is an introductory course for technical programmers and covers the basic
concepts of C++ and Object Oriented programming. Programming experience in a high level
language (e.g. Pascal, Fortran, etc.) is required.

Content:
Upon completion of the course, the student will:

- Have a basic understanding of the following object oriented concepts:
- abstraction
- classes and objects
- inheritance
- function and operator overloading
- dynamic binding.

- Have working knowledge of C++ built-in data types.
- Have the ability to implement arrays and pointers.
- Understand the use of functions andcontrol statements in C++.
- Understand dynamic memory allocation.
- Have the ability to compile, link, test, and debug simple programs.

App-85

Object Oriented Programming in C++

Description: This course in intended for users who wish to learn the object oriented paradigm by
applying the concepts in application development using C++. Previous experience with C++ or a
structured programming language is required.

Content:

Topics include:
- object oriented programming
- benefits of object oriented methods
- C++ syntax
- the structure of a C++ program
- C++ constructs ,'_
- C++ types
- advanced C++ classes
- user def'med classes

public and private objects _'
reusable code libraries
object oriented design techniques

- comparison of object oriented languages
- dynamic memory allocation
- recursion

Intermediate C++ _'

Description: A course for students with a working knowledge of C or C++. Six months
programming experience in C or C++ or successful completion of "C++ for Non-C Progranmaers"
is required. _/

Content: ,

Upon completion of the course, the student will have completed labs demonstrating an
understanding of:

- the concepts of data abstraction and encapsulation
- initialization and cleanup (constructors and destructors) instance variables
- single inheritance
- function and operator overloading
- dynamic binding
- exception handling.

lJ
In addition to lab exercise the student will be introduced to:

- parametric types
- the concepts of multiple inheritance.

App-86

