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Efficient modeling in transversely isotropic

inhomogeneous media

Tariq Alkhalifah

ABSTRACT

An efficient modeling technique for transversely isotropic, inhomogeneous me-

dia, is developed here using a mix of analytical equations and numerical calcula-

tions. The analytic equation fl)r the raypath in a factorized transversely isotropic

(FTI) media with linear velocity variation, derived by Shearer and Chapman, is

used to trace between two points. In addition, I derive an analytical equation for

geometrical spreading ill FTI media that aids in preserving program efficiency;

however, the traveltime is calculated numerically. I then generalize the method to

treat general transversely isotropic (TI) media that arc not factorized anisotropic

inhomogeneous by perturbing the FTI traveltimes, following the perturbation

ideas of Cerven_ and Filho. A I,:irchhoff-summation-based program relying on

Trorey's (1970) diffraction method is used to generate synthctic seismograms for

such a medium. For the tyI)e of velocity models treated, the program is much

more efficient than finite-(lifference and general ray-trace modeling techniques.

INTRODUCTION

Seismic modeling programs are useful fl)r testing the performance of algorithms

for various processing needs such as dip-moveout and migration. For such tests Gray,
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.41khalifah Efficient modeling in TI media .

Jacewitz and El)ton (1991) showed the usefulness of considering simple velocity mod-

els such _ksthose with linear velocity variation. For generating zero-offset synthetic

seismograms, ray-tracing al)l)roac:hes Kenerally offer substantially better performance

than do finite-difference metlm(ls when the model is assumed to have simple velocity

structure, such as constant velocity or constant vel(_city gradient. Hale (1991) con-

structed a particularly eificient l(irchhoff-summat, ion-based approach that exploited

analytic expressions for raylmths and traveltimes in isotropic media with constant

w_locity gradient. His al)t)roach _lst,(1the method of Trorey (1970) fl)r reflector seg-

mentation.

For modeling data fi'om generally inhomogeneous, transversely isotropic (TI) me-

dia, ray tracing is COml)utationally costly, so, again, some simplification of the ve-

locitv structure is needed to l)ring about desired colnputational efficiency. Although

the tidy analytic expressions that arise for isotrol)ic media with constant w_locity

gradient are no longer awtilable for TI media, Hale's isotropic algorithm remains an

excellent starting point for extending to efficient synthetic-seismogram computation

for inhomogeneous TI media.

I first establish a ray-tracing algorithm for computing time and amplitude in a

factorized TI (FTI) medium (i.e., TI medium in which all ratios among the elastic

coefficients for TI media are imleI)endent of position). A constant-velocity-gradient

restriction is essential in establishing analytic solutions for raypaths and amplitude.

Then, I use the time-t)erturbation equations develol)ed by 0erven9 and Filho (1991)

to extend from FTI to general, inhomogeneous TI media with tilted symmetry axis.

Although the approach can be used to simulate off:set data, here I show saml)le syn-

thetic zero-offset sections only and assess tile efficiency of the procedure.

Figure 1 shows a sample zero-offset synthetic seismo_ram for a symmetric syn-

clinal reflector in a transw_rsely isotropic, inhomog(,neous medium. The velocity is

_,(x, _)=1.0+0.1 :r+0.6 _ kin/s, where :r is distance (kin) along the surface and z

,)
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• is depth measured from the surface. The asymmetry ill the reflection is due to the

lateral velocity variation. This data set was generated in 8.3 s CPU time using the

IB_I RS/6000 I_Iodel 520 workstation.

UPGRADING SUSYNLV

SUSYNLV-- SYNthetic sc,ismogram for Linear Velocity model-- is a public do-

main program, authored by Hale (1991) in the Seismic Unix (SU) software system,

that generates synthetic s_,ismograms for a linear velocity function in an isotropic

medium. I use the ray-tracing equations derived below to modify Hale's program to

generate synthetic seismogrmns for constant-gradient TI media.

The modification includes the addition of a subroutine that calculates traveltimes,

ray angles, and geometrical spreading for a linear velocity function in an FTI medium.

In a second modification, I use a time-perturbation equation to generalize the FTI

application to work for general TI media. The modified program thus now has options

for both isotropic and TI media.

Computation of seismograms in this program is ba_sed on Trorey's method, in

which every segment along a reflector acts _usa secondary source of scattered waves.

The net result of the superposition of the arrivals from linear reflecting segments along

an interface is the seismogram synthesized at each geophone location, as illustrated

in Figure 2. Details of the program are not important here; of importance is the

fact that it requires much two-point ray tracing. In a transversely isotropic medium,

where the calculation of reflection angles is relatively complicated (i.e., it requires

iteration), Kirchhoff summation such as is used here is a useful tool that obviates the

need for explicit computation of reflection angles.

The program as developed by Hale generates synthetic seismograms for a smoothly

or linearly interpolated reflector shape beneath a honmgencous or constant-gradient

medium. A model can include _usmany reflectors _s desired; however, above each
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reflector the nae(lium is assumed to have the same constant velocity gradient. Tile

progrmm also a.ssmnes _lnirv r(,ltection coefficient at all angles of incidence. The data

may be nonzero-offset, an(10l)tions (,×ist for various source definition (e.g., exploding

reflectors). These fatul(.("",s r('_xain in the modified program.

RAY-TRACING EQUATIONS

We shall consider only 2-D wave propagation; that is, raypaths are confined to

the vertical plane contaiziing the axis of symmetry and the velocity gradient vector.

The ray tracing initially is for a P-waves traveling in FTI media with linear velocity

variation in space. With th(,s(, a_sumptions, raypaths and amplitudes can be obtained

by anMytic solution.

Raypath and traveltime

The eigenvalues that describe the raypath (eikonal equation) and the eigenvectors

that describe the amI)litu(tes of the various waves in inhomogeneous media are based

on a high-frequency at)i)roximation. CervenS'(1972) shows that the eigenvalues are

solutions of

Det(Pjk - Gm_Sjj,,)= 0,

where Fjk are components of a 3 x 3 matrix F given by the relation

Fik(x,,p,) = (lijkl(ars)pjl,_l, (summation convention fin repeate(t subscripts)

L

Ps -- OT/Oxs, Oijkl -- ('ijkl/I _,

where r is travel_.ime along tim ray, p is density, x, are position coor(linates (s--1,2,3),
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and cq_i are the elttstic coefficients, in general, functions of x,,

The Gm are the three eigenvalues rep:esenting the eikonal equation for the three

wave types: quasi P-wave when m--l; quasi SV-waw'. when m-2; and quasi SH-wave

when m--3. For P-waves (I shall drop the "qu_i" nlodifier in the following),

= 1. (1)

For example, for isotropic media, GI = ct2(:r_)pipi, where a(x_) is the P-wave velocity.

In a factorized anisotropic inhomogeneous (FAI) medium

=

-- "i,¢_s(J'.,)
where .4v.kt = ,,_.,_(_.) are position-independent ratios of the density-normalized elastic

coefficient, and f(.r,) = [,:ma(.r_)] _. is the velocity in the direction parallel to the

symmet_ axis at position ,r,. Equation (1) then becomes

G1(.r,,,p_) = f2(x_)G_(p_)= 1, (2)

where G_(pi) is P-wave eigenvalue expression (1) with the aijkt(x_) coefficients re-

placed by the ratios Aij_.t.

For a constant velocity gradient,

f(x_) = A,x_, (3)

where .4_ is the gradient in the ,r., direction. For such inhomogeneity, Shearer and

Chapman (1988) showed the following simple relation between the slowness vector

and the position vector.

pixi = O. (4)

For 2-D, substituting equations (3) and (4) into eqllation (2) results in the raypath

equatzon for a generally anisotrolfiC medium with constant velocity gradients in the

x l and xa directions.

(.4apl - Alpa)2G'¢(xa,-.rl) = 1. (5)
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Note that, for media of the type considered here, the factor .4:_pl-.41pa is independent

of position along a ray.

For the special case _i' a transversely isotropic meclium, the I)osition-in(h'pendeIlt

eigenvalue for the P-wave is giw'n l_v (White, 1983)

G_(pl,p3)° = 0.5 {(, +/)py" +(,'+l)p_" +{[(a-l)p_-(,, _ l)p:_]'_+4(f+l )'2.'2pip3}_ z'}, (6)

where a _=.4Ill1, c--_--.4:_:_a:_,f = .4_laa, and I - A131a.

For axis of symmetry in the .ra (vertical) direction, equation (6), :flong with equa-

tion (4), gives (Lamer. 1993)

Gt (a,3, _ rl)o = 0.5 {(, +/).r_"+ (,.+ 1),rT''+{[(a _ l),r__(c_l):r_]_ + 4(f +/)2 x._x122}_'}. (7)

Now, equation (4) gives
Xl

l_3(Pl) = --_Pl,
1"3

which, for later purposes. I use in defining the distance

1
,0= ,,,[a,,(_0)1=- (s)

.4ap_(_o)- .4_j_3[p_(_0)]'

where { is a running parameter that monotonically increases along the ray, with ( = {o

at the starting point of the ray (see Figure 3). SI)ecifically,

1
_I_= _dr.

f(:ri)

The value of the ray parameter Pl({0) at {0 defines the particular raypath. Then,

distance r0, as seen in equation (8), is defined in ternls of Pl ({0), as shown in Figure 3.

In an isotropic medium with constant velocity gradient, all raypaths are circles.

Consider an isotropic medium with velocity f(.ri) identical to the vertical velocity

in the constant-gradient FTI nl(:(lium. Then, r0, as defined in equation (8), is the

radius of the circular rayI)ath whose ('enter is at lhe origin (:vl = 0,.ra = 0) and
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I

goes through the point b, in Figure 3, that is associated with the raypath for the TI

nledium. Substituting ecluation (8)into equation (5) gives

_-_ll," a,--Xl) -"

which, along with (7), results in the quadratic raypath equation for the TI medium

,_'I + J(,'0,*_)*, + _(,'0,a_) = 0,

!

for .rl as a function of ,ra and r0. Here, the eoeflh'ient <xis a function of only the

elasticity coefficients, and the coefficients/3 and 7 have the additional dependencies

shown.

Follow_,,g (2erven,_' (1089), for constant velocity gradient [equation (3)],

f(xl,Xa) = Alxl + Aa:ra,

v_(() = p_(_o)-.4_(_- _o),

,,a(_) = pa(_o)- Aa(,_- ,_o).

Then, traveltime along the ray is givell by

rl() = r(_,,)+ [C;,°(p_,V:,)l-_d(.
0

Geometric spreading

Although geometric spreading in an isotropie medium with constant velocity gra-

dient can be expressed analytically, the situation is not that simple for FTI media,

' which require dealing with the distinction between group and phase w_locities. I use

a sealing techni(tue to get an apI)roximate expression for the geometric spreading in

such a medium.

First, consider the geometric spreading function q, a quantity l)roportional to the

(listance l between the central ray and a nearby I)araxial ray, From (2erven_ (1981)
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it follows that

q = 1,'l= _,(s)ds, (9)
o

where c(s) is the velo('itv, ._'is the ar('length along a comI)uted rax.... the central ray,

and k is a prol)ortionalitv c()nstant. A paraxial ray is a ray (not actually traced)

in the vicinity of the ('choral ray, its normal distance from the central ray describing

the geometrical sprea(ling (('ervrn(', 1981) along the central ray. Figure 4 shows a

central and paraxial ray fi)r a transversely isotropic medium, and Figure 5 shows the

two rays for its isotropic co_lzlt(,rI)art. Note, in Figure 5, that although the paraxial

ray, like the central ray, is circular, the distance r_, from the center of the central ray

to the paraxial ray (h,p(,nds ()n the position along the central ray.

In an isotropic, constant-gradient medium, Appendix A shows that equation (9)

becomes

q = r(,:cv/A _ + Aa,'_ (10)

where r0 = (.v_ + .r_)½ is the same r0 given in equation (8), and x is the distance,

measured along the normal to the gradient direction, between the ray takeoff point

and the point along the ray where q is measured. ',Ve now seek a comparably simple,

approximate exl)ression for the geometric spreading fimction qt for FTI media.

The keys to estimating qt are scaling relationships, the first of w!_,ichis tile under-

lying similaa'ity between the ray equation (5) and tile slowness equation (2) for FTI

me(lia. This similarity is shown graphically in a comI)arison of tile raypaths shown

in Figure 3 and the slowness ('urves in Figure 6. Shearer and Chatmlan (1988) have

shown that the rayi)aths for both the FTI and isotropic media are scaled, 90-(legree

rotated versions of the respective slowness curves. Now, define tile distance from the

origin to a point ( along the raypath a.s r,(O) = Ix_[((0)] + x;_[_¢(O)],where O is the

angle between the line connecting these two points mad the horizontal axis, as shown

in Figure 3. Also, as shown in Figure 6, define the slowness of the ray at that same

i)oint ( as p(O) = V/I,_[i(0)] + 1,i[((0)1, where the angle 0 is now s(,cn to l)e the allgle of

8
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the slowness vector with the vertical slowness axis (axis of symmetry, here). Consider

rfi -,rl(_) where :r;_(() -O, and 17o- P:i(_) where Pl(_) - O, as reference wtlues for

position and slowness, respectively, From the similarity of the FTI curves in Figures

1 and 4,

r,(O)"- P(8)ro. (11)
Po

But r0and Poarejusttheradiiofthecircularrayl)athand slownesscurveforthe

isotropic counterpart of the FTI medium, shown in Figures 1 a,.xd 4. Therefore,

equation (11) is a scaling relationship between the distance rt(tg) and r0 for the two

media.

Exploiting this scaling relationship, I can establish an equation for the geometrical

spreading function qt in FTI media. The scaling relationship given by equation (11)

pertains to thc central ray. For the paraxial rays this relationship is only approximate

because I am using the origin for the central rays in describing the paraxial rays. I

assert that the following approximate relationship holds for paraxial rays of the TI

and isotropic media.

rip(0)'P(0----_),'p(0), (12)
Po

where rp is the distance from the origin to the paraxial ray for the isotropie medium,

and rtp is the distance from the origin to thc paraxial ray for the FTI medium. This

approximate relationship holds because the differencc in takeoff angle for the ccntral

ray and the paraxial ray is small (see Figures 2 and 3). From e(luation (9),

qt = klt, (13)

where It is the distance betwcen the central ray and a paraxial ray for the FTI medium

measured along the normal to the phase direction (wavefront direction). But, from

Figure 7

1,(0)= [rtp(8)-rt(0)]. (14)
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Inserting eq_mtion (14) into equation (13) and using equations (11 ) and (12), we

get

q, = k[%(0) - ,'0]p(0--_).-- (15)
P0

But for the isotroi)ic nm(lium

q= = ,.,,],

so equation (15) becomes

p(0) r,(o)
'tt = --q = ----q. (16)

Po ro

The second equality here fi)llows from equation (11).

Substituting equation(I()) into equation (16) gives the geometric spreading func-

tion in the FTI medium,

/ 2
qt -- rtx V AI + A].

Ray tracing between two points

I now use the scaling technique once again, this time to iteratively find the angle

00 for the ray originating at source position [xl((0).xa((0)] and ending at diffractor

position [xl (_l), a'a(_l)] in an FTI medium with general velocity-gradient direction.

The non-vertical, constant-velocity gradient has magnitude

and angle from vertical

= tan-I A l
A3

As shown in Figure 8, the distance from the origin to the reference position (ray

starting point), measured along the gradient direction, is

V0

g

10
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o , . [

where Vo is the velocity in the vertical direction at the starting point. I use

.4s f

and

al

to rotate the coordinates .rl and .r:_to new coordinates x_ and x_', where ,r_ is along

the gradient-vector direction. Consider the distance in the :ri_ ctireetion between

position [xt (_o), x:_(_0)] and t,ositi,m [.rl(_t), xs(_l )],

which I use to define

z --=Ax T + z9,

as the distance in the x_' ,lirection from the origin to position[xl(¢l), x:t(¢l)].

Using scaling relationship (11 ) once for angle/9o at _0 and again for angle #t at ¢1

along the ray (see Figure 8), gives

p(O_)_,(0o) (17),.,(o,}=p{Oo--i '
From Figure 8.

,'t(O,) = (18)
sin Wt

and

zg (19)r,(Oo)= sin_o'

where V;'oand _'t are angles from the x_ axis to lines connecting the origin with _o

and _l, respectively. Also from Figure 8,

_'o = 00-

and

g'l = 01 - _.

11
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Substituting equations (18) and (lfl) into equation (17) gives

" = + :" (20)
sin _'l P('Oo+ _2)sin _:-'o'

with two unknowns, t'l and C'o. The known value of Axlr satisfies

tan _'t tan Y)o'

which gives

xT(_l) tan V° (21)
_"t(_'0) = tan-1 x_'(_0) + Axe' tan _0"

Combining equations (20) and (21) yields a single transcendental equation for _0,

the takeoff phase-velocity angle from xT for the two-point ray-tracing problem. A

root-finding algorithm (e.g., the Newton-Raphson method or the secant method) is

used to solve for _"0. Note from Figure 8 that if A.r_ tan W0 is bigger than x T, then

the diffractor position is past the turning point of the ray.

The scaling approach is an alternative to the general raypath equation for two-

point ray tracing. It gives a simpler way of treating rotation in the gradient direction;

rotation of the raypath equation is relatively complicated. Furthermore, the scaling

approach helps to recognize whether or not the diffraction position is beyond the

turning point of the ray, a necessary step in evaluating the sign of the ray parameters

in equation (4).

For arbitrary orientation of symmetry axis, a rotation of the coordinate axes is

done in the program such that x3 is always in the direction of the axis of symmetry

for the FTI medium. This rotation is simpler than the rotation used in the two-point

ray-tracing because it involves a rotation of the whole problem.

From FTI to general anisotropy

While still making use of efficiency of the analytic solutions, the anisotropy con-

dition can be generalized through a perturbation of the travcltimes and geometric

spreading for the FTI medium.

12
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Consider two media: (1) a background medium (unperturbed), possibly aniso-

t_'opic and inhomogencous, in which we do our general ray tracing, and (2) a per-

turbed medium, which may also be anisotropic and inhomogeneous, in which we

wish to calculate traveltime and amplitude. The traveltime in the perturbed medium

T(a,b) along a ray traveling from point a to point b is calculated fl'om the traveltime

in the background medium T°(a, b) traveling between the same two points. I seek an

efficient scheme for computing the time perturbation 6T(a,b) - T(a, b)- T°(a,b),

given T°(a,b). Differences between the density-normalized elastic parameters in the

background medium o°jk.tand those in the perturbed medium aijkt define the degree

of perturbation _aijk.t as follows

t_aijkl "- O.ijkt -- (tOjkl.

Following Cerven3_ and Filho (1991), for a generaily anisotropic inhomogeneous

background,

bTe(a, b) = --_ 6aijklpiptm.imtcdT, (22)

where 7n; are the components of the eigenvector m (the direction of the particle

motion), here for the P-wave. The integration in equation (22) is performed along a

ray L0 computed in the background medium, and quantities pi, pt, mj, mk and dT

pertain to the background medium.

Take the integrand in equation (22) to define the anisotropy perturbation factor

F for the homogeneous, isotropic segment,

1

F - 2 tSaijktpiptmjrt_t_.

Now, consider the geometric spreading function q along the ray in the background

medium (e.g., in a homogeneous isotropie medium, q = a2T°). Then, the first-order

perturbation of the geometrical spreading for the raypath between point a and point

13
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b (Alkhalifah, 1993), is given by

_q(a.,b) = -Fdq,

where F and dq pertain t,J the l)ackground mediunl, and F << 1.

SYNTHETIC DATA EXAMPLES

I will use a single TI mc(tiunl to show synthetic data generated by this modelling

program. The Wills Point shale with Thomsen's anisotropy parameters ti = 0.315

and e = 0.215 (Thomsen, 1986) is considered to be a relatively strongly anisotropic

medium. Positive angle between the symmetry axis and the vertical, ¢_,,corresponds

to symmetry axis rotated clockwise from the vertical, and negative _/, is just the

opposite.

Figure 9 shows synthetic seismograms resulting from modeling two point scatters

located at midpoint 2.5 kin, and depths 1 and 3 km. The vertical velocities for

all the models v(z)=2.0+0.6 z km/s. Figure 9a shows the diffraction curves for an

isotropic medium; Figure 91) for a Wills Point shale FTI medium with a vertical axis

of symmetry (_, = 0); Figure 9c for the same FTI medium with g, = 30 degrees; and

Figure 9d for the same FTI mc(tium with lateral _ well as vertical velocity variation,

v(x, z)=2.0+ 0.1 x+0.6 z kin/s, and with $ = -40 degrees. Note that for Figures 9a

and 9b the diffraction curves, as expected, are symmetric; however, in Figures 9c

and 9d they are asymmetric and laterally shifted. In Figure 9c, the asymmetry and

shift are due solely to the tilt of the symmetry axis. In Figure 9d, both the lateral

velocity variations and the nonvcrtical symmetry axis contribute (oppositely, here) to

tim asymmetry and shift.

The lateral shift in Figure 9c implies migration that ignores the tilted symme-

try axis, such as conventional isotropic migration, will yield lateral mispositioning

of reflectors, cvcn horizontal ones, just as happens in media with laterally varying

14
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overburden, even though the mediunl here has no lateral variation.

. Figure 10 shows an undulating-reflector model, and Figure Ii shows synthetic

seismograms corresponding to that model. The vertical velocity this time is held at

v(z)-3.0+0.5 z km/s. Figure 1la corresponds to an isotrol)ic medium; Figure 11b to

the Wills Point shale FTI medium with _ = 0 degrees; Figure 11c to the same FTI

medium with _ - -30 degrees: and 11d to the same FTI medium with lateral and

vertical velocity variation, t,(x, z)=3.0+ 0.5 x+ 0.5 z kin/s, with _ = -40 degrees.

The asymmetry and shift, mentioned above, is observed here, as well. The reflector

shown in Figure i0 is just a summation of scattering points, and the reflector response

in Figure 11 is a superposition of diffraction curves such as those in Figure 9.

Figure 12 shows more synthetic seismograms generated for the reflector model in

Figure 10. This time, the velocity structure v(z) = 4.0-0.1 z kin/s, corresponding to

a decrease in the vertical velocity with depth, a situation not generally encountered

in practice. Figure 12a corresponds to the Wills Point shale with _/)- 0 degrees, and

Figure 12b with _ = -30 degrees. Clearly, the program is not restricted to modeling

velocities that only increase with depth•

Next, I lift the restriction that the medium be factorized anisotropic. Figure 13

shows synthetic seismograms for (a) the same two (liffractors used in generating Fig-

ure 9, and (b) the reflector model in Figure 10, but these seisinograms were generated

for a TI medium using the time-perturbation feature. The time perturbation is from

the FTI Wills Point shale, to another anisotropic medium, a general TI medium, in

which b and e change with depth. Specifically, the perturbation includes the follow-

ing changes of elastic coefficients: dt = 0.05 and ,t,a-; _ = 0.1, where l and a are the

coefficient ratios given in equation (6), and 6 = 0.315 and e = 0.215 at the surface.

Comparing Figure 13a with Figures 9a and 9b, note that Figure 13at suggests more

extreme anisotropy than does Figure 9b; that is, the diffraction curves in Figure 13a

show more departure from those for the isotropic medium than do the curves in

15
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Figure 9b, despite the fact that all models have the same vertical root-mean-square

velocity. I attribute this lwhavior to the increase in size of tile anisotropy parameters

with depth.
i

EFFICIENCY

The primary objective _t" constructing the original isotropic modeling program

was efficiency in generating synthetic data. Similarly my goal was to preserve that

essential efficiency while extending to inhomogeneous TI media. Generating synthetic

data for such media 1)y lneans Sllch as finite-difference or general ray tracing is slow

and costly. For ray tracing al_proaches, speed will be slowed clown primarily by the

iterative numerical integration needed to perform ray tracing between two points.

The approach described here (loes not require such costly iteration.

The synthetic data generated for Figure 9 and Figure 13b contain 201 common

midpoints at an interval of 0.05 kin. and 401 time samples with a time interval of

0.01 s. The peak frequency used is 15 Hz. Table 1 shows CPU times, on the IBM

RS/6000 _Iodel 520 workstation, needed to generate these synthetic seismograms.

For the FTI time shown in Table 1, I chose the largest of the times for the three FTI

cases in Figure 9. For comparision, a finite-difference solution for the full elastic-wave

equation for transversely isotropic media with vertical symmetry axis would require

on the order of 1500 s.

Technique CPU time (s)
,, ...... ....

Isotropic (Figure 9) 0.6

FTI (Figure 9) 1.5
......

general TI (Figure 13a) 2.1

Table 1. Compute times for various two-diffractor tests.

The synthetic data generated in Figure 11 and Figure 13b contain 201 common
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midpoints at an interval of 0.05 kin, and 501 time samples at I).01-s time interval.

The peak frequen,_:y is again 15 Hz. Table 2 shows the CPU times needed to generate

those data.

i

Technique CPU time (s)
, " ,, ,,,'," 'i ,' :' _ .... _ '

Isotropic (Figure 11) 5.6
....

FTI (Figure 11) 36.9
............

general TI (Figure 13b) 52.0
,.,

Table 2. ComImt( times for various tests with the reflector model in Figure 8.

The ray-trace times in Table 2 are much larger than those in Table 1 because

seismogram computation fi_r the model in Figure 10 required smnmation of contribu-

tions fl'om 246 diffracting s_,gments along the reflector, whereas only two diffracting

segments were used for the tests in Figure 9 and 13a. However, the time increase is

nmeh lower than predicted by the number of reflector segments beca'lse the times in

Table 1 are dominated I)y the program overhead. For the class of models allowed in

this program, the efficiency demonstrated here far exceeds that of either general ray

tracing (Cerv(ny, 1989) or tinite-difference techniques.

CONCLUSION

The ray-tracing I)rocedure for FTI and general TI media should be useful in gen-

erating models for applications such as algorithm testing in TI inhomogeneous media,

including migration and dip-moveout studies. Alkhalifah (1993), for example, used

synthetic data generated by this program in tests of Gaussian beam migration for

FTI media. Whereas. for FTI media with constant velocity gradient, computed ray-

paths are exact and traveltimes are accurately computed by numerical integration, for

more general anisotroI)y I modify those times by the perturbation procedure so that

they become only approximate. Alkhalifah (1993), however, shows that the errors

17
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are negligible when the perturbation is less than about 20 percent.

The key characteristic of this program is the eiliciency with which it generates

seismograms. This eifi('iency is brought about by the analytical equation for geo-

metrical spreading, derive(l here. This geometrical-spreading equation for FTI media

could have other applications such as in study of mnplitude-versus-offset (AVO) de-

pendency on TI parameters in inhomogeneous media.
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APPENDIX A: GEOMETRIC SPREADING FUNCTION FOR

ISOTROPIC MEDIA WITH CONSTANT VELOCITY GRADIENT

First, consider the gromrtric si)reading function q in a z(,_) medium

/,oq = v(s)ds, (A-l)

where s is the arclcngth. For ('ircular raypaths,

._= r.(O - 00),
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0o is rile takeoff angh, frmn tile gradient direction and 2_ro is tile circumference of

tile circular raypath. Tl_,n.

ds = rodS. (A-2)

Substituting equati(m (A-2) into equation (A-l) gives

Z°q = ro ,,(s)dO. (A-3)
0

For

_,(s)= _'o+ O:(s),

where 9 = V/.4_+ .4_. " is in the gradient direction, and ro is the velocity at the

takeoff point,

,'1,'_)= _'o+ 9(rosinO(s) - z_),

where zy = m. giving9

t'( s ) = 9ro sin 0. (A-4)

So. substituting equation (A-4)into equation (A-3) gives

fo°q = 9r_ sin OdO. (A-5)
O

Integrating equation IA-5).vMds

q = 9rox,

where ,r is the (tistan('r, nwasurc(l along the normal to the gradient (lirection, between

the ray takeoff point anti the point along the ray, i.e., x = ro(cosO- ('osOo).

2O



FIGURE CAPTIONS

FIG 1 Synthetic seismc_g;ram of a syncline (shown in top) ill a TI medium with ve-

locity r(.r, :)=1.(}+(}.1 .r+0.6 z km/s. Tile data consist of 101 traces, a'l¢l tile

waveh, t used is a Rickrr wavelet with dominal_t frequency of 5 Hz.

FIG 2 Schematic drpth _tcl_icting raypaths from a s_uree to a mmlber of points along

a reflector, an_l then i_aek to a receiver. For simplicity in the figure, the raypaths

are drawn _,_straight lines, a.s fi_r a homogene,us medium. The solid thick line

represents the grolnetric-reflection raypath (i.e., one that obeys Shell's law).

FIG 3 Raypaths in a constant-gradient, transversq,ly isotropic medium aad in its

isotropie counterpart. The velocity st(x,) in the isotropie medium is identical

to the w,rtical w,locit.v in the FTI medium.

FIG 4 A central ray and nearby paraxial ray for a transversely isotropie medium,

FIG 5 A central ray and lwarby paraxial ray for the isotropie counterpart of the

medium in Figure 3.

FIG 6 The slowness curw, fiJr an FTI medium and its isotropie counterpart.

FIG 7 The scaling relations that exists between a ray traveling in a ronstant-gradient

FTI medium and its isotropie counterpart.

FIG 8 Parameters that correspond to the case of non-vertical w,loeity gradient.

FIG 9 Zero-offset synthetic seismograms of two diffraetor points for (a) an lisotropie

medium, (IJ) Wills P_,int shale FTI medium with vertieal axis of symmetry

(_, = I)), (r) the salne FTI medium with t/, = 30 degrees, and (d) tile same FTI

medium with _,,= -40 tlegrees and velocity i'(.r,z)=2.0+0,1 a'+ 0.6 z km/s.

The velocity in (a), {b) and (c) is r(z)=2.0+0.G z km/s.



FIG 10 Ilefle,'tor moch,l.

FIG 11 Zero-oIt_,,,t ._ytlthvti_' sol._mograms corresl)on,ling the r,,tte,'tor model in Fig-

ure 9 flw (_l) an is_,tr,qfic tlw_iium, (b) Wills P_fint shale FTI medium with ver-

tical axis ,f svtntnrtrv (t, = (I degrees), (c) the same FTI medium with _, = 30

degrees, an,I (,1) the same FTI medium with _;, = -40 degrees and velocity

r( r, :)=3.0+0.5 ,v+I).5 - km/s. The velocity in (a), (b) and (e) is v(:)=3.0+0,5

: km/s.

FIG 12 Zero-offset syuthetic srismograms correspottding the reflector model in Fig-

ure 9 for (a) the Wills P_,int shale FTI lnedit|ttl with vertical _txis of sylnlnetry

(_,' = 0). and (!_) the s_l, llie FTI medium with _.,= -30 degrees. The velocity

structure here is _'(z) = 4.1) - 1).1: km/s.

FIG 13 Zero-offset synthetic seismograms corresponding to (a) the two diffra,'tion

points used in Figure 8. and (b) the reflector model used in Figure 10b. Here,

time perturbation is used with _ = 0.05 and _ = 0.1 fi)r both plots. The

symmetry axis is vertical.
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