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Efficient modeling in transversely isotropic

inhomogeneous media

Tariq Alkhalifah

ABSTRACT

An efficient modeling technique for transverselv isotropic, inhomogeneous me-
dia, is developed here using a mix of analytical equations and numerical calcula-
tions. The analytic equation for the raypath in a factorized transversely isotropic
(FTI) media with linear velocity variation, derived by Shearer and Chapman, is
used to trace between two points. In addition, I derive an analytical equation for
geometrical spreading in FTI media that aids in preserving program efficiency;
however, the traveltime is calculated numerically. I then generalize the method to
treat general transversely isotropic (TI) media that are not factorized anisotropic
inhomogeneous by perturbing the FTI traveltimes, following the perturbation
ideas of Cerveny and Filho. A Kirchhoff-summation-based program relying on
Trorey's (1970) diffraction method is used to generate synthetic seismograms for
such a medium. For the type of velocity models treated, the program is much

more efficient than finite-difference and general ray-trace modeling techniques.

INTRODUCTION

Seismic modeling programs are useful for testing the performance of algorithms

for various processing needs such as dip-moveout and migration. For such tests Gray,



Alkhalifah Efficient modeling in TI media

Jacewitz and Epton {1991) showed the usefulness of considering simple velocity mod-
els such as those with linear velocity variation. For generating zero-offset S.\'uthcti.c
seismograms, ray-tracing approachies generally offer substantially better performance
than do finite-difference methods when the model is assuimed to have simple velocity
structure, such as constaut velocity or constant velocity gradient. Hale (1991) con-
structed a particularly efficient Nirchhoff-summation-based approach that exploited
analytic expressions for ravpaths and traveltimes in isotropic media with constant
velocity gradient. His approach nsed the method of Trorey (1970) for reflector seg-

mentation.

For modeling data from generally inhomogeneous. transversely isotropic (TI) me-
dia, ray tracing is computationally costly, so, again, some simplification of the ve-
locity structure is needed to bring about desired computational efficiency. Although
the tidy analytic expressions that arise for isotropic media with constant velocity
gradient are no longer available for TT media, Hale's isotropic algorithm remains an
excellent starting point for extending to efficient svnthetic-seismogram computation

for inhomogeneous TT media.

I first establish a ray-tracing algorithm for computing time and amplitude in a
factorized T1 (FTI) medium (i.e.. TI medium in which all ratios among the elastic
coefficients for T media are independent of position). A constant-velocity-gradient
restriction is essential in establishing analvtic solutions for raypaths and amplitude.
Then, I use the time-perturbation equations developed by Cerveny and Filho (1991)
to extend from FTI to general. inhomogeneous TI media with tilted symmetry axis.
Although the approach can be used to simulate offsct data, here I show sample syn-
thetic zero-offset sections only and assess the efficicucy of the procedure.

Figure 1 shows a sample zcro-offset synthetic scismosram for a symmetric syn-
clinal reflector in a transversely isotropic, inhomogeucous medium. The velocity is

v(x,z)=1.040.1 240.6 = km/s, where z is distance (k) along the surface and =

v
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- is depth measured from the surface. The asymmetry in the reflection is due to the
lateral velocity variation. This data set was generated in 8.3 s CPU time using the

IBM RS/6000 Model 520 workstation.

UPGRADING SUSYNLV

SUSYNLV— SYNthetic scismogram for Linear Velocity model— is a public do-
main program, authored by Hale (1991) in the Seismic Unix (SU) software system,
that generates synthetic scismograms for a linear velocity function in an isotropic
medium. I use the ray-tracing equations derived below to modify Hale's program to

generate synthetic seismograms for constant-gradient TI media.

The modification includes the addition of a subroutine that calculates traveltimes,
ray angles, and geometrical spreading for a linear velocity function in an FTI medium.
In a second modification, I use a time-perturbation equation to generalize the FTI
application to work for general TI media. The modified program thus now has options

for both isotropic and TI media.

Computation of seismograms in this program is based on Trorey’s method, in
which every segment along a reflector acts as a secondary source of scattered waves.
The net result of the superposition of the arrivals fromn linear reflecting segments along
an interface is the seismogram synthesized at each geophone location, as illustrated
in Figure 2. Details of the program are not important here; of importance is the
fact that it requires much two-point ray tracing. In a transversely isotropic medium,
where the calculation of reflection angles is relatively complicated (i.e., it requires
iteration), Kirchhoff summation such as is used here is a useful tool that obviates the

need for explicit computation of reflection angles.

The program as developed by Hale generates synthetic seismograms for a smoothly
or linearly interpolated reflector shape beneath a homogencous or constant-gradient

medium. A model can include as many reflectors as desired; however, above each
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reflector the medium is assumed to have the same constant velocity gradient. The
program also assumes unity reflection coefficient at all angles of incidence. The data
may be nonzero-offset. aud options exist for various source definition (e.g., exploding

reflectors). These features remain in the modified program.

RAY-TRACING EQUATIONS

We shall consider only 2-D wave propagation; that is, raypaths are confined to
the vertical plane containing the axis of symmetry and the velocity gradient vector.
The ray tracing initially is for a P-waves traveling in FTI media with linear velocity
variation in space. With these assumptions, raypaths and amplitudes can be obtained

by analytic solution.

Raypath and traveltime

The eigenvalues that describe the raypath (eikonal equation) and the eigenvectors
that describe the amplitudes of the various waves in inhomogeneous media are based

on a high-frequency approximation. Cerveny(1972) shows that the eigenvalues are

solutions of

Det([‘jk - Gméjk) = (),

where I'j; are components of a 3 x 3 matrix I’ given by the relation

Lie(s, ps) = aijua(rg)p;pi. (summation convention for repeated subscripts)

Ds = aT/OIS, Aijkl = ('wjkl//)-

where 7 is traveltime along the ray, p is density, z, are position coordinates (s=1,2,3),
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and c;;; are the elastic coefficients, in general, functions of .

The G,, are the three eigenvalues rep.esenting the eikonal equation for the three
wave tvpes: quasi P-wave when m=1; quasi SV-wave when m=2; and quasi SH-wave

when m=3. For P-waves (I shall drop the “quasi” modifier in the following),

G (rg,ps) = 1. (1)

For example, for isotropic media. Gy = o?(x,)pipi, where a(z,) is the P-wave velocity.

In a factorized auisotropic inhomogeneous (FAI) medium

ain(Xs) = FHx) Aija,

where 4y = %ﬁ%—l‘ are position-independentratios of the density-normalized elastic
B s

coefficient, and f(r,) = [agzas(rs)]

-

is the velocity in the direction parallel to the
symmetry axis at position x,. Equation (1) then becomes

Gi(es,ps) = f2(l‘s)GT(p3) =1, (2)
where G?(p;) is P-wave eigenvalue expression (1) with the a;jx(x,) coefficients re-
placed by the ratios A;ju.

For a constant velocity gradient,

f(l‘s) = ‘4_,1'3, (3)
where 4, is the gradient in the r, direction. For such inhomogeneity, Shearer and

Chapman (1988) showed the following simple relation between the slowness vector
and the position vector.

pizi = 0. (4)
For 2-D, substituting equations (3) and (4) into equation (2) results in the raypath

equation for a genecrally anisotropic medium with constant velocity gradients in the
2, and ry directions.

(Aapr — A1pa)?Gi(ay, —ay) = L. (5)
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Note that, for media of the tvpe considered here, the factor Azp;— 4 py is independent
of position along a rav.

For the special case of a transversely isotropic medium, the position-independent

eigenvalue for the P-wave is given by (White, 1983)

GS(p1,p3) = 0.5{(a+Dpi + e+ Dpi + {{(a=1)p] - (('—1)1);2;]2+4(f+l)2[)'fp§}§}, (6)
where a = .4“11, C = :l;;;;;;;;. f = .—1”;;3, &Hld | = Aml;;.

For axis of svmmetry in the oy (vertical) direction, equation (6), along with equa-

tion (4), gives {Larner. 1993)
Gi(rg, —xy) = ().5{((:+1).r§+(r-+l).rf+{[(a.—l).l'g——(c—1);vf]2+4(j'+l)23'§:vf}%}. (7)

Now, equation (4) gives

Iy
pa(p1) = ——p1,
I3

which, for later purposes. I use in defining the distance

1
Aapr(&o) - Aipalpr (&)

rg = "(J[I)l(fo)] = (8)

where £ is a running parameter that monotonically increases along the ray, with £ = &
at the starting point of the ray (see Figure 3). Specifically,
A€ = = dr.
fxi)

The value of the ray paramcter py(&) at & defines the particular raypath. Then,

distance rg, as seen in equation (8), is defined in terms of py (&), as shown in Figure 3.

In an isotropic medium with constant velocity gradient, all raypaths are circles.
Consider an isotropic mediumn with velocity f(r;) identical to the vertical velocity
in the constant-gradient FTI medium. Then, ry, as defined in equation (8), is the

radius of the circular raypath whose center is at the origin (@, = 0,3 = 0) and
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goes through the point b, in Figure 3. that is associated with the raypath for the TI

niedium. Substituting equation (8) into equation (3) gives

Ct«

1(11"“11)

which, along with (7), results in the quadratic raypath equation for the TT medium
“Jl L}(,O, :)ll +'Y(70, ) ——()

for r, as a function of ry and ry. Here, the coeflicient « is a function of only the
elasticity coefficients, and the coefficients 3 and 4 have the additional dependencies

shown.

Follow:g Cerveny (1989), for constant velocity gradient [equation (3)],

flri,o3) = Az + Aszs,
m€&) = pi(&) = A€ = &)y
m(€) = pa(&) — As(€ = &)

Then, traveltime along the ray is given by
1
7(€) = (&) +/ (1, pa)] "7 dE.

Geometric spreading

Although geometric spreading in an isotropic medium with constant velocity gra-
dient can be expressed analytically, the situation is not that simple for FTI media,
which require dealing with the distinction between group and phase velocities. I use
a scaling technique to get an approximate expression for the geometric spreading in

such a medium.

First, consider the geometric spreading function ¢, a quantity proportional to the

distance [ between the central ray and a nearby paraxial ray. From Cerveny (1981)
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it follows that

8 .
q = ki =/ v(s)ds, 9)
30
where v(s) is the velocity, s is the arclength along a computed ray - the central ray,
and A is a proportionality constant. A paraxial ray is a ray (not actually traced)
in the vicinity of the central ray, its normal distance from the central ray describing
the geometrical spreading (Cerveny, 1981) along the central ray. Figure 4 shows a
central and paraxial ray for a transversely isotropic medium, and Figure 5 shows the
two rays for its isotropic counterpart. Note, in Figure 5, that although the paraxial

ray, like the central ray, is circular, the distance r, from the center of the central ray

to the paraxial ray depends on the position along the central ray.

In an isotropic. constant-gradient medium, Appendix A shows that equation (9)

becomes

q = 7'()1'\/ :ff + .‘4%, (10)

. 9y L . . . . .
where ry = (% + «3)7 is the same ry given in cquation (8), and « is the distance,
measured along the normal to the gradient direction, between the ray takeoff point
and the point along the ray where ¢ is measured. We now seek a comparably simple,

approximate expression for the geometric spreading function ¢, for FTI media.

The keys to estimating ¢, are scaling relationships, the first of which is the under-
lving similarity between the ray equation (3) and the slowness equation (2) for FTI
media. This similarity is shown graphically in a comparison of the raypaths shown
in Figure 3 and the slowness curves in Figure 6. Shearer and Chapman (1988) have
shown that the raypaths for both the FTI and isotropic media are scaled, 90-degree

rotated versions of the respective slowness curves. Now, define the distance from the

origin to a point € along the raypath as r,(8) = \/J"f[f(())] + 23[£(0)], where 6 is the
angle between the line connecting these two points and the horizontal axis, as shown

in Figure 3. Also, as shown in Figure 6, define the slowness of the ray at that same

point £ as p(f) = Jp‘f[{(())] + p3[£(0)], where the angle 8 is now scen to be the angle of

8
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the slowness vector with the vertical slowness axis (axis of symmetry, here). Consider
ro = 11{§) where r3(€) =0, and pg = p3(€) where py(€) = 0. as reference values for
position and slowness, respectively. From the similarity of the FTI curves in Figures
1 and 4,

p(6)

ri(8) = =—ro. (11)
Po

But ry and pg are just the radii of the circular raypath and slowness curve for the
isotropic counterpart of the FTI medium, shown in Figures 1 and 4. Therefore,

equation (11) is a scaling relationship between the distance r,(f) and ry for the two

media.

Exploiting this scaling relationship, I can establish an equation for the geometrical
spreading function ¢, in FTI media. The scaling relationship given by equation (11)
pertains to the central ray. For the paraxial rays this relationship is only approximate
because I am using the origin for the central rays in describing the paraxial rays. I
assert that the following approzimate relationship holds for paraxial rays of the TI
and isotropic media.

p(6)

rp(8) = ;;‘"p(g)s (12)

where r, is the distance from the origin to the paraxial ray for the isotropic medium,
and 1, 1s the distance from the origin to the paraxial ray for the FTI medium. This
approximate relationship holds because the difference in takeoff angle for the central

ray and the paraxial ray is small (see Figures 2 and 3). From equation (9),
qr = klta (13)

where [, is the distance between the central ray and a paraxial ray for the FTI medium
measured along the normal to the phase direction (wavefront direction). But, from
Figure 7

11(6) = [rip(8) — r(8))]. (14)
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Inserting equation (14) into equation (13) and using equations (11) and (12), we
get
p(o)

G = [Ip(g) - l‘o]-]-;‘-)—. (15)

But for the isotropic medium
q =kl = krp(6) = ry,

so equation (13) becomes

G = Mlq = Mm (16)
Po o

The second equality here follows from equation (11).

Substituting equatiou (10) into equation (16) gives the geometric spreading func-

tion in the FTI medium,

G =TT V/A% + A3.

Ray tracing between two points

I now use the scaling technique once again, this time to iteratively find the angle
8o for the ray originating at source position [z,(&).r3(¢)] and ending at diffractor

position [ry (&), r3(£;)] in an FTI medium with general velocity-gradient direction.

The non-vertical, constaut-velocity gradient has magnitude

g= A% + Ag!
and angle from vertical
A
~-1 411
=tan~ —.
\'9 448

As shown in Figure 8, the distance from the origin to the reference position (ray

starting point), measured along the gradient direction, is

10
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where vq is the velocity in the vertical direction at the starting point. [ use

As

COS Y = e
AL+ A3

Ay

sing = : _
;7Af + A3

to rotate the coordinates | and ry to new coordinates 27 and af, where 27 is along

and

the gradient-vector direction. Consider the distance in the ] direction between

position [x,(&), x3(&)] and position [ry(&1), z3(&1)),
Ary = 2§ (&) = r3 (&),

which I use to define

il

2= Aaj + 2,
as the distance in the rJ direction from the origin to position[z;(£), 23(&1)).

Using scaling relationship (11) once for angle 8y at & and again for angle 6, at &

along the ray (see Figure 8), gives

p(6:)

(8)) = ~—1,(6,). 17
7:( l) 11(9()) t( 0) ( )

From Figure 8,
9,) = — 18
7o S, (18)

and

fo) = —2_, 19
ri(6o) sin U ( )

where vy and ¢ are angles from the J'T axis to lines connecting the origin with &

and &, respectively. Also from Figure 8,
Vo=0h—
and
=6 — .

11
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Substituting equations (18) and (19) into equation (17) gives

< plth + ) =z,

- ; . R} 20
sinyy  p(¥o + ) sin ¥y (20)
with two unknowns. v and vyy. The known value of Az satisfies
T T
T ey Ty Ta(&)  z3(6)
Al = @) = al(60) = o2 = P
which gives
z3(€) tan
oulvo) = tan! o G180 Vo (21)

a8 (&) + Azl tan vy

Combining equations (20) and (21) yields a single transcendental equation for g,
the takeoff phase-velocity angle from zT for the two-point ray-tracing problem. A
root-finding algorithm (e¢.g.. the Newton-Raphson method or the secant method) is
used to solve for vy. Note from Figure 8 that if AxT tan g is bigger than 2, then

the diffractor position is past the turning point of the ray.

The scaling approach is an alternative to the general raypath equation for two-
point ray tracing. It gives a simpler way of treating rotation in the gradient direction;
rotation of the raypath equation is relatively complicated. Furthermore, the scaling
approach helps to recognize whether or not the diffraction position is beyond the
turning point of the ray, a necessary step in evaluating the sign of the ray parameters
in equation (4).

For arbitrary orientation of symmetry axis, a rotation of the coordinate axes is
done in the program such that xj is always in the direction of the axis of symmetry
for the FTI medium. This rotation is simpler than the rotation used in the two-point

ray-tracing because it involves a rotation of the whole problem.

From FTI to general anisotropy

While still making use of efficiency of the analytic solutions, the anisotropy con-
dition can be generalized through a perturbation of the traveltimes and geometric

spreading for the F'TI medium.

12
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Consider two media: (1) a background medium (unperturbed), possibly aniso-
tropic and inhomogencous, in which we do our general ray tracing, and (2) a per-
turbed medium. which may also be anisotropic and inhomogeneous, in which we
wish to calculate traveltime and amplitude. The traveltime in the perturbed medium
T'(a,b) along a ray traveling from point a to point b is calculated from the traveltime
in the background medium T”(a, b) traveling between the same two points. I seek an
efficient scheme for computing the time perturbation 6T(a,b) = T(a,b) — T%a,b),
given T%(a,b). Differences between the density-normalized elastic parameters in the
background medium a?jk, and those in the perturbed medium a;ji; define the degree

of perturbation da;j as follows
0
6(lijkl = G,Jk[ ol aijkl'

Following Cerveny and Filho (1991), for a generaliy anisotropic inhomogeneous

background,
1 b
6Tp(a,b) = —§/a da;jupipim;mydT, (22)

where m; are the components of the eigenvector m (the direction of the particle
motion). here for the P-wave. The integration in equation (22) is performed along a
ray Ly computed in the background medium, and quantities p;, pi, m;, m¢ and dT

pertain to the background medium.

Take the integrand in equation (22) to define the anisotropy perturbation factor

F for the homogeneous, isotropic segment,
1
= —-276a;jk,p,<p,mjmk.

Now, consider the geometric spreading function q along the ray in the background
medium (e.g., in a homogeneous isotropic medium, ¢ = «*T°). Then, the first-order

perturbation of the geometrical spreading for the raypath between point a and point

13
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b (Alkhalifah, 1993). is given by

b
sqla,b) = [ ~Fda,

where F' and dq pertain t the background medium. and F < 1.

SYNTHETIC DATA EXAMPLES

I will use a single TI medium to show synthetic data generated by this modelling
program. The Wills Point shale with Thomsen’s anisotropy parameters 6 = 0.315
and € = 0.215 (Thomsen, 1986) is considered to be a relatively strongly anisotropic
medium. Positive angle between the symmetry axis and the vertical, ¢, corresponds
to symmetry axis rotated clockwise from the vertical, and negative vy is just the

opposite.

Figure 9 shows synthetic seismograms resulting from modeling two point scatters
located at midpoint 2.5 km, and depths 1 and 3 km. The vertical velocities for
all the models v(2)=2.0+0.6 = km/s. Figure 9a shows the diffraction curves for an
isotropic medium; Figure 9b for a Wills Point shale FTI medium with a vertical axis
of symmetry (¢ = 0); Figure 9c¢ for the same FTI medium with ¥ = 30 degrees; and
Figure 9d for the same FTI medium with lateral as well as vertical velocity variation,
v(z,2)=2.0+ 0.1 £40.6 = km/s, and with ¥ = —40 degrees. Note that for Figures 9a
and 9b the diffraction curves, as expected, are symmetric; however, in Figures 9c
and 9d they are asymmetric and laterally shifted. In Figure 9¢, the asymmetry and
shift are due solely to the tilt of the symmetry axis. In Figure 9d. both the lateral
velocity variations and the nonvertical symmetry axis contribute (oppositely, here) to

the asymmetry and shift.

The lateral shift in Figure 9¢ implies migration that ignores the tilted symme-
try axis, such as conventional isotropic migration, will yield lateral mispositioning

of reflectors, even horizontal ones, just as happens in media with laterally varying

14
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overburden, even though the medium here has no lateral variation.

Figure 10 shows an undulating-reflector model. and Figure 11 shows synthetic
seismograms corresponding to that model. The vertical velocity this time is held at
v(2)=3.040.5 z km/s. Figure 11a corresponds to an isotropic medium; Figure 11b to
the Wills Point shale FTT medium with ¥ = 0 degrees; Figure 11c to the same FTI
medium with ¢ = —30 degrees; and 11d to the same FTI medium with lateral and
vertical velocity variation, v(r,z)=3.0+ 0.5 z+ 0.5 z km/s, with ¢ = —40 dcgrees.
The asymmetry and shift, mentioned above, is observed here, as well. The reflector
shown in Figure 10 is just a summation of scattering points, and the reflector response

in Figure 11 is a superposition of diffraction curves such as those in Figure 9.

Figure 12 shows more synthetic seismograms generated for the reflector model in
Figure 10. This time, the velocity structure v(z) = 4.0 0.1 z kin/s, corresponding to
a decrease in the vertical velocity with depth, a situation not generally encountered
in practice. Figure 12a corresponds to the Wills Point shale with ¢» = 0 degrees, and
Figure 12b with ¢ = —30 degrees. Clearly, the program is not restricted to modeling

velocities that only increase with depth.

Next, I lift the restriction that the medium be factorized anisotropic. Figure 13
shows synthetic seismograms for (a) the same two diffractors used in generating Fig-
ure 9, and (b) the reflector model in Figure 10, but these seismograms were generated
for a TI medium using the time-perturbation feature. The time perturbation is from
the FTI Wills Point shale, to another anisotropic medium, a general TI medium, in
which 6 and e change with depth. Specifically, the perturbation includes the follow-
ing changes of elastic coefficients: % = 0.05 and ;—E = 0.1, where | and a are the
coefficient ratios given in equation (6), and é = 0.315 and € = 0.215 at the surface.
Comparing Figure 13a with Figures 9a and 9b, note that Figure 13a suggests more

extreme anisotropy than does Figure 9b; that is, the diffraction curves in Figure 13a

show more departure from those for the isotropic medium than do the curves in

15
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Figure 9b, despite the fact that all models have the same vertical root-mean-square
velocity. T attribute this behavior to the increase in size of the anisotropy parameters

with depth.

EFFICIENCY

The primary objective of constructing the original isotropic modeling program
was efficiency in generating svnthetic data. Similarly my goal was to preserve that
essential efficiency while extending to inhomogeneous Tl media. Generating synthetic
data for such media by means such as finite-difference or general ray tracing is slow
and costly. For ray tracing approaches. speed will be slowed down primarily by the
iterative numerical integration needed to perform ray tracing between two points.

The approach described lLere does not require such costly iteration.

The synthetic data generated for Figure 9 and Figure 13b contain 201 common
midpoints at an interval of 0.05 km. and 401 time samples with a time interval of
0.01 s. The peak frequency used is 15 Hz. Table 1 shows CPU times, on the IBM
RS/6000 Model 520 workstation, needed to generate these synthetic seismograms.
For the FTI time shown in Table 1, I chose the largest of the times for the three FTI
cases in Figure 9. For comparision. a finite-difference solution for the full elastic-wave
equation for transverscly isotropic media with vertical symmetry axis would require

on the order of 1500 s.

Technique CPU time (s)
Isotropic (Figure 9) 0.6
FTI (Figure 9) 1.5
general TI (Figure 13a) 2.1

Table 1. Compute times for various two-diffractor tests.

The synthetic data generated in Figure 11 and Figure 13b contain 201 common

16
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midpoints at an interval of 0.05 km. and 501 time samples at 0.01-s time interval.
The peak frequency is again 15 Hz. Table 2 shows the CPU times needed to generate

those data.

Technique CPU time (s)
Isotropic (Figure 11) 5.6
FTI (Figure 11) 36.9
general TT (Figure 13b) 52.0

Table 2. Compute times for various tests with the reflector model in Figure 8.

The ray-trace times in Table 2 are much larger than those in Table 1 because
seismogram computation for the model in Figure 10 required summation of contribu-
tions from 246 diffracting segments along the reflector, whereas only two diffracting
segments were used for the tests in Figure 9 and 13a. However, the time increase is
much lower than predicted by the number of reflector segments becase the times in
Table 1 are dominated by the program overhead. For the class of models allowed in
this program, the efficiency demonstrated here far exceeds that of cither general ray

tracing (Cerveny, 1989) or finite-difference techniques.

CONCLUSION

The ray-tracing procedure for FTT and general TT media should be useful in gen-
erating models for applications such as algorithm testing in TI inhomogeneous media,
including migration and dip-moveout studies. Alkhalifah (1993), for example, used
synthetic data generated by this program in tests of Gaussian beam migration for
FTI media. Whereas. for FTI media with constant velocity gradient, computed ray-
paths are exact and traveltimes are accurately computed by numerical integration, for
more general anisotropy 1 modify those times by the perturbation procedure so that

they become only approximate. Alkhalifah (1993), however, shows that the errors

17
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are negligible when the perturbation is less than about 20 percent.

The key characteristic of this program is the eiliciency with which it generates
seismograms. This efliciency is brought about by the analytical equation for geo-
metrical spreading, derived here. This geometrical-spreading equation for FTI media
could have other applications such as in study of amplitude-versus-offset (AVO) de-

pendency on TI parameters in inhomogeneous media.
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APPENDIX A: GEOMETRIC SPREADING FUNCTION FOR
ISOTROPIC MEDIA WITH CONSTANT VELOCITY GRADIENT

First, consider the geometric spreading function ¢ in a v(2) medium,

q= /: v(s)ds, (A-1)

where s is the arclength. For circular raypaths,

§ = 7'0(9 - 90),
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By is the takeoff angle from the gradient direction and 27ry is the circumference of
the circular raypath. Then.

ds = rydd. (A-2)

Substituting cquation (A-2) into equation (A-1) gives

]
=Ty /0 v(s)df. (A-3)

0
For
v(s) = vo + gz(s),

where ¢ = \/.4% + A3, s 1s in the gradient direction, and vy is the velocity at the

takeoff point,
r1s) = vo + g(rosinf(s) — z,),

where z, = 2. giving

v(s) = grysind. (A-4)
So. substituting equation (A-4) into equation (A-3) gives
8
q= gré/ sinfdf. (A-5)
0o
Integrating equation (A-3) vields
(= grox,

where r is the distance, measured along the normal to the gradient direction, between

the ray takeoff point and the point along the ray, i.c., r = ro(cos € — costy).




FIGURE CAPTIONS

Fi1G 1 Svuthetic seismogram of a syneline (shown in top) in a TI medium with ve-
locity v(r,2)=1.040.1 r+0.6 = km/s. The data consist of 101 traces, and the

wavelet used is a Ricker wavelet with dominant frequency of 5 Hz.

FI1G 2 Schematic depth depicting ravpaths from a source to a number of points along
a reflector, and then back to a receiver. For simplicity in the figure, the raypaths
are drawn as straight lines, as for a homogeneous medium. The solid thick line

represents the geometric-reflection raypath (i.c., one that obeys Snell’s law).

Fi1G 3 Rayvpaths in a constant-gradient, transversely isotropic medium and in its
isotropic counterpart. The velocity f(r,) in the isotropic medium is identical

to the vertical velocity in the FTI medium.
F1G 4 A central ray aud nearby paraxial ray for a transversely isotropic medium.

F1G 5 A central ray and ncarby paraxial ray for the isotropic counterpart of the

medium in Figure 3.
FI1G 6 The slowness curve for an FTI medium and its isotropic counterpart.

F1G 7 The scaling relations that exists between a rav traveling in a constant-gradient

FTI medium and its isotropic counterpart.
Fi1G 8 Parameters that correspond to the case of non-vertical velocity gradient.

F1G 9 Zero-offset synthetic seismograms of two diffractor points for (a) an lisotropic
medium, (b) Wills Point shale FTI medium with vertical axis of symmetry
(v = 0), (¢) the same FTI medium with ¢ = 30 degrees, and (d) the same FTI
medium with ¢ = —40 degrees and velocity r(r, 2)=2.04+0.1 x+ 0.6 z kin/s.

The velocity in (a). (b) and (¢) is v(z)=2.040.6 : km/s.




Fi1G 10 Reflector model.

FIG 11 Zero-offset syuthetic seismograms corresponding the reflector model in Fig-
ure 9 for (a) an isotropic medium, (b) Wills Point shale FTT medium with ver-
tical axis of svmmetry (¢ = 0 degrees), (¢) the same FTI medium with o = 30
degrees, and (d) the same FTI medium with ¢ = =40 degrees and velocity
v(r,2)=3.040.5 r4+0.5 = ki/s. The velocity in (a), (b) and (¢) is v(2)=3.040.5
: km/s.

F1G 12 Zero-offset synthetie seistmograms correspouding the reflector model in Fig-
ure 9 for (a) the Wills Point shale FTI mediuin with vertical axis of symmetry
(v* = 0). and (b) the same FTI medium with v = =30 degrees. The velocity

structure here is ¢(2) = 4.0 — 0.1 : km/s.

FI1G 13 Zcro-offset synthetic seismograms correspouding to (a) the two diffraction
points used in Figure 8. and (b) the reflector model used in Figure 10b. Here,
time perturbation is used with ;’,—'f = 0.05 and 51} = 0.1 for both plots. The

svmmetry axis is vertical.
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