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Abstract

Results from modeling of tran.sfonnation toughening in brittle materials using a

discrete micromechanical malel are presented. The material is represented. as a

tw-o-dimensioml triangular may of nodes connected by elastic springs.

Microstructural efTects are included by varying the spring parameters for the bulk.

grain boundaries. and transforming particles. Lrsing the width of the damage zone

and the effective compliance (after the initial creation of the damage zone) as

measures of fracture toughness, we find hat there is a strong dependence of

toughness on the amount. size. and shape cf the transforming particles. witi’i’the

mwumum toughness achieved with the lugher amounts of the larger ~icles.
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$1. Introduction

.Anumber of approaches have been taken to improve the fracture toughness

of brittle materials. One such approach, called transformation toughening. involves

including particles of metastable tetragonal zirconia (Zr02) that undergo a

martensitic transformation to the larger-volume (+47c ) monoclinic structure in the

stress field near W vicinity of a crack tip [1]. The zirconia particles are stabilized in

the tetragonal smuc?ure by alloying and by the ccmsuaints of the ceramic marnx.

High stresses can trigger the imeversible transition to the stab;e monoclinic

structure in a region around the crack tip, refereed to as the transformation zone.

This approach has been used to improve the fracture toughness of alumiria-zirconia

composites [2]. Recent work by Petrovic and coworkers [3-5] demonstrated that

dispersed particles of stabilized Zr02 also increases the fracture toughness of

MoSi2-based materials.

There have been many theoretical studies of transformation toughening that

have tried to comelate the increase in toughness to the size and shape of the

transformation zone around the crack tip [6]. (Meraily. these studies have modeled

the transformation zone as a linear-elastic continuum, and have considered the case

of dllatatlonal transformations triggered Jy a critical mean stress. Recei~rly, Stump

[7] has extended the continuum-mechanics approach to include the effects Gf a

discrete array of particles. This was done by embeddmg a random dlstrlbutlon of

small. dlscrcte. circular inclusions in an elastlc matmx sumounchng the tip of a sem; ,

Infinite crack. These inclusions could undergo a uansfonnarlon when [he stress OR

them was greater than a set amount. Prior to transformation. [he spots arid ma!rl~

were hom(]gcnwu~. Ilncar elastlc media dcscnbed by Isorroplc con~tar~*s E arid ~’.

Stump consldcrcd not only the USUJIcase of purely dllatatwnal transforrrlatl(~lls

trlggercd h} a mean-stress crlu!rlon but also the general case wIth shear
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transformation stresses and strains. He related the size and shape of the

transfcmnation zone as a function of the transformation criteria to the fracture

roughness.

One drawback to the continuum mechanics calculations is that it is difficult m

include the effec!s of microstmcture on the fracture properties of the material.

Additional ly. the continuum mechanics results were restricted to the case of f’]e

transformation zone around a stationary crack. Experiments [5] show that there is

considerable microcracking around the ma.nsformed panicles. To examine the role

of microstructure and m icrocrcking. we have taken another approach, namely a

ball-and-spnng model [8,9]. in the next section we shall outline the approach as

applied to transformation toughening and describe the role of microstmcture on the

damage zone in a strained material.

$[1. Discrete Nllcromechanical Model

Extension of the modellng to include the effects of microstructure and

mlcrocracklng requires a different approach tham that used m the pa.rtlally-discrete

m~cromechanlcal mcdel developed by StumD [7]. We use a “’ball-and- spring””

approach. where we treat the system as a fwodimenslonal triangular Iattlce of

nodes. each cf which is connected to Its SIXnearest neighbors by elastlc springs.

The energ) of this sysmm ISglvcn by

where k,, IS the force constant and rl,o IS the equlllbrlum Icngth of the spring

ccmnectlng node I to node J, Fracmrc occur~ when rhc spring Icngth. r,,. e~cccds the
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breaking strain. rl,b. The unstressed topology of the model is shown in Figure 1. L$’e

note that tb: elastic properties of this system are those of an isotropic solid. ~J’bile

the model can oe improved by including 3-body (angular) interactions [9]. for the

presem study we resrnct the model go two-body interactions.

The microstructure is generated with a Potts model. which has been shown to

\ mld realistic grain-size distributions [10]. The Potts model is similar IO an Ising.

model. except that. instead of having only ~o pessible spin values. many values

are allowed. Areas with different spin values correspond 10 differeilt grains. .4

~-pical section of the system is shown in Figure 2. The line marking the region

between grains is a grain boun@. S represents a second-phase particle. The key to

the utility of the model is that springs can be assigned different parameters

depending on Uhether they connect nodes within the same grain. nodes in different

grains. or nodes connected to second-phase panicles. Thus, we can model

competing fracture mechanisms.

W’e assume that all bulk grains are alike and tha~ there is no orientational

dependence in the grain-boundary properties. Thus. all bulk springs (within the

grains. e.g.. the 1-1 interaction in Figure 2) are defined by the three spring

p~~efers kB. rBO. and rBb. The propalies @f springs crossing grain boundaries

(e.g.. 1-2 in Figure 2) are given by kgb. r~b”sand r@b. Similarly, springs comected

10 second-phase particles (e.g.. S-1 in Figure 2) have propeflies ks. rs”. and rsb.

Transformarlon of a second-phase particle is modeled by Imeversibly increasing ~hc

equilibrium spring Iengih rs” to rs ‘“T When the mean stress on [he second-phase

particle exceeds a prescribed crltlcal stress. UC. For all the calculations described

here, k~ = kg~ - k~ = I = ~# = rg/ = rs”. Based on a typical experimental value for

ZK)Z. we a$sumc [hat there IS a I ‘-C Increase In the Icng[h of the springs conncctcd

to second phaw parttclcs upon transfonnatmn, i.e.. rs OT = 1.~)l. The breaking s~raln

tor the bulk bond~ IS r~~ = 1.(K)? and for the grain boundarw~ and second phase

(5)



particles rgbh= r~b = 1.c)C)S.W’enote that this choice of breaking strains ensures that

there should be a mixture of trans- and intergranular fracture [8]. Finally. we assume

a mean-stress criterion for transformations with a critical stress CTC= 1.001. These

parameters were obviously not chosen to match the exact properties of NfoSi2. but

ra~her to incorporate in an approximate way the basic phenomena associated with

transfonnat ion toughening.

The calculations proceed as follows. An initial distribution of grain

boundaries and second-phase particles is assigned to the system. which is then

strained in the x direction (Figure 1) by a finite amount. The energy of the system is

minimized with respect to the positions of the nodes. If the mean stress on any

second-phase par!icles is greater than OC.then we transform the particle with the

largest stress and minimize the energy with respect to positions again. We iterate

until no more particles transform. We then check to see if any spring has a length

greater than its breaking strain. If SO. we imeversibly break the spring with !he

largest ratio of rlj to rl,b and minimize the energy again. Wre iterate until no mors

springs break. 1$’ethen check to see if any particles transform, and so on. Once no

more particles transform and no more springs break, the strain is increased and the

procedure 1s repeated. Wk note that the iterative procedure used here is not unique:

other schemes are being investigated.

In Figure 3a. we show the basic microstructure of the 100x100 lattice cf

nodes used in aii simulations reported here. The black lines am grain boundar ws

generated by a Potts model and the gray wide iine is an initiai crack created b}

breaking some of the springs prtor to starting the calculations. The system was then

stralncd in smaii dlscrcte steps until fracture. Since the breaking strain of the

sprlng~ IS 0.003 for the \,eakest springs. we chose a strain step of O.(KN)i. u hlch

shouid pro~ lde slfticient rcsoiutlon. In Flguw 3b, we show the rusuits for t~ltai

strain of 0.[N)3. ( )nce again, the broad gray ilne is the fracture path. W’?:n~~tethat



since periodic boundaries are used in ~he simulation. when ‘he crack leaves the left

hand side of the cell, it reappears on the right. In Figure 3c, we show the stress-

strain cume for this case. M’e note tit the material behaves completely elastically

until a >nain of 0.003 and then breaks completely. That the fracture was complete is

seen by the flat stress as a function of smain. i.e., the material is being pulled apart

with no resistance. Examining the fracmre path in Figure 3b, we see that there is a

mixture of inter- and transgrztrmlar fracture.

in Figure 4a. we show the initial condition for a case where we have included

10&C(by numtxr) second-phase particles (light gray) placed at random on the same

microstmcture as used in Figure 3. Applying a strain to the system results in

markedly different behavior from the system with no second-phase particles. In

Figure 4b. we show that the system :s damaged at a strain of 0.0015, half that

necessary for failure of the system with no tra.nsfonning panicles. We note t-hat the

crack is not cominuous and fails to span the system. I.e.. the system has not failed.

A transformation zone develops in front of the ini[ial crack tip and is accompanied

by microcracking around the transforming particles. in agreement with

experimental obsematlons [5]. Straining the system further to a net strain of 0.003

yields Figure 4c. Note tha~ the microcracks have seemingly coalesced into one.

continuous crack. However. the stress-strain cume in Figure 4d does not show a fla[

response of srress versus strain as expected if the system had failed. thus indicating

[ha! the crack IS not continuous across the system. Indeed, the system has not failed

up to a total strain of 0.005. The damage Was initialed a[ a strain half that of the

material With no second-phase particles. an example. perhaps. of mlcroshieldlng cf

(he crack tip, If one were to use the critical stress as a measure of toughness. then it

v ollld Imply thal addl[lori of second-phase pal”ticlcs actually lmp~irs the propertlc>

of lhcw mater lal~. liowever. rhe fracture zone IS broader than with no second-phaw

p,lnlcles and the systcm can be strained to a significantly higher ex[cn~ wllhoul

(-)



failure. so clewly a different definition of toughness is necessary. We shall rerum to

t-his point below.

in Figure 5a. we show a system with 20% randomly placed second-phase

particles at a strain of 0.0015. The most obvious difference betv.-een this case a- 1

that with 10~Ctransforming particles (Figure 4b) is t-hat the 20% system has a much

broader transformation/damage zone. Once again, the system has clearly not failed

at this stress. LrIFigure 5b, we show tie same system at a strain of 0.003. The

damage zone has broadened. but othenvise the system behaves very similarly io that

with 10% particles. The stress-strain cume in Figure 5C indicates that the system

has not failed at a strain of 0.005.

M’eshow results with 307c randomly-placed second-phase particles at a strain

of 0.0012 in Figure 6a. Note that a transformation zone (with microcracking ) has

developed in front of the crack tip. Comparison of the shape of the transformation

zone wi[h tha( found with the p~ially-discretized continuum mechanics [7] shows

clear differences, largely associated with microcracking around the transforming

pmicles. which is not included in the continuum mechanics calculations. In Figure

6b we show [he 30% system with a strain of 0.0015 and in Figure 6C with a strain of

0.003. M’e note again that the overall behavior is very similar with 10%, 20%, and

10’% second-phase particles. with the primary differences being the width of the.

transformation zone and the crirical stress for onset of damage. One feature of the

presen[ model that may seem surpn’sing is the negative stress (i.e., positive

pressure ) seen in the stress-strain tune for the case with 30% seccnd-phase

particles. The stress plotted in these figures is the total stress (xx component) of the

system. N-hen the particles uansfonn. they occupy a larger volum~:. thus causing a

local increase in pressure. In a real material, u here [he total transformation zone ISa

small pan of !ht ~otal kolume, this wou

transformatmn zone ISa large part of the sma

lf24P2 (8)
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total stress is dominated by what occurs in the transformation zone and the overall

stress is negative.

To best compare the results with experiment requires a definition of the

fracture toughness in our model. Examination of the fracture zones in Figure 4-6

clearly shows that a Griffiths analysis, which is designed for sharp cracks, is not

appropriate. Thus, a different approach must be used. In Figure 7, we show the

stress-strain cumes for O, 10, 20, 30, and 40% transfm-ming particles (the

calculaticm with 40% particles was stopped at a strain of 0.0035). As is clear. the

critical strain for damage propagation for the systems with transforming particles is

roughly half that of the material without additions. The critical stress is not,

howe~er. a good measure of the toughness of the material, since tie systems with

second-phase panicles can be strained to much larger values without failure.

Another measure of toughness might be the effective complm.nce (i.e.. slope of the

O-E curve) of the material after creation of the damage zone, which should be a

measure of the amount of elastic energy “hat can be stored in the material. From

Figure 7. it is clear that there are some uncmainties in how this slope should be

calculated. \\re wed the slope of the line connecting the minimum and maximum of

the stress-strain cuwe after the creation of the initial damage zone. That slope.

which we define as the effective compliance after creation of the damage zone

(ken). is ploued in Figure 8 as a function of amount of transforming particles in the

system. ~’e note that there is a slow rise in ~ff with small amounts of transforming

particles. then a sharp rise. and a finally a leveling off.

Another measure of the amount of energy that can be stored in the system IS

the size of the damage zone. which we approximate as the width (A) of the damage

zone al a strain of 0.003. This quantify, which is plotted in Figure 8, represents [he

area o~er which the damage is spread and that can absorb new dama~; . U’e note [ha~

the basic shape of the cumes for ~ff and A are similar: a slow rise at small amounts
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of second-phase particles, a strep rise, and then an apparent leveling off al large

amounts of transforming particles. These quantities suggest that there is an amoum

of transforming particles that maximizes the toughness of the material. Such an

effect has been noted in A120@K12 composites. which show a maximum

toughness ar about 40 volume% Zr02 (see Figure 5 in Reference 5). One caveat “hat

must be made about the present simulations, however, is that at 40 number%

transfotmin~ particles, the fracture zone covers approximately half the entire

system. Thus. the results must be verified with a larger system to examine possible

system-size effects. Given Figure 8 as a measure of toughness, however, v’e see

indications of a leveling off of toughness at high concentrations of transforming

particles.

In the simulations just reponed, we assumed a random distribution of small

transforming particles, i.e., each panicle was one node. An experimentally

controllable parameter is, however, the size of the particles. In Figure 9, we show’

results for a case where we have created larger particles by designating a node and

its 6 hexagonally-placed nearest neighbors as a transforming particle. Figure 9

corresponds to a total ot’ 20~c of all the nodes being transforming particles. W’efirst

note from the stress-strain cume tha! the critical stress for creation of rhe d ge

zone is 0.0019. somewhat higher than the 0.0015 needed for the case with small

particles. Exaiiination of the damage zone (Figure 9b) shows that it is considerably

larger th~n the case ~’ith the same total concentration but with smaller particles

(Figure 5). The wid[h ar a s!rain of 0.003 is approximately 0.45 of the cell size.

considerably larger than the value (0.33) for the small particles at [he same

concentration. From thu stress-strain cume. we find that the effective compliance is

approxima[cly 0.35. Which is much larger than rhe value of O.19 for the small

particle case. Thus. i[ is clear that, by !he measures used here, the ma[erial IS

[oughcr With the larger particles than with [he smaller ones. W’e note [hat since the

l/24p2 (lo)



large particles are made up of seven nodes, the enrire particle need not transform at

the same time. Examination of Figures 9b and 9C shows regions with some

transformed and some untransformed second-phase material, in agreemem with

experiment [5].

W’ehave also performed a number of calculations with a smaller system size

(50x50) with qualitatively similar results. (he imeresting result concerned the

effects of particle onentatim cm toughness. Using as the transforming particles

(20% totai concentration) sets of three nodes connected in straight lines (Figure 10),

we found that the syster, ~ith particles parallel to [he strain direction (lOb) to be

considerably tougher (in A, ~ff, and critical stress) than a system with particles

aligned perpendicular to the strain (10a) as well as a system with randomly-placed

small panicles. It may be possible to make samples with these sons of pafiicle

distributions. so that these predictions can be verified. From Figure 10b, we see that

the damage zone extends completely across the system, which is clearly unphysical.

It is for t-his reason that it was necessary to consider the larger 100x1OO systems

used in the rest of the calculations reported here.

In summary. we have developed a model that incorporates the essential

features of transformation toughening. We find that there is a strong dependence of

the toughness on the amount, size, and shape of the transforming particles. We are

currently developing better estimates of the parameters appropriate for application

to \loSi2-based composites. (liven those, more explicit predictions can be made on

the op[imal particle d!stribu!ion.
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Figure Captions:

Figure 1: Topology of discrete micromechanical model. A two-dimensioml

triangular lattice of ncxks connected by springs are used. The tcp and bouom are

free surfaces and the sickx have periodic boundary conditions. An initial crack of

varying length is created a the bottom edge. The system is strained by pulling in the

x direction.

Figure 2: Typical section of lattice of nodes. The lines drawn Ixtween areas with

differ(:nt numbers define grain boundaries. S represents a second-phase particle.

Different parameters can lx assigned to springs conxcting nodes: within the bulk,

across grain boundaries, or comected to second-phase particles. see lext for detal Is.

Figure 3: (a) Basic microwrucxu.re ~sed in 100x 100 simulations. The dark lines

are grain bwndams and the heavy gray line is an mitlal crack. Note that we have

tilted the figure by 30 degrees co better fit on the page (see Figure 1). (b) The system

at a total main of 0.003. Note that the crack has moved completely across the

sample. &cause of the permcilc boundary conditions along the x-dmxlon (Figure

l). the crack moved off the left hand sde of the cell and back in on the right. (c)

Stress-scram cume.

Figure 4: (a) Inl[lal srructurc for a system with IWIC ranckmly placed wx~)nd-

pha.x particle.> (In light gray) on the mlcro~trucrur” used In Flgurc 3. The sold llnc~

are grain boundaries and the *i& gray Ilne IS the Inlt:al crack. [h] System af[cr a

strain ot’ ().(Y)I5. The darh fpo[+ arc transformed partlclcs (c ~Sy~tcm ahcr a ~rrutrl

ofo.(HJl (d) Stress-strain curlc.

l,n4p2 (14)



Figure 5: System with 20% randomly placed second-phase panicles (in light

gray ) on the microstructure used in Figure 3. The solid lines are grain boundaries

and he wide gray line is the initial crack. (a) System after a strain of 0.0015. The

dark spots are transformed particles. (b) System after a strain of 0.003. (c) StTess-

srrain cufie.

Figure 6: System with 30~c randomly placed second-phase particles (in light

gray) on the microstructure used in ~igure 3. The solid lines are grain boundaries

and [he wide gray line is the initial crack. (a) System after a strain of 0.CM)12.The

dark spots are m.nsfocned panicles. (b) System after a total strain of 0.0015. (c)

System after a strain of 0.003. (c) Stress-strain curve.

Figure ‘: Stress-strain curws for the cases with O. 10. 20. 30 and 41~c

transforming particles.

Figure !3: Approximate effective complmnce ~. as defined m the text ( solld

Ime). and width of fracture zone A. as a fracnon of cell size (dashed Ilnc). as a

function of amount of second-phase partlc $.

Figure 9: System with 20fiC randomly placed second-phase particles i In light

gray ) on the iwk 100 microstructure used In Figure 3. The padlcles were crca:ed as

a comhlnatlon of a central node and Its six hexagonal nearest nelghhors. lle s~~lld

lines arc grain b’llndarw~ and the w-de gray !Incs are [he cracks. (aj Inltlal

condl[l(~nj (h ) Sy~ttm after a srratn of O.m)19. The dark ~pots are transf~wmud

partlclcs. [c JSysmm after a srrairl of ()(M)l. (d) S’xcss-~traln cumc



gray) in a system of 50x50 nodes. The particles were creafed as a combination (’f

three nodes. aligned either perpendicular (a) or parallel (b) to rhe direction of strain.

The solid lines are grain boundaries and the wide gray lines are the cracks. Shown

are results at a strain of 0.003.
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