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Abstract

Many systematically-derived nodal methods have been developed for Cartesian
geometry due to the extensive interest in Light Water Reactors. These methods typically
model the transverse-integrated flux as either an analytic or low order polynomial
function of position within the node. Recently, quadratic nodal methods have been
developed for R-Z and hexagonal geometry. In this work, a static and transient quadratic
nodal method is developed for triangular-Z geometry. This development is particularly
challenging because the quadratic expansion in each node must be performed between the
node faces and the triangular points. As a consequence, in the 2-D plane, the flux and
current at the points of the triangles must be treated.

The quadratic nodal equations are solved using a non-linear iteration scheme,
which utilizes the corrected, mesh--centered finite difference equations, and forces these
equations to match the quadratic equations by computing discontinuity factors during the
solution. The transient nodal equations are solved using the improved quasi-static
method, which has been shown to be a very efficient solution method for transient
problems. A simple thermal feedback model is used to demonstrate feedback response in
static and transient problems.

Several static problems are used to compare the quadratic nodal method to the
Coarse Mesh Finite Difference (CMFD) method. For select cases, the quadratic method
is shown to give significant benefit over the CMFD method. In all cases tested, the
quadratic method is shown to give more accurate node-averaged fluxes. However, it
appears that the method has difficulty predicting node leakages near reactor boundaries
and severe material interfaces. The consequence is that the eigenvalue may be poorly
predicted for certain reactor configurations.

The transient methods are tested using a simple analytic test problem, a
heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test
problems. The results indicate that the transient methods have been implemented
correctly.

Thesis Supervisor: Allan F. Henry
Title: Professor, Department of Nuclear Engineering
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Chapter 1

Introduction

1.1 Motivation and Back2round

Modern, systematically derived nodal methods have been

used for the efficient and accurate modeling of nuclear

reactor cores for over fifteen years. The focus of research

in this area has primarily been directed towards the

development of tools for the analysis of Light Water Reactors

(LWRs). Typical LWRs have Cartesian geometry, and thus many

different static and transient nodal methods have emerged

suited to the study of reactors with Cartesian geometry.

Recently, a quadratic nodal method was developed and

implemented for R-Z geometry [B-l], which can be used for

High Temperature Gas Reactors (HTGR). A quadratic method was

also developed for hexagonal geometry [S-3], which is ideally

suited to many liquid metal fast breeder reactors, modular

high temperature gas cooled reactors, and heavy water

reactors. Recent interest in space reactors [M-I,P-3] has

produced new designs in hexagonal geometry such as the

Particle Bed Reactor, and re-produced old designs such as the

NERVA [A-I] rocket. These designs are small, highly coupled

cores in which diffusion theory is not generally valid.

The research reactor at the Massachusetts Institute of

Technology, called MITR-.II, is a unique design which is

ideally suited for a triangular nodal mesh JR-l]. This

reactor has been modeled in the past by the finite difference

diffusion theory code CITATION [F-l], and als_ the Monte

Carlo code MCNP [B-3]. Figure I.I shows the geometry of the

MITR-II reactor. Recent interest in upgrading the MITR-II

has created interest in a triangular nodal code for static

and transient calculations.

Modern nodal methods have demonstrated that the accuracy

of fine mesh finite difference methods can be achieved at

12



much lower computational cost. A reduction in the number of

unknowns is achieved by using relatively large, homogeneous

nodes. In order to retain the fine-mesh, heterogeneous

accuracy, correction factors are introduced which force the

nodal solution to match the results of independent, detailed,

fine mesh calculations. It is desirable to restrict the

independent, detailed calculations to a few, representative

assemblies (if the nodes are assembly-sized) with a zero

current (or, if known_ an albedo) boundary condition. The

goal is to obtain acceptable correction factors for every

node in the nodal model without having to model the whole

core in detailed calculations. The independent, detailed

calculations are ideally transport models with a fine mesh,

and heterogeneity. Thus, the correction factors correct for

heterogeneity, the use of a finite difference approximation

with large node sizes, and transport effects. Clearly, it is

difficult to adequately correct for these three factors with

"one degree of freedom" if one or more of the approximations

is severe. Nodal methods which model the flux as a low-order

polynomial or an analytic function within the node somewhat

"relieve" the correction factors from the need to correct for

the large node sizes by replacing the finite difference

expression by a higher order one. Another way to "relieve"

the correction factors from the finite difference

approximation is to decrease the node size. In LWRs, a

strong desire exists to maintain assembly-sized nodes, so

polynomial representations as high as fourth order have been

developed [Z-l]. Nodal methods in hexagonal geometry are

forced to model one node per assembly because hexagons cannot

be subdivided.

A motivation to produce a triangular nodal code exists

for two reasons. First, the unique geometry of the MITR-II

requires a triangular mesh. The extensive calculations which

will be required for an upgrade of the MITR-II should be

performed using state-of-the-art static and transient

13
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solution methods. Second, hexagonal reactors with severe

heterogeneity or transport effects may not be adequately

modeled by hexagonal nodal codes which require one node per

assembly. A triangular nodal code has the capability of

modeling 6,24,96,384, etc. nodes per assembly, as well as

some degree of heterogeneity. The ability to model the

spatial mesh and heterogeneity using a triangular mesh

"relieves" the correction factors from these approximations

and allows transport effects to be corrected. A triangular

nodal code will therefore be much more flexible than a

hexagonal nodal code, and may be able to model cores (such as

space reactor cores) which hexagonal codes cannot.

1.2 Beseazch Objectives

The objectives of this research are to develop a

quadratic nodal method in triangular-z geometry for both

static and transient applications. The goal is to provide

both accurate and efficient computational tools.

For the solution of static problems, a corrected, three

dimensional mesh-centered finite difference model will be

developed. To improve upon the spatial treatment, a higher

order expression for the surface-averaged current will be

derived by assuming the transverse-averaged flux has the form

of a quadratic polynomial within the triangular-z node. The

non-linear iteration method will be used to solve the

quadratic equations. In addition, acceleration procedures

will be implemented to improve convergence rates of the

iterative methods.

The transient nodal equations will be cast into fully

implicit form to ensure unconditional stability for all time

step sizes. The delayed neutron precursor equations will be

treated using a direct integration procedure. The resulting

equations will be solved using the improved quasi-static

method. The improved quasi-static method is a very efficient

14



solution scheme for many types of transient problems, and has

been implemented successfully in other nodal methods.

A simple thermal hydraulic feedback model will also be

incorporated to verify the thermal hydraulic response of the

static and transient methods.

1.3 Theaia Organization

In Chapter 2, the time dependent nodal balance

equations are derived for a single, homogenized node, I, and

energy group, g. In Chapter 3, these equations are cast into

steady state form, and discretized using Fick's. Law and the

finite difference approximation. The Coarse Mesh Finite

Difference (CMFD) equations are presented for fully internal

nodes and nodes on the surface of the reactor. The quadratic

equations are then derived by assuming that the transverse-

averaged flux can be represented by a quadratic polynomial

within each node.

Chapter 4 returns to the transient nodal equations. The

time dependent CMFD and quadratic equations are derived in

this chapter. Chapter 5 discusses the solution of the static

and transient equations. Iterative methods are presented,

along with the non-linear iteration procedure for the

quadratic equations. The improved quasi-static method is

presented for the solution of the transient equations. A

thermal feedback m_,thod is also presented.

Chapter 6 presents test results for both the static and

transient methods. Chapter 7 presents conclusions and

recommendations for future research.

15
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Figure I.i. The geometry of the MITR-II Reactor
(taken from Ref. JR-l]).
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Chapter 2

The Time Dependent Nodal Balance Equation

2.1 Introduction

The equation that describes with adequate accuracy the

space, time, energy, and directional distribution of neutrons

in a reactor is the time dependent neutron transport equation

[H-l]. The solution of this equation, however, is both

difficult and costly in terms of computer resources. The

diffusion equation is an alternative which, in a physical

sense, is based on Fick's law, which states that the net

neutron current is proportional to the gradient of the

neutron flux. Mathematically, the diffusion equation can be

derived from the Pl form of the transport equation. However,

the equation we will begin with can be derived from a balance

equation performed on a control volume [H-l]. This equation

is continuous in the space, energy, and time variables, and

will be developed into diffusion theory with the application

of Fick's law in the next chapter. The starting equation is,

therefore, derivable directly from the neutron transport

equation.

This chapter will develop the time dependent nodal

balance equation.

2.2 The Nodal Balance Equation in Time Dependent Form

The time dependent, continuous energy balance equation

is given by [H-I] :

_[v_ 0(_,E,t)]=--V'J([,_ E,t)- _, ([.E,t)_([,
E,t)

(E)(1 - _, )_ooVZ/(t,E',t)_([,E',t)dE ' (2.1.+Xp a)

+_ooE,(_,E' _ E,t)¢(_,E',t)dE' + Z..,Z_.c(E)l,_._c_._(_,t)
_.c.l
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......Bt = _''_ v_/(r.,E',t)_(r_,_',t)dE' (2 .l.b)

' "--Aipr,cCiprec(f.,t) iprec = 1, nprec

where it has been assumed for simplicity that there is one

fissioning isotope and no external source. The terms in

(2.1) are defined as follows, where G is the total number of

energy groups and nprec is the total number of delayed

neutron precursor families:

V(E) = neutron speed at energy E (cm/s) ,

_(_.E.t) = scalar flux density at position r, energy E,

and time t (cm-2 s),

J_(£.E.t) = net current density at position r, energy E,

and time t (cm -2 s),

• ,(£.E.t) = total cross section at position X, energy E,

and time t (cm-l),

_,,(£.E'-+E.t) = scattering cross section at position r, for

scattering from energy E' to E, at time t (cm-

i),

Xp(E) = prompt neutron fission spectrum at energy E,

%,TT(£.E,t) = average number of neutrons per fission times

the fission cross section (cm-i),

_.¢,_(E) - delayed neutron fission spectrum for

precursor family iprec,

,: = fraction of fission neutrons that appear

from precursor family iprec,

_t = total number of fission neutrons that appear

from all delayed neutron precursors nprec,

= ,(,,,_r,c
iprec,, l

18



J

¢_pr,c(_.t) = density of delayed neutron precursor iprec

at position r and time t (cm'3),

The goal is to structure these equations in such a way

that they can be solved on _ computer. In general, this

means constructing discreet forms of continuous variables,

integrals, and derivatives. The range of energy is broken up

into discreet energy 'bins' called groups. The spatial

domain is broken up into a mesh of nodes, in which the cross

sections in eqns. (2.l.a) and (2.l.b) are averaged to yield

homogenized, spatially constant values. The spatial

derivatives will be expressed in terms of node-homogenized

quantities, and the subsequent solution to eqns. (2.l.a) and

(2.i.b) will be the node and group average scalar flux

densities.

If the volume of node i is Vt, and the range of energies

is broken up into G total energy groups with each group being

defined as the energy bin _E s'Es_l-E s, then the energy and

node averaged quantities may be defined as follows:

s (t)m Vt

---= V dE v( Elt_(_,Vg

J_,(_.tl"_F!(£.E.t)

X"_. V dE _.,(_,E,,)¢(_,E,,)--,,t_0_
(,)V,

Zpt" f_ dE x1,(E")

v_,_ls =-__. ... dV dEvZ/(_,E,t)¢(_,E,t)
¢,(t)5
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v_t>_ V dEfdE'_,(c,_'_ E,t)¢(c,E',t)"aa'
Cs(t)vt _"

-.) .. I t .

Cg,r,c ( t ) m _ Jv:V cq_nfc (£, t )vt

In the above definitions, the superscript (1) on the

cross sections signifies a spectrum weighted, homogenized

quantity over the node i. The double bar and (1) on the

scalar flux and precursor density signifies a volume averaged

quantity over node I. We also combine the total cross section

and the in-group scattering cross section (g to g) :

7.,(t_E y(t__ _(t_
g -"t,g --Sg

If eqns. (2.l.a) and (2.l.b) are integrated over the

volume of one node and the energy bin that defines group g,

and the above definitions are substituted, we obtain

equations which describe the neutron balance for a single

node I and group g:

-_t).

dt v,
G G

"(t)_

+E z(,)_:(t)_)(t)+zn(l-[3,)___v"")_/¢(t)_,.(t)
,'-, (2.2 .a)

+ _/'_,,c,e _r,cC_r,c(,t)
_rec,,I

d ,_l>
d CiPreC(t)=_iprecVZ{_:(t)_aP('j)(t)-/_iprecre(l)
--- Ctprec(t) iprec= l, nprec (2.2 .b)
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The spatial and energy group discretization is complete

for both (2.2.a) and (2.2.b) except for the leakage term

involving the net current density. It will be of use later

if the form of the leakage term is that of a surface-averaged

quantity rather than a volume-averaged quantity. Gauss's

divergence theorem allows the volume integral over the

divergence of !#(_,t) to be replaced by a surface integral:

P

p'l P

i

where Ap is the surface area of face p of node l,;zp is the

outward directed normal vector to face p, and P is the number

of faces on node I. A face averaged net current density can

be defined as:

,tp,,)=%,i'(_'nodeI

Combining eqn. (2.4) with the right hand side of eqn.

(2.3) we can write:

_-_;'(')--±_A,_,.7"'(,.,)._,-z,'"(,),.'"(,)
dt v, V,p.,

12 0
(t) ,_.t)

g"i g'sl
g'## (2.5.a)

#,-,c-I

d_t) o ._t.
"-- E vz,/_:(t)_.#.(t)-A¢,re_C_,,,¢(t)iprec=l,nprec (2.5.b)dtC_,r,_(t)=,8#,,o_ """_ _ ")

g'-I

where it can be seen that the time dependent neutron balance

is now expressed in terms of homogenized cross sections,
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' n ,volume averaged fluxes and precursor concentratlo s and

surface averaged currents. Equations (2.5.a) and (2.5.b)

together form the time dependent nodal balance equation.

2.3 _muz_

The goal is to be able to solve eqns. (2.l.a) and

(2.l.b) efficiently and accurately on a computer. It was

mentioned that the energy domain is broken up into discreet

energy groups, and the spatial domain is broken up into

nodes. The chief problem with solving eqn. (2.5) is that we

require an additional relation between the surface averaged

current and the volume averaged fluxes. The next chapter

will discuss such a relation. It is important at this step

to review our progress and the approximations used to make

that progress. Equation (2.5) represents a discreet form of

(2.1). It was made discreet by defining node-homogenized and

group-averaged cross sections to replace the continuous cross

sections in eqn.(2.1). Volume-averaged fluxes and precursor

concentrations and surface averaged currents were also used.

If the 'true flux' (i.e. the solution to eqn. (2.1)) were

used to compute the node-homogenized and group-averaged cross

sections, the solution to eqn. (2.5) would match exactly the

solution of .(2.1). This situation is not only circular but

impossible because of the need for an additional relationship

to solve (2.5). it points out, however, that eqn. (2.5) is a

formally exact consequence of eqn. (2.1).

In practice, eqn. (2.5) contains homogenization errors.

The magnitude of these homogenization errors depends upon the

estimate of the flux used to compute the cross sections.

These homogenization errors should be kept in mind as the

equations are further developed and more approximations are

made.
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Chapter 3

Derivation of Static Nodal Dif£uslon Theory R_uations for
E_Ailaterai Triangles

3.1 Introduatlon

in the last chapter, equations were derived which

describe the overall neutron balance in a single node, for

each energy group g, in terms of node and surface-averaged

quantities. In this chapter, we shall simplify the basic

problem by treating the static case. This simplification

will not only make it easier to work with the equations and

apply them to equilateral triangles, but is of direct use

' Isince, in many cases, it is only the static soiutloz that we

seek.

The first step will be to use Fick's Law to relate the

net current density to the gradient of the scalar flux

density. This is uhe diffusion approximation. The gradient

operator in Fick's law contains spatial derivatives. In

order to evaluate these spatial derivatives for a node of

triangular-z geometry, an approximation will be made that the

flux is flat within the node (the finite difference

approximation). Discontinuity factors will be introduced to

correct for sources of error: the homogenization of the cross

sections, Fick's law, and the finite difference

approximation.

The quadratic nodal method will then be introduced for

triangular geometry. The derivation will first be shown for

equilateral triangles in the 2-D plane, and then for the

axial dimension. In the 2-D plane, three independent

coordinate directions will be identified, each perpendicular

to one face of the triangle and passing through the opposite

point.
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It will be assumed that the flux within each triangular

node can be represented by three, independent, one-

dimensional fluxes (one in each coordinate direction). Each

one-dimensional flux will be modeled as a quadratic

polynomial and forced to match the surface-averaged flux at

one end and the flux at the point at the other end.

In previous implementations of the polynomial nodal

method, the nodes have had an even number of faces [in 2-D:

Cartesian = 4, Cylindrical (r only) = 2, Hexagonal = 6].

Hence, each coordinate direction passes through two surfaces,

and not a surface and a point. Because we do not wish to

solve for quantities at the points of the triangular nodes,

the quadratic polynomials for each coordinate direction will

be "connected" (equal in value and derivative) through the

points to the quadratic polynomials in the nodes beyond the

points. The consequence of using connected polynomials is

that the traditional nearest-neighbor coupling is extended to

include a "patchwork" of nodes surrounding each node of

interest.

In the quadratic derivation, discontinuity factors will

be introduced to correct for the same reasons as before,

although the correction will be less for the spatial

approximation.

The equations for both the finite difference and higher

order approximations will be derived for cases when the node

of interest is in the interior of the reactor, as well as

when it is adjacent to the external boundary of the reactor.

3.2 _he 8t&t_O Nodal Balance _atlon

The first step is to take the steady state version of

(2.5.a) and (2.5.b). In steady state, the time dependence is

dropped for all cross sections, currents, and fluxes. In

addition, the time derivatives disappear. Thus, when (2.5.b)

is used to eliminate the precursor terms in (2.5.a) we have:
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'_/1" APg's (P)'_P + _& _& = +
, VZf_ (_,, (3 .l.a)

&"! # "1
S'_'s

and A is the critical eigenvalue.

Eqn. (3.l.a) is written for a general node l with P

faces, numbered p=I,2,3...P. Our goal is to solve (3.1.a)

for nodes with triangular-z geometry. For reference, we

introduce an equilateral triangle with side length S and

height Zd:

Figure 3.1. Three Dimensional View of Node i.

The volume of this node is given by:

v,= z (3.2)

The surface area for the top or bottom face of this node

is:

4 (3.3.a)
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and for each of the three sides is:

A,=SZ d (3.3.b)

A mesh of nodes in the 2-D plane is numbered as follows:

i=l i=2 i=3 i=4
O e II

i i O' 0
i # il O

O 0 O hII} _ _ i 111 ......

/k ," _," /%, ." ," /
it • • i

tl O il II
O # O

i it it" _ i" OIt _f

Figure 3.1. Mesh Layout in the 2-D Plane

The node numbering scheme for the axial direction is

shown in Fig. 3.3.

k+l

k-l

Figure 3.3. Axial Mesh Layout.

We also need to identify the surfaces between nodes in

Fig. 3.2 and Fig. 3.3. It turns out to be convenient if we
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identify the surfaces by numbering them p=l,2,3...P for each

node. Examining the 2-D mesh of triangles in Fig. 3.2 shows

that nodes with even i are 'inverted' with respect to nodes

with odd i. We label the surfaces for each node in such a

way that surface 1 of node (i,j) is always adjacent to node

(i-l,j), and surface 2 is adjacent to node (i+l,j). Surface

3 is then adjacent to either the node above or node below.

Fig. 3.4 shows the surface numbering for the 2-D mesh when i

is odd:

,,ll i

Figure 3.4. Side Numbering for Node i,j when i is
odd.

Fig. 3.5 shows the surface numbering for the 2-D mesh

when i is even:

Figure 3.5. Side Numbering for Node i,j when i is
even.
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Each surface can be uniquely identified by node

coordinate (i,j) and surface number (p).

The axial surfaces are numbered such that surface 4 is

adjacent to the node above, and surface 5 is adjacent to the

node below:

k+l

,11111

p=4

k

D=5

k-i T +z
i

Figure 3.6. Surface Numbers for the Axial Dimension.

Consistent with the surface numbering scheme in the 2-D

plane, we define three positive axes which define the

positive direction relative to each face (p=I,2,3). Fig. 3.7

shows this numbering scheme.
iii i i

.X3

p=I/ I \p:2 \ I / I

Figure 3.7. Positive Axes in the 2-D Plane.
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For the axial surfaces, the positive axis points in the

direction of increasing k, as can be seen in Fig. 3.6.

Rewriting eqn. (3.1) for node i,j,k yields:

7(i,J,k) (i,],k)m(L,j,k) G G , _i,j,k)

_,j,*p'! (-i _ &'-l
& #&

(3.4)

Recall that the vector _p is an outward directed normal

to the surface p.

3.3 Fick'| Law and The Finite Difference Approxlmatlon

The scalar flux density can be related to the net

current densit_ Dy Fick's Law, which states that the net

current density is proportional to the gradient of the scalar

flux:

J(_,g) _ -D(_, g)V ¢(_,g) (3.5)

We are interested in applying this at the interfaces

between node i,j,k and its adjacent nodes. For simplicity,

we treat the 2-D case first and derive an expression for face

I. The expressions for the other faces can be derived in a

completely analogous way.

For face 1 of node (i,j), the adjacent node is node (i-

l,j). This is the case if i is odd or i is even. Fig. 3.8

shows the two nodes with positive axis Xl and transverse

direction YI, where Xc is the center to center node distance,

and is given in terms of S, the length of the triangle side:

=s c3.6)3
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+YI

-X d -Xc/2x=0 Xc/2 X d

Figure 3.8. Node (i,j)and Adjacent Node (i-l,j).

Xd is the altitude of the triangle, and is given by:

x,  3.712

Using the component of (3.5} in the +X 1 direction, we

have :

a

Jx,(x,y,/_)__.--D(x,y,_)_x_(x,y,E) (3.8)

where the Xl subscript means that the current points in

the positive Xl direction.

Integrating over the transverse direction Yl and energy

group g, and defining the following quantities:
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f f'_
"_,1) , . a_! #-s/2 '
J'8,x,tP =l) m , ,-...... ,, .......

.s/2
sady

_,,j>.,_, ,o _.,(,>layD(x,y,_)_(x,y,E)II , HJ $ I IllllJ Ill [ I [

f aI:,'[X'dxl y<''I_ay_(x,y,E)JAE, JO ' -y(x)12

3 _.,S) , dy........_¢(x=O,y,E)(,,: l)- m_L..
/ li),
J-s/l

2

y(x) = S-"_ x

we obtain:

-T.,J) _ _D.,j) __0_.,1)
,,,,x,(p=l)= _, Ox,-s (P"i) (3.9)

To approximate the derivative in eqn. (3.9), we write:

[_<,,J>-<,.>, )]-,,,,,>_ o:,,,>L.,-.x2,.:,
as, x,(p= I)=- (3.10.a)

where

i<,.,>i fd_.f,<,. -<=>,_
e m V,."'_'_, ,o dxJ.s(,,i/dy_(x,y,e) (3.:l.O.b) .

and

1 _.sn_.,S)(p=i)m fdE dyO(x=O,y,F.) (3.10.C)
T, y( o) :_, -s:_

An analogous expression can be written in terms of node

(i-l,j) quantities, where p' refers to the face of node (i-

l,j) and the Xl subscript on the face-averaged current means

that it is positive in the +Xl direction:
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['_(i-t,j). , . _i-l,j) ]

,s.X, (=2)=--, L Me/2 J (3.11,

Equations (3.10.a) and (3.11) can be used to eliminate

the surface-averaged flux at x=0 by applying continuity of

flux and current at x=0. Before this is done, however, we

divide each surface-averaged flux by a correction factor for

the appropriate side of the face at x=0. This correction

factor will correct for the errors introduced in the

homogenization of the cross sections, the approximation of

diffusion theory, and the finite difference approximation.

When the continuity of flux is applied, it is still applied

to the uncorrected (physical) surface-averaged fluxes. Thus,

if the correction factors for each side of the face are not

equal, the corrected flux is discontinuous at the face. For

this reason, the correction factors are known as

discontinuity factors.

When discontinuity factors are introduced, eqns.

(3.10.a) and (3.11) become:

" "_"'(p 1)"--(_,j) =

(_g -- f(i,,/)
d &,p'l

,.x,(p= - - X2,2 (3.12)

f(,-I,i) -- '- t
-p(l-I.j)/ , (i-l,j) J ,_-2

#,.x,tp = 2)=-D, .......r X_/2 ........... (3.13)

q,i

f(i.j)is the discontinuity factor for the right side ofwhere Jg.p=l

the face at x=0 and f(i-).j)is the discontinuity factor for' J&,p 2

the left side of the face at x=0. Note that eqns. (3.12) and
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(3.13) are formally exact due to the introduction of the

discontinuity factors. Applying the continuity of the

corrected fluxes at x=0:

i,j) "_'(_-l,j) t ,
, (p-I)=w# Lp ffi2) (3.14)

and the continuity of current at xffi0,remembering that the

current was defined as positive in the +Xl direction:

[_(,.xJ) -'T(_-t,n#. ,(pfl)-j#.x, (p'-2) (3.15)

we obtain :

,(,,,/) 2 /_,1,,_i + 1 _/ /__<""J) 'J)J"x'(Pf')fxc _ _"_I I I f<"J) "' - (3.16)-re J S,P I .! L J #,p.I

An analogous expression can be derived for each face of

the node. The relation for the other two faces of the

equilateral triangle has the same form as (3.16). For the

top (p=4) and bottom (p=5), the center to center distance Xc

is replaced by the axial center to center distance, Zd.

Substituting eqn. (3.16) for face 1 and the

corresponding expressions for the other faces into eqn.

(3.4), we get, for i odd, the discreet nodal balance

equation for node (i,j,k) :
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v,,j,kX_ _'f"""_ - ,_,,j,k,_,• -# Jg,p.! J#,p.t

A
.2 2__ + : .,p..i J.,po.,

+_v o0,j:,i -_i+i:_,k)r(',_,*) - _(_,j,k)__t
• i,J,l_ --8 --# J#,p.2 J#,p.2

v,,j,,xoLDI"':*)+_,,.,:)+i,,,_1 ""'J"_ -J,,,"' )..... ¢(t,i,k) | _t - _,i,k) • t
J t,p-3 J J s,p-3

+A__! ]._.k_. 1 J"'.'/ /"""' 'J"+"
V,.S.kXd ':;:;)+ ¢' -'!"'"=Jg,p.4 j L Ja,_ 4

A..s2 1 I J#.p,-4 | ,j,k)./t,P,.'4+_ + ..... (3 17)

J t,p-s j J t,p-s

+z, _, = _,Z('"'*_"(''''''X' °_.,
_'=1 #"1

For i even, superscript (i+l,j+l,k) in the third line of

eqn. (3.17) becomes (i-l,j-l,k). Eqn. (3.17) describes the

neutron balance for an interior node (i,j,k) in terms of node

homogenized cross sections, constants, discontinuity factors,

and volume-averaged fluxes. The next section will derive an

equation of the same form as (3.16) for nodes adjacent to the

boundary of the reactor.

3.4 Botmdary Condition_

In the previous section, a relationship between the

surface-averaged currents and volume-averaged fluxes was

derived by writing the finite difference approximation to

eqn. (3.9). Eqns. (3.10.a) and (3.11) were used to elzminate

the surface-averaged flux for face p=l of node (i,j). If

node (i,j) face p=l is on a boundary, eqn. (3.11) cannot be

written. In this case, we use a general equation fo]: a

boundary condition which relates the surface-averaged current

to the surface-averaged flux:
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t.pZt P)'_p=rs.p _t (p) (3.18)

where, as before, _p points out of the node and is

normal to the surface p. The group and face dependent

, _(_'/)and _(t'/)coefficients t,p t.p, are specified by the type of

boundary condition desired. Table 3.1 gives appropriate

values for typical boundary conditions.

Table 3.1

Values of _(i'/)and _(i./)for Typical Boundary Conditions#,p r-#,p

Cond£t:ion it: -a,p ,-s,p

....... Ill ]1 I I]

Zero Curren t 1 0 i I i i

zeroFlux ..........................0 i .....i

Zero Net Incoming 2 1
Current ii iii i ,H.H,H,J --!_.'. ' ' ' "''' '_"' ' '"' '

Albedo 1 ..... C 1
I C il the ratio of the outgoing current at the

face _o the _ace-averaged _lux, as defined by

eqn. (3.18) with alpha equal to unity.

Our goal is to obtain an expression analogous to (3.16).

If we examine the case of face p=l of node (i,j) on the

boundary, then we re-write eqn. (3.18) as:

-,,p.,J,x,(p-l)= (p=1) (3 19)P*#,p=i "r t

where the dot product on the left hand side of eqn. (3.18)

produced a -i because the normal vector _p points in the -Xl

direction.

35



Equation (3.12) remains valid and can be used with

(3.19) to eliminate the surface-averaged flux at face 1 of

node (i,j) Solving (3 19) for -_("J). . # (p=i) and inserting the

result into (3.12) we obtain:

_<e,j_ __2 _l.p,I ---2 m.p-I R<t.j>,'_'_>
j,_(p.l)=- _,,_+ _,,_.,_, <3.20)

J #.p.I

If face p-l, p=2, or p=3 of node (i,j,k) is on a

boundary, the discreet nodal balance equation (eqn. (3.17))

is used with line 1,2, or 3 replaced by:

! [ 1±%+]'
_,,,, x+LD<,`'j_+ X+f'"'+I [+"' +' J (3.2i>i JI,P J

If the face is p-4 or p-5, (3.21) is used with Xd in

place of Xc, and inserted into eqn. (3.17) in line 4 or line

5, respectively.

In this section, the derivation of the discreet nodal

balance equation was extended to include the case where face

p was on the boundary of the reactor. Equation (3.17) was

written for node (i,j,k) for odd i. A complimentary equation

exists for even i. If node (i,j,k) is on the boundary of the

reactor, eqn. (3.21) is used to replace the appropriate line

in (3.17). These equations can be written for each node in

the reactor, and solved on a computer to yield volume-

averaged fluxes and a critical eigenvalue, provided that

cross sections and discontinuity factors are available. The

more traditional mesh-centered finite difference equations

can be obtained from the above equations by setting all of

the discontinuity factors to unity. Because the

discontinuity factors correct for the use of the finite

difference approximation, the above method will allow the use

of larger nodes. We shall refer to the above method as the

Coarse Mesh Finite Difference (CMFD) Method.
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3.5 _adzaeio Based Coupling |quations

Our goal in this section is to develop an improved

relationship between the surface-averaged current and the

vo iume-averaged fluxes.

3.5.1 Transverse-Averaaed Flux in Ouadratic Form .fQK an
Equilateral Trianule

We once again examine face i of node (i,j), shown in

Fig. 3.8. Equation (3.10.c) was used to define the face-

averaged flux for p=l (x=0). We can generalize this and

define a transverse-averaged flux as a function of x within

the node (i,j) :

, (x)• ----[dE dy¢(x.y._) (3.24)y(x)J_,J','"12

The right hand side of eqn. (3.24} can be represented by

a quadratic polynomial. This quadratic polynomial is forced,

within node (i,j), to equal the face-averaged flux,

r# (P "I), when x=0, the value of the flux at the point,

#(_'J)(Xd,0) when X=Xd and when integrated over x according to# ' ,

eqn. (3.25),

f0Xd ,-PO.j)l__ dxy(xl_'""(x)=
V,.j rt ¢, (3.25)

it is forced to equal the volume-averaged flux for the node.

Suppressing the group and node notation temporarily for
isimplicity, and defining a dlmens onless parameter _ where

llx/Xd, we write the polynomial expression as:

_'(_)=_(x,,,o)P,(_)+;_(o1P_(_)+_P,(_) 13.261

where
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The analytic derivative of (3.31) with respect to x is:

............=-- -l+ _(x.,o)+--
x_

Writing eqn. (3.32) in terms of node (i,j) quantities

and returning to the group and node notation, we have:

=_, x,j, x, i;;,('"
(3.33)

We can now use this expression in eqn. (3.9) to produce

a relation between the surface-averaged current and the

volume-averaged fluxes which is more accurate than eqn.

(3.10.a). Evaluating eqn. (3.33) at x=0 and substituting the

result into eqn. (3.9) gives:

"_(_.J), (_4) (3.34 )
J.,x,_p-,)-=-x_ _, (x.,0)+5_,_'J)(p.,)-6'_

In order to write an analogous equation for face p=2 of

node (i-l,j), we must first re-write (3.32) for a node of

opposite orientation where x varies from x=0 to x=-Xd:

--x-= g+x_j_(-_,,o>++g _(o_
(3.35)

x,x_j

In terms of node (i-l,j) quantities, eqn. (3.35)

becomes :
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-[g+
(3.36)

The equivalent of (3.34) for face 2 of node (i-l,j) is

then:

-l,i)
,x, (p.2) =_

___.__,-,.s,[ _ . _,.,.s,l ,3.3'7,-m"'"s_(-xd,o) 5T""S_(p Z)+-.r,
d Tit T"I

At this point, we could apply a continuity of surface-

averaged flux and current at the face at x-0, and eliminate

the surface-averaged flux with eqns. (3.34) and (3.37), but

the resulting equation would contain the point fluxes

,Xd,0) and T# (-Xd,0). We do not want to solve for the

point fluxes during the solution, so we require additional

equations to eliminate the point fluxes from eqns. (3.34) and

(3.37).

In order to obtain these additional equations, we expand

our view of the nodes surrounding node (i,j) from the nearest

neighbor coupling of Figs. 3.4 _nd 3.5 to the extended

coupling of Figs. 3.9 and 3.10. Fig. 3.9 shows the extended

coupling for nodes of odd i, and Fig. 3.10 shows the extended

coupling for nodes of even i.
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.... _" +Xt

! !

x=-2Xd x=-Xd x=O x=Xd x=2Xd

Figure 3.11. String of Nodes for Face 1 of Node (i,j)
where i is odd.

The next sub-section will develoD expressions for the

surface-averaged current at X=Xd in terms of node (i,j)

quantities and node (i+3,j+l) quantities. In addition, an

expression for the surface-averaged current at x=2Xd will be

written in terms of node (i+3,j+l) quantities. These

equations will be used with (3.34) to obtain an expression

for the surface-averaged current for the right side of x=0

that does not contain the point flux M(i'J)(Xd O)

3.5.2 Eliminatina the Point Flux at x=X_

Strictly speaking, the surface-averaged current cannot

be written for the point at X=Xd. We therefore write an

expression for the surface-averaged current across a surface,

perpendicular to the X 1 axis, a very small distance, e, to

the left of the point X=Xd. In the limit as this distance E

shrinks to zero, we approximate the surface-averaged current

at X=Xd. Evaluating eqn. (3.33) at X=Xd - C and substituting

the result into eqn. (3.9) we get:

_/.I),
=Xd- -

3_<_'j_t_ (p=l)-6- % _d,O) + 3.,x.

Using the same argument as above, the surface-averaged

current can also be written for X=Xd in terms of node

(i+3,j+l) quantities. This is done by evaluating eqn. (3.36)
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at X=Xd + S and substituting the result into eqn. (3.9).

This gives:

(i+3,j.I)
s,x, (X=Xd+e)=

x. -3¢_'+_"'(x_'°)-_¢' tp=2)+0_,

The surface-averaged current for face p=2 of node

(i+3,j+l) can be written by evaluating (3.36) at x=0 and

inserting the result into eqn. (3.9). This gives:

(i+3,j+1)_,X,(p-2)=

Xd ,(/*3'J*')(x,.0l+5_;'*3'J+"(p= 21-6 +3.j+.) •

The goal is to obtain an expression for the surface-

averaged current for the right side of the face at x=0 that

does not contain the flux at the point X=Xd, nor the surface-

averaged flux at x=2Xd. The procedure is outlined as

follows:

i) Apply a continuity of current and continuity of

flux at the point X=Xd. As the distance E shrinks to zero,

the small surface for which eqn. (3.38) was written

approaches X=Xd from the left and the small surface for eqn.

(3.39) approaches from the right. We assume that these

surfaces become one surface, and the current is continuous

across that one face. Use equations (3.38) and (3.39) to

arrive at (3.41):

2[D's(i+3'j+l)==(i*3,j+i)_)gJr"D(gi,j)==.(i,j)(_g ]¢,(x_,o)=
[D_'.'".') + D(/")] (3.41)

[ (')'(")" ]D;'*3'J+')$('*3'J*')(p= 21+ O," _, tp= 11-- rg
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where, because of the continuity of flux at X=Xd,

¢_(Xd,o)_ _d'.3'J.'_(Xd'°)= _s_"J_(Xd'O) 13.421

There is no theoretical justification for applying the

continuity of current at X=Xd, but results in Chapter 6

should testify to the adequacy of this approximation,

2) Substitute Eqn. (3.41) into (3.34) to obtain

(3.43):

Xd 7",J_ 5_",J_, _"J_
D_ij ) s,x, (P = I)-----qJ, _,p = 1)-6_s

+ DJ_,j)
., ,i

3) Apply a continuity of flux at X=Xd. Add eqns.

(3.34) and (3.40) and solve for the surface-averaged flux at

x=2Xd. This gives:

"7(i,j) 5 [--,.(i,j) -y(i+3,j+l) ]
_(;+")+l)(p = 2)---__g (p=l)-- I/)g --_g--g

..&r'-x.ti,jl¢ 7(i+3,j+11 ] (3.44)

I Jg, x, tP = I)+ ag, X, (p = 2)

4) Substitute eqn. (3.44) into 13.43). This gives:
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4D''. 3j+,)+ 5/_s,,!_1 1)__.-_'"J'x, -' j:r',,t'_l(,,-- (,,--,)20/_/'j) _,D('.3'J+')+D_'.J) ",

('+"J+') _ [20 D`'_'j)+ 24_,+3.j+,)s,x, (p =2) -_ ] :(l.j)

(3.45)
D(i+3,J +11

.--(i+3j+l)

+5[ + ]

3.5.3 Eliminatina the Point Flux at x=-X_

The prc cedure that was outlined in the last sub-section

for elimina'=ing the point flux at X=Xd from (3.34) can be

followed to eliminate the point flux at x=-Xd from eqn.

(3.37). When this is done, we get:

, X,, [ 4____8D(t-4'`-i) -t- 5D(I_I,j)D(_i-,,I'J).ll'T(t-l'J) .., ._,(t-l,j) I

= -_P8 _'P
20D__'_'j_ + gn','-""" 1"'" ("°2) .2)

_'"-"J-') ' l) [20D,(i-t../)+24D (,,'-4.,-,,] _(.,_,.j)± _X. ,,8.x, _,p=

to,,-,.,-,,_o,,-,..,,,+ 2o[ ..,-,,+q,-,..,,] '/',,_--20 + ]
t g -g

(3.46)

_i-4,j-l) m(i-4,j-l)

3.5.4 Eliminate the Surface-Averaaed Flux at _=0

Eqns. (3.45) and (3.46) express the surface-averaged

current at x=0 in terms of node and surface-averaged

quantities to the right of the face at x=0, and the left of

the face at x=0, respectively. These two equations can be

used to eliminate the surface-averaged flux at x=0 by

applying a continuity of flux across the face. Before this

is done, however, we once again _ncroduce discontinuity

factors for the same reasons as before. Eqn. (3.45) becomes:
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v v(t,j) [ 4D(;+''j*')+ 5D(_'j)]7(_,j)
:_?dJs.p-_,[ _ _ .... s _ l) =_("))(p=l)

(i j) (i j) (i+3,j.l)

x ,""' '('+""" f,,_.,[2o%'+24t)', 1_,,,,
....... .. ,P L ............. i _' J

* 20 [_,';','+"+_',"] (3.47)

_(t,,/) T,}('l+3,J+l) _.(i+3,j+l)
+ ......J g,p.t,--g .... _ -

f(i,j)
where :g,p.L is the discontinuity factor f_r the right

side of the face at x=0. When the discontinuity factor for
f(_-t.j)

the left side of the face at x=0, Js.p-2 , is introduced into

eqn. (3.46), we get:

v _""_) [ 4_,-,,j-t) + 5D(s''''j) ]'7"",_) -("',J)

JJe,X, (P=2)=--_ s (p=2)20D(m''lJ) L DJ''45-'i)+ -'D('-U)

Xd_(_-t.j) -7(_-4.)-_), f(_-t.))[_nr_(_-L))+ 24D (_-4,j-t)]Js.x, _,P= ."s.p,2L"""'s .... _, _ .,_-l../)

- +
+

(3.48)
-_,j)r_(i-4,i-_) , . .

,tj I)
,

- 5[ (i-,:))
t s g J

Adding eqns. (3.47) and (3.48), with:

= _(i-1,))_"')(p ,)= (p=_) (_.49)r I J

gives a higher order expression for the surface-averaged

current at x=0 in terms of volume-averaged fluxes, diffusion

coefficients, discontinuity factors, Xd, and surface-averaged

currents at -2Xd and 2Xd:
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Completely analogous expressions to eqn. (3.50) can be

written for faces p=2 and p=3 of node (i,j). The next sub-

section will develop analogous expressions for faces 4 and 5.

3.5.5 Ouadratic Based CouDlina EQuations for the Axial
Dimension

Polynomial representations for the transverse-averaged

flux have been developed and researched in Cartesian geometry

for as high as 4th order [Z-I,G-I]. In this work, a i

quadratic polynomial will be used for _he axial dimension.

For face 5 of a node (i,j,k), Fig. 3.12 shows the

adjacent node (i,j,k-l), where it has been assumed that the

height of both (i,j,k) and (i,j,k-l) is the same and equal to

Zd.
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. D-'5 z=O
p-'4

(i,j,k-l) I+Zp=5 z=-zd

Figure 3.12. Conventions Used for the Quadratic
Expansion in the Axial Direction.

Using Fig. 3.12 as a reference, the quadratic form of

the transverse-averaged flux for 0KzKZ d uurns out to be:

_(z)= 1 4z+ #(_ _
z# z_ _j

13.sl)

Eqn. (3.51) can be used for -Z dKzK0 by replacing

_(z-Zd) with _(z=-Zd). Taking the derivative of (3.51), and

applying the node and group notation shown in Fig. 3.12 for

node (i,j,k), we get:

-_' ....(_)- --4+_ l_'''j'*)" -2 + _0, (p 4)
dz ......." - g z_J_', ""')+

(3.52)

i 12z -.,_,k)

Evaluating eqn. (3.52) at z=0, and inserting the result

into eqn. (3.9), we obtain and equation for the surface-

averaged current at face 5 of node (i,j,k):
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,z _P- "

D(/'J'a_[ _",S,*) _(I,S,*) . .._i4,*)] (3.53)- Z,.... ......-4T, (p-_)-2T, (p.4)+o_,

We can eliminate the surface-averaged flux at face 4 of

node (i,j,k) by evaluating (3.52) at Z=Zd, inserting the

result into eqn. (3.9), and solving the resulting expression

for "'_t"J'k)(p-4).When this is inserted into (3.53), we get:

'Z,, "r',s," "z(,,s,'*), ;_,,s,,,)
-3_?,s,,_,,,,(p.5)a -_, _p.s)+_,

-[
(3.54)

Z_ ?(i.j.,),
+6D.,s,, ) Ja,, _p- 4)

--#

An entirely analogous expression can be obtained for

face 4 of node (i,j,k-l) . This is simply given as:

Z_ 7o4.,-i -(1.j.,-t), .._.j.,-1)

--3D04:,-.-i) _#., )(p-4)_ @# ip" 4)--@#g
(3.55)

Z d -/0,I,*'I)t
.....-= _-_ J#,z /P "

+6q,_,.. 5)

Equations (3.54) and (3.55) can be used to eliminate the

surface-averaged flux at z=0 by applying a continuity of flux

across the face. Before this is done, however, we introduce

discontinuity factors to both equations. Equation (3.54)

becomes :

•:, _t,l,k)
7 (_,s,*) __(_,J,*) [(_,s,*).'_'j'*)

" r# a #,p-._ _j,ar_,,s,*)_'' (p: 5)= (p: s)+
(3.56)

+ Zd F(_4'*).... ./#,p.S '7(1,1,*) = 4)
6_,,s,,) .'.,, (p

and eqn. (3.55) becomes:
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Z ¢O,j,k-I) u, _.O,j,k-I)"r"dJ il,p.4 _(t,j,k-l)t '_(&j,k-I)-_J-. ,-,, 4)- (p- 4)- r (''_'*''_
_D(6.j,k.l) l., _r rR J l,p.4 r g

I

(3.57)
y ¢(_.j.k-t)
"tdJ B,P,,4 _,_7(t,J ,k'l)

+6 D..i,k.,) _,.z (p - S)

Adding eqns. (3.56) and (3.57), with.

_(i.j.,-l)T"J'")(p-5)= (p.4) (3 se)r# rt

we get :

....J Jr,p-:_7('.j.k)
: ,,p'.4 __

_ _JI,p,s +
i¢(Lj,k.l) T# T t
Jx.e°._

¢,.j.k)7..

- 6 n(,.j.,) _,.' (P" (3. s9)w. J l,p'.4

Z. 7(,,_,,.,)
- aD",J,'"'"'" (p. 5)

Thus, for an internal node, we may replace eqn. (3.16)

with eqn. (3.50) for faces 1,2, and 3. For faces 4 and 5, we

may use eqn. (3.52). Using these expressions for the

surface-averaged current, we obtain an equation describing

the neutron balance for a node (i,j,k) which replaces eqn.

(3.17). %he only task left to fully describe the equations

which govern the static problem is to treat the case in which

node (i,j,k) is on the boundary of the reactor. This will be

done in the next section.

3.6 Boundaz'y Cond£t£ons _oz the Ouadzat£a Baoed Coupl£ng
gquattons

It turns out that the extended coupling of the quadratic

coupling equations in the 2-D plane introduces a number of
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different boundary conditions which must be addressed before

the method can be applied. There are a total of five

possible boundary condition situations which may be

encountered. For face 1 of a node (i,j,k), these are given

in Table 3.2:

Table 3.2

Possible Boundary Condition Cases for Extended Coupling in
the 2-D Plane

_ i II_ IfHill I I I ....

i
m_

iiii i ii . iii i ]llll ........... ? - _ i f [ I _ ___ , I{ .

Its,.
- i ][ i I [INI/ Ill

'-Jb,X,

...... ;.... . ......... . i " 7_ III1 II

To derive the quadratic based coupling equations for

these five cases, the procedure outlined in the last section

is followed. When a boundary is encountered, eqn. (3.18) is

used to relate the surface-averaged current to the surface-
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averaged flux. The derivation for each case will not be

' nglve here, but it should be noted that these derivations are

somewhat simpler than the fully internal node derivation of

the last section. This is due to the fact that in these

cases, the surface-averaged fluxes at x=2Xd and/or at x=-2Xd

do not appear, and therefore do not need to be eliminated.

Also, in the cases where the point of the triangle is on a

, ' nboundary the surface-averaged flux is give by the boundary1

condition and does not need to be eliminated.

3.6.1 _ase i Bounda_ Condition

In case i, the left side of the surface at x=0 is

described by eqn. (3.18). The right side of the surface at

x=0 is described by eqn. (3.47). Using these, we obtain:

7.,j_
#,X,(p I 1)=

,.i ' -F20, +F,.a +-,J,,x,(p=2)

where, to simplify the appearance of (3.60), the following

constants have been used:

FI El

D_8 ""J,pI !20 ,,_ r-,,p-l _i+3'./.1)] +
, # J

[ 6/, lr, ],.,.,

F _'+"+" ]]r, i D('*'''_''') (3.61)
L. t a #

X120
r i i Jl.p.I [DA,-_i,j__+D,'(;';_-_*i;]

3.6.2 Case 2 Boundar Y Condition

For case 2, the boundary condition occurs at x=-Xd,

which is at the point of the triangular node (i-l, j). The
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boundary condition is therefore applied to a small surface,

perpendicular to the XI axis, which is located a very small

distance, £ , to the right of x=-Xd. In this case, eqn.

(3.18) is replaced by:

O[(_'id)'_i'l'/)" -- R("I')) _(_'l'J)(e surj'ace) (3.62),.p=,,,Z# te,,rf_',)._,,,,_=,- ,...,_,,,,,,.

where tl,,_¢, is the outward directed normal to the small e

surface. Using (3.62), the equation for the surface-averaged

current turns out to be:

,x,_v" l) =

.{ _"I.')_ F, _".') _'.'.J.') "_,+,.,+I), } (3.63'{r,}"r2., ., +r,., +r,J,x.tp-2)

where, as before, the following constants are used:

, ',1 w '_'af -.v#- ? I[ill ii ii " 5LI I I i I

20 D'''j) J-t J_,p.2 L ", -"#

[ , jY N (_=l'j) .4. F)(_'l'jl/lt 1_=1'111,'

+ D(_-I.J) 5Y R(_-Id) 9 n(_-l.J),vU-l.J)I "",Ir't.po,, + | _ A'I _t,I)o_.*

'"')__'''_)+ 6X a_'"_)]

............a --e,_,_ dP'#,po.. IF, II

d/"l,pomt "tl "'_',_i_ J

_=1 I .... " I .....
r', = _,.,._, [r_'.''_'''+D'''')1

.'#.p-2 tu# # a

,,,,,r 1].......0,).j*_) .... t_'S) (3 64)
F," ._'-';'),_.,5 +D,

,""" x80.....4 II,P'I

F_m /<"_") (i;-_,,,I)....... iL_)-.,...[o; ]
In general, the boundary condition parameters for the

outer surfaces of the reactor (which appear in eqn. (3.18))

will be specified by the user, but the boundary condition
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parameters for each e surface (i.e. each triangle point

which lies on the surface) will not. This is not a problem

if the outward directed normal to the e surface is

coincident with the outward directed normal to the reactor

surface. In that case, the user specified parameters may be

used in eqn. (3.62). Unfortunately, the normal to the e

surface is often not coincident with the outward directed

normal to the reactor surface. Fig. 3.13 illustrates one

such occurrence, where the +X axis points in the direction of

the outward normal to the e surface at the point.

,X Direct ion

Figure 3.13. Discrepancy Between the Normal to the
Reactor Surface and the +X Direction for
the Point of Node a.

In addition to the situation illustrated in Fig. 3.13,

there are other occurrences in which the relationship between

the reactor surface normal and the e surface normal is

different. It is not practical to require the user to input

the boundary conditions for every 'triangle point' on the

reactor surface, so the parameters at the point must either

be obtained from the user input parameters, or an

approximation must be made that the parameters at the point

are equal to the user input parameters. This matter will be

discussed further when results are presented. Appendix A

'nbriefly outlines a technique for usl g the known boundary

condition parameters at the surface of the reactor for the

parameters at a point.

3.6.3 Case 3 Boundary Condition
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h_h

In case 3, there are two boundary conditions. The left

boundary occurs at face 1 of node (i,j), and the right

boundary occurs at the point of node (i,j). The surface-

averaged current for this case is given by:

,Xt(p = l)'-
r-'g,p=t ' F2_g (3.65)

where the constants are defined as.

__ Xd f(i,j) .[_(i,j) ""dl"g,point D(g jr o(io])FI
--g "" "'dl"g,point " g ""g,point

(3.66)

J ,.v*, + 12D_''j)- (i,j)
-- g £1_g,poim

Note the mixture of different boundary condition

parameters.

3.6.4 Case 4 Boundary Condition

In case 4 there are two boundaries, each at a point.

The surface-averaged current is:

8.x,(p=l)=[F I • -F2_g +F30g (3.67)

The constants are:

f(i'{l [ Y l_(i']) "4r)(i.J)ol(i.J)1

Xd , ,,p , "'_,",.poi.,+-- ._ -- g v. g, point

I"l - -'L)gi'j) d g,p 2 "*dl"g,poiat "----g "'g,pointe"-2j' 5Yn(;.J,+

+ Xe "'#r'g,voi.t + i-l,j) (i-l,j)

D_ 'j' _Y B(i-"J)+ I2D ', otg.r_J""" "dl" g,point

f(i,j)=[ (i,j) (i,j)(i,j)]_ .,,.p , 6X,,fl,,.eo,,, + 12D_. ot¢.eoi,,,F2
J,,p2 L-"*ar',._,,,,+12_ a,.,o_ J (3.6B)

....d_,eo_,. + 12 D_ oc¢,eo_F3 (i-l,j) (i-l,j)

"" " ""dl" g, poira
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3.6.5 Case 5 Boundary Condition

The surface-averaged current for boundary condition case

5 was not derived. It turns out that a case 5 from the point

of view of node (i,j) is identical to a case 2 from the point

of view of node (i-l, j). Therefore, if a case 5 is

encountered for node (i,j), the node of interest is switched

to the adjacent node, (i-l,j), and a case 2 is solved.

3.6.6 Boundary Condition for the Axial Dimension

In the axial dimension, a boundary could occur at face 4

or face 5 of node (i,j,k). The case of a boundary at face 5

is depicted in Fig. 3.14.

,,

p=4 Z=Zd

(i,j,k)

,, p=5 z=O

Boundary

Figure 3.14. Boundary Condition for Face 5.

For this case, the surface-averaged current becomes:

f(i,j,k)f_(ioj,_k) Zd]",J*_ ff;j_k__.j,_+ J,p-5_,,ps.,, (p-5)= •

Zd "c(i']'*)'7(i'J'*) l 4)
6 D¢i,j,,_) J g,p..5 ,, g.z I,P =

The surface-averaged current when face 4 is on the

boundary is :
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I }"_(i'J'k)l 4) _- f_(i,j,k) r_(i,j,k)+ {(i,j,k)f_(i,j,k) Z d

J g,z _,P = I"g,p=4 "_'g,p=4 O g,p=41"g,p=4 3 D(gi,j:k ) "

<3.7ol
i

:"J"'7 5)
g.= =

3.7 Summazy

In this chapter, the static form of the nodal diffusion

theory equations were derived for equilateral triangles. The

Coarse Mesh Finite Difference (CMFD) equations were derived

first, utilizing Fick's Law and the finite difference

approximation to discretize the equations in space.

Discontinuity Factors were introduced to correct for errors

in homogenization, the use of Fick's Law, and the spatial

approximation of assuming that the flux is linear within a

node. It was argued that the spatial approximation could be

improved by modeling the flux as a quadratic polynomial

within the node. Quadratic based coupling equations were

then derived with this model, and discontinuity factors were

once again introduced. It was mentioned that a difficulty was

encountered with the specification of boundary conditions at

the points of nodes on the edge of the reactor. This topic

will be discussed further in a later chapter.

In the next chapter, the transient equations will be

derived. Chapter 5 will outline solution methods for both

static and transient problems.
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Chapter 4

Derivation of the Transient Nodal Diffusion Theory E_uations
for Equilateral Triangles

4.1 Introduction

In this chapter, the discreet form of the transient

nodal diffusion equations will be derived. We shall start

with the semi-discreet equations (2.5.a) and (2.5.b), and

apply the same procedure to the leakage terms as was

presented in Chapter 3. This will lead to a set of equations

which describe the overall neutron balance for each node in

terms of node- and group- averaged fluxes, precursor

densities, discontinuity factor ratios, and constants. All

will depend upon the continuous time variable, t. In order to

simplify the notation, these equations will then be put in

matrix form. The theta difference approximation will be used

to discretize the prompt equation in time, and a direct

integration method will be used to discretize the precursor

equations.

4.2 Time Dependent CMFD and Quadratic Equationa

_qns. (2.5.a) and (2.5.b) describe the time dependent

neutron balance for a homogenized node, t, and energy group,

g. In Chapter 3, these equations were written in steady

state form for a node (i,j,k), group g, and discretized using

the finite difference approximation. In this section, we

apply the results of Chapter 3 to (2.5.a) _nd (2.5.b) and

obtain the time dependent version of the coarse mesh finite

difference equations.

In the time dependent case, the cross sections and

discontinuity factors become time-varying. The time-

dependent expression for the surface-averaged current for

face p of node (i,j,k) is:
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-. 2 I i .L_.'

+ .'g,p
(4.1)

, jg,/ (t)-,(_-_,j,,).. -._;,/,,_
f.,i,,_(,)0_ it)-¢8 (')" g,p

Equation (4.1) can be written for each face, p, of a

fully internal node. If a face, p, is on the external

boundary of the reactor, the expression becomes:

B"'j_ 2 '*s,p-,-r_,g,k), t' 2 ,-it,t, + __
Js,x, q,/,,)=-"_ Oc''j'*(t) X_ f"'J'k_(t)g ) ag,p (4.2)

[/3("J.__"J'*' 1].[r_.p,_, (t

where the boundary coefficient terms are assumed to be time

independent.

Inserting eqns. (4.1) and (4.2) for faces of node

(i,j,k) in the 2-D plane (p=I,2,3), and appropriate

expressions for the axial dimension into (2.5.a), the time-

dependent version of the coarse mesh finite difference

equations are obtained.

The development of Section 3.5 for the quadratic based

coupling equations is also valid in the time-dependent case.

The cross sections and discontinuity factors are again time-

varying. For the case of a fully internal node, the

diffusion coefficients, discontinuity factors, volume

averaged fluxes, and surface-averaged currents of eqn. (3.50)

become dependent on the time variable, t. This is also true

for the boundary condition cases of Section 3.6, except that

the boundary condition parameters are assumed to be time

independent.

59



4.3 Time Dependent Equation8 in Matrix Form

In order to simplify the notation of the transient

equations for subsequent discussions, matrix notation will be

used. A bold, uppercase letter will be used to represent

matrices. In this section, the definition of each matrix

will also include an illustration which shows the structure

of each matrix.

G total number of energy groups.
N total number of nodes.

N
(_ a G-element supervector

-.,-._ consisting of N-element

N[ '. subvectors of the nodal fluxes

i
I

--- G
I
I

I
I

N
r--n

L V-t
N "'" a GxG supermatrix consisting of•, NxN element submatrices. The

- _, diagonal elements of the

-'" G diagonal submatrices are the
•• ]

.... - ', inverse group speeds,--.

•• Vg

G

_', ...... _ a GxG supermatrix consisting of%

-•- NxN element submatrices. The

•, diagonal elements of the
- diagonal submatrices are the

• total minus the in-group
scattering cross sections,

_•J _g .
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K,_ ..........! D a GxG supermatrix
%,a consisting of NxN element

___'"i--i submatrices. Each diagonal

............_&, submatrix is an NxN, 7
.... . stripe matrix (5 stripe for

IIK_ 2-D problems) of the
......... I_'i coupling terms. The two

solid lines on either side

of the diagonal represent
", coupling through face 1 and

2. The broken lines

• represent coupling through
face 3, which may be above
or below. The solid lines
furthest from the diagonal
represent coupling to the
plane above (face 4) and
below (face 5).

........",• ',__,, _, a GxG supermatrix consisting of
, -, -•_ Nx_N element submatrices. The
• • %

• ' , diagonal elements of the off
•, ,, ,-, diagonal submatrices are the

%% • •• • scattering cross sections for

!•' "" "- - group g' _(_J'k)("_ S'_ • tO g,__ • • 88' t/ #& .

• _" _" r, M a GxG supermatrix consisting of% • • • p

',, ,, ,, ,, NxN element submatrices. The
_ , , • , diagonal elements of each

• , , submatrix are the prompt fission

.,, , ( ()• "• , ,' operator, Xp,g |" V_(i'J'k)• • ot fl' ¢ '
• • • •

.__ Cip_e a G-element supervector of N-
element subvectors. Each

subvector consists of the node
. . averaged precursor# i

concentrations for family iprec
: : multiplied by the delayed

neutron spectrum, Xd.,C_r,c(t).
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Mipr_ a GxG supermatrix consisting of
• - NxN element submatrices. The

'" '" ' ' diagonal elements of each
i *', ', , , submatrix are the delayed

.........' ...._ fission operator for family

" " ip _ R v_(14.k)(•", • , rec, _d.s_,,c IY _t/•"%• •j • •

In addition, we define:

L w D + Z- Z,., (4.5)

Combining these matrix definitions with the time

dependent CMFD or quadratic equations, we get:

v-,[a®(')] V*L at....=[M,(,)-L(,)],(,)+_X,,,.oC,,_(,)(4.6.,)_pr_c-i

de,,.(,)
= MI,._ (t)_(,)- _,,¢Cip._(t) iprec-l.npr,c (4.6.b)dt

4.4 Time Integration Scheme

4.4.1 Theta Difference of the Prompt Eauation

The theta difference method expresses the flux at the

new time step (n+l) in terms of a combination of the last

time step values and new time step values. The most common

values of 8 are 8=0, which gives a fully explicit method,

8= [/2, which gives the Crank-Nicholson method, and 8=],

which gives a fully implicit method.

V" ...... J ,._-,L- _..... :o M_ -t_TM ].'°.'+ _*_ o0.,,
(4.7)

.._p - ]4)(")+
ipr,c. i
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4.4.2 Direct Inteuration of ......_he Delayed Neutron Precursor
Ec/uat ions

The theta difference method could be used on the delayed

neutron precursor equations. However, due to the form of

these equations, it is possible to use an integrating factor

and integrate the equations directly.
i

The first step is to define the following:

u . ,'__,r,c(t- t.)

.;t,..o(,., 14.8,

Also define the time dependent vector, B(t), for each

precursor family:

s,,.(,).M,,.(,).(,) 4.9,

Substituting these definitions, we obtain:

+ Cip.,(u)= I B,p.,(u),pr,c= I,nprec(4.10)
du l,e,,c

Using the integrating factor e", we can write (4.10)

as:

[ I]'e'"! e,Cip,_ (u = ---- BtI,,_ (u) iprec= I.,prec (4.11 )
du Aip,,_

Integrating (4.11) from u=0 to u=uMa ,, we get:

e_'Clc"(u"_)=ClP"(O)+ '_'_,r,¢ eUBil,_(u)du iprec=t.nprec (4.12)

In order to evaluate the integral on the right hand side

of (4.12), we need to know the function B_,c(u) across the

time step from u=0 to u=u,,,u. We will assume that the

function is linear across the time step:
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time dependent cross sections and discontinuity factors. The

temporal discretization of the prompt equation was achieved

by using the theta difference method, and the delayed neutron

precursor equation was treated using a direct integration

technique.

The equations describing the static and transient

neutron balance for nodes of triangular-z geometry have now

been completely developed. The next chapter will discuss

solution methods.
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Chapter S

Jolut_on Methods for Static and Transient Problems

6.1 lntzoduoC_on

In previous chapters, the equations describing the

static and dynamic neutron balance in each node were derived.

In this chapter, the solution of these equations will be

discussed. The material in this chapter closely follows

Chapter 4 of Gehin [G-l].

6.3 |slut!on of the SCatio |quaCions

5.2.1 Numerical Solution of the CMFD Eauations

The Coarse Mesh Finite Difference equations, derived in

U 'Chapter 3, can be put into matrix form slng the applicable

definitions from Chapter 4. If, in addition to the loss

matrix L, we define a total fission operator M as:

_4_ a GxG supermatrix consisting of

....', , _r NxN element submatrices. The
N ,, % %

_, " diagonal elements of each
r%_ submatrix are the total

%%

,,-,,G  i,,ionoperator,

)4-_'',-__,',_''_ whereeqn.(3._#i.bliS.defined by

...... G ill_ _- ..

we can write:

LO= --1MO (5.Z)

This is an eigenvalue problem with the largest

eigenvalue being equal to the critical eigenvalue for the

reactor, and the associated, all positive eigenvector being

equal to the solution of the neutron flux in the reactor.
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A common and effective solution method for eigenvalue

problems is the power iteration method [N-I]. The power

iteration method estimates the fission source, on the right

side of eqn. (5.1), using the flux and eigenvalue estimate

from the last iteration:

1 MOC
= (5.2)

where m refers to the iteration number. During the solution

' vprocess, a new exgen alue can be estimated using the Rayleigh

quotient [N-I] :

(w,®'"> is.3,

where the brackets in eqn. (5.3) indicate integration over

energy and space, and the weight vector, W is arbitrary but

does affect the convergence of the problem. A good choice

for the weight vector has been found to be the flux (or

fission source) from the last iteration.

At each iteration, the matrix L must be inverted to

obtain the new solution vector, _m.t,. For problems with

greater than two groups, this inversion is best achieved

using iterative methods. In this implementation, an

iterative method is always used, and thus a 2 level iteration

scheme is used to solve the CMFD equations. The power

iteration scheme is commonly referred to as the outer

iteration, and the iteration scheme to invert L is referred

to as inner or flux iterations.

5.2.2 Converuence of t_e Iterative _et_ods

The iteration matrix associated with eqn. (5.1) is found

by multiplying both sides of (5.1) by the inverse of the loss

matrix:
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@(_+_)= __IR,I)(_) (5.4)

where:

R mL"M (5.5)

Recall that the mesh-centered finite difference

equations can be obtained from the Coarse Mesh Finite

Difference equations by setting all of the discontinuity

factors to unity. The L matrix for the mesh-centered

equations can be shown to be real, irreducible, and

diagonally dominant [N-l]. In addition, the diagonal

elements of L are positive and the off-diagonal elements are

non-positive (a matrix with these properties is an "S-

matrix"). The inverse therefore exists and has all positive

elements [N-l]. The fission matrix, M, is a non-symmetric,

non-negative matrix. The resulting Rmatrix, therefore, is a

non-s_etric, non-negative matrix. The convergence of the

outer iterations (to the largest eigenvalue and its

associated, all positive eigenvector) using the power method

is guaranteed when the Rmatrix is irreducible and non-

negative [N-l].

A method for accelerating the convergence rate of the

outer iterations is Wielandt's Method IN-l]. In this method,

the power iteration method is re-£ormulated by subtracting

the quantity:

from both sides of eqn. (5.2) and defining:

i ] I
-- m------ (5.7i
A A A'

where _' is known as the eigenvalue shift. This gives:
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1 ) 1 MCD(_,L-_-TM 'Z'(_+_)= _ (5.8)

The new eigenvalue problem is solved with:

<w,,,,,°,>

and the eigenvalue we seek can be found by:

A,
lC_'x'= (5.10)

The benefit of Wielandt's method can be seen by

comparing the dominance ratio of the shifted problem (i.e.

eqn. (5.8)) to the unshifted problem. The dominance ratio is

a measure of the asymptotic convergence rate of the outer

iterations. The dominance ratio for the power method is

given by the ratio of the second largest eigenvalue to the

largest eigenvalue :

dm IAt] (5.11)

The closer the dominance ratio is to unity, the slower

the convergence rate. The dominance ratio for the shifted

problem is:

which will be less than the dominance ratio of the unshifted

problem if I' is larger than A.

The nature of the acceleration method, as proposed by

eqn. (5.8), is such that all the energy groups must be solved

simultaneously. Sutton [S-l] has demonstrated that the
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I
! Wielandt acceleration procedure can be adapted to group-wise

solution methods by introducing a diagonal NxN matrix of

_spectrum ratios." These spectrum ratios are the group g' to

group g fluxes. Formally, we define an NxN spectrum ratio

matrix, A, as:

Aw_[_gl]-'# ,, (5.13)

where _8 is an N-length column vector of the group g

fluxes. The matrix equation used for the solution of the

group g equations becomes:

Lg-_, Mu.Agt Og = A--__M,r#_' (5.14)
g'=l a • g'=l

where it can be seen that the spectrum ratios from the last

iteration are used to compute the fluxes at the current

iteration. Eqns. (5.9) and (5.10) are used to compute the

eigenvalue, as before.

The use of Wielandt's method accelerates the convergence

of the outer iterations, but decreases the convergence rate

of the inner iterations. This is because the matrix to be

inverted at each outer iteration (left side of eqn, (5.14))

is nearly singular if A' is close to the current value of

(the choice of _' will be discussed shortly). The best

overall convergence is achieved if an appropriate value of

_' is chosen such that a balance is obtained between inner

and outer convergence rates [S-2].

The inner iterations, used to invert the matrix on the

left side of eqn. (5.14), can be solved using common methods

for linear systems. The Jacobi method, Gauss-Seidel method,

or Successive Over Relaxation (SOR) method (and others) [H-2]

could be used and each are guaranteed to converge for

irreducibly diagonally dominant matrices. The method which

will be used here is the Chebyshev Cyclic Semi-Iterative
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(CCSI) method. CCSI is similar to SOR except that instead of

a single, constant relaxation parameter, the relaxation

parameter is modified from iteration to iteration in order to

achieve a better overall convergence rate. Formally, the

CCSI method is obtained by partitioning the Jacobi iteration

matrix in such a way that the spatial mesh is ordered in a

checkerboard of "red" nodes and "black" nodes [H-2,S-2,G-2].

Chebyshev acceleration is then applied to this partitioned

matrix. The checkerboard pattern for a triangular mesh is

shown in Figure 5.1.

Red

Black

R

R R R

R R

Figure 5.1. Checkerboard Pattern for Inner Iteration
Solutions Using CCSI.

It can be seen in Fig. 5.1 that each red node is

entirely surrounded by black nodes, and vice versa. The

iterative procedure calls for the solution of the red nodes

on the first iteration. The next iteration solves for the

black nodes using the solution of the reds, and so on. The

relaxation parameters for the first iterations are given by:

1
_(') = l m(_)
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and for subsequent iterations:

l m(m+i) __ l
f'l(m+l) -" --- 1/ ,.,2 --(m)' ""brae* = I'/,-,2 ,.,(re+z) (5.16 )
•"ra 1- p'4V.Jo_ob_Wbt._,. 1--/4_,,._om'.',d

The ,O./_ob_ which appears in eqns. (5.15) and (5.16) is

the spectral radius of the Jacobi iteration matrix. This

spectral radius can be estimated at the beginning of the

calculation by performing Jacobi inner iterations and

comput ing :

=,,I!*('*',- _

where it can be seen that the I-norm has been used to compute

the Jacobi spectral radius. In practice, it is more

convenient to perform Gauss-Seidel iterations in order to

compute the spectral radius. The Gauss-Seidel spectral

radius is equal to the square of the Jacobi spectral radius.

During the solution, the outer iterations are performed

until the specified convergence criteria have been met. The

criteria used here are the eigenvalue convergence and the

convergence of power in the fueled nodes. That is:

-crit

,ax[ (_+i,_ p<,,
-" -- pwr

--i

¢r_t

where e,_ is the user-specified eigenvalue convergence and

cr_ is the user-specified convergence of the power in fueled

p(m+_) is the current iteration's estimate of theregions. -i

power in node i and pIml is the power in node i from the' i

last outer iteration.
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At each outer iteration, the inner iterations must be

performed until a specified criterion is met for the solution

of the flux. Smith [S-2] has shown that the overall

convergence of the problem is optimized if a pre-determined

number of inners are performed per outer, rather than

converging the inner iterations at every outer. The number

of inners per outer is computed at the same time as the

spectral radius, and for a user-specified reduction in the

, E crfferror __,_, this quantity is estimated by [G-l] :

ng = ..... - (5.18)
l°g((_b,,,), -1)

where _s, is the asymptotic relaxation factor for CCSI,

which is equal to the "best" relaxation factor for SOR.
_crit

Appropriate values for the error reduction, _i,_ , range

from 0.i to 0.4 [S-2].

5.2.3 Numerical Solution of the Ouadratic Equations

The quadratic expressions for the surface-averaged

current [eqns. (3.50), (3.59), etc.] were derived in Chapter

3 to replace the finite difference expressions for the

surface-averaged currents [eqn. (3.16)]. As was mentioned in

Section 3.5, the quadratic expressions for the currents could

be inserted into the nodal balance equation [eqn. (3.4)], and

the result would replace the discretized Coarse Mesh Finite

Difference equations [eqn. (3.17)]. The consequences of

doing so, however, are substantial. First, the computer

memory storage requirements rise dramatically, due to the

extended coupling of the quadratic equations, and the need to

store the coupling coefficients. Second, the beneficial

convergence properties of the CMFD equations, which were

outlined in the last sub-section could be lost. A recent

implementation of this approach for a quadratic method in

hexagonal geometry showed that this solution method can be

quite inefficient [S-3] .
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An improved way proposed by Smith [S-4], and

successfully implemented in several computer codes [Z-I,B-

1,G-I] is the non-linear iteration method. It proposes that

the structure of the CMFD equations be preserved, and the

discontinuity factor ratios, which appear in (3.17), be used

to correct the CMFD equations to match the quadratic

solution. In this way, the convergence properties and the

moderate storage requirements of the CMFD equations can be

maintained. This approach requires that the discontinuity

factor ratios be computed during the solution, and updated as

the solution progresses. It is important to point out that

the non-linear iteration method contains two sets of

discontinuity factor ratios. The first set is contained in

the CMFD equations. This set is computed during the solution

by the quadratic currents to force the CMFD equations to

match the quadratic solution. The second set is contained in

the quadratic current equations themselves (see (3.50)).

Recall that these were introduced in Section 3.5.4 to correct

for the use of Fick's law, homogenization, and somewhat for

the spatial approximation. These discontinuity factor ratios

are supplied by the user and obtained from an external,

detailed calculation. In this work, we assume that these

discontinuity factor ratios are available, and only concern

ourselves with the computation of the discontinuity factor

ratios which correct the CMFD equations to match the

quadratic solution. From this point on, the discontinuity

factor ratios which appear in the quadratic current equations

and correct for heterogeneity etc. shall be called

heterogeneity factors. The discontinuity factor ratios which

force the CMFD equations to match the quadratic solution will

retain the name discontinuity factor ratios.

The solution begins with the discontinuity factor ratios

all set to unity. The CMFD equations are solved to obtain an

estimate of the node-averaged fluxes. Equation (3.50) , the

quadratic expression for the surface-averaged currents, is
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then solved using the most recent node-averaged fluxes to

obtain quadratic-based currents. Using these surface-

averaged currents, and the most recent node-averaged fluxes,

the discontinuity factor ratios may be obtained. For the 2-

D, internal node shown in Fig. 3.8, the expression is:

_F_(_,/_ x__ 7u'J_ -= l) /

..............- -- (5.19)

(_-l,j)
,p',? =

-,,-,,j, < Z',k','J(

Equation (5.19) was obtained by solving both eqn. (3.12)

and (3.13) for the discontinuity factors, and taking the

ratio of the results. If the node surface is on the boundary

of the reactor, eqn. (5.19) is replaced by:

2OCU,J_......8,P L = , , g

-/ l-'g,p t

Equations (3.12) and (3.19) were used to obtain (5.20).

Note that eqn. (3.50), and the corresponding equations for

boundary condition cases contain surface-averaged currents on

the right hand side. Previous studies [G-I,B-I] have

revealed that attempting to solve the quadratic current

equations simultaneously does not converge. An acceptable

method for solving the quadratic equations is to utilize

surface-averaged currents which are consistent with the nodal

fluxes and discontinuity factors from the last outer

iteration for the right hand side of (3.50). In other words,

after an outer iteration is completed, the nodal fluxes and

the most recent set of discontinuity factor ratios are used

in eqn. (3.16) to obtain a complete set of surface-averaged

currents. These surface-averaged currents are then used on

the right hand side of the quadratic current equations.
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These quadratic currents are then used in (5.19) and (5.20)

to obtain a new set of discontinuity factor ratios.

Experience has shown that for most problems, the

discontinuity factor ratios do not need to be updated at

every outer iteration. Typically, between 2 to 5 outer

iterations per update works well.

Figure 5.2 shows the non-linear iteration procedure.

11[1111 II!1 I1 I .... I "- Ill[ _

B.eginCalculationwith Nodal Fluxes,

E,genvaiue,and d.f.r, all set to Unity

SolveCMFD Equations-
IOuterIteration
ComputeNodalFluxes
ComputeEigenvalue

ProblemConverged?

no

no
TimetoU _dated.f.r.?

-_ II -- l ............

yes

ComputeFiniteDifference
_.- CurrentsConsistentwiththeII IIII j

Y MostRecentNodalFluxes
andd.f.r.

[ Id.f.r. = discontinuity factorratios Compute Quadratic Currents

I....Corn,.,.Ncw'di:rl-

Figure 5.2. The Non-Linear Iteration Scheme.

Sutton IS-I] has demonstrated that the Wielandt outer

iteration method works with the non-linear iteration

procedure, but because of the constantly-changing
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discontinuity factor ratios, the shift factor, _' , must be

updated during the solution. The overall static solution

procedure proposed by Sutton [S-l] and successfully

implemented in several computer codes [Z-I,G-I], will be used

here. The procedure starts with the nodal fluxes and

eigenvalue set to unity. An initial, non-accelerated (power)

outer iteration is performed to obtain a non-flat nodal flux

vector. The Gauss-Seidel method is used on inner iterations

until the spectral radii are computed (see below). The

second outer iteration is performed using an estimate of the

shift which is significantly larger than the expected

eigenvalue of the problem. The shift must be larger than the

expected eigenvalue to ensure that the problem converges to

the fundamental mode. In this application, a shift of

A'=|.5 is used during this stage. A few outer iterations

are performed using this large shift until a convergence of

10 -2 is obtained in the eigenvalue. The next outer iteration

is devoted to computing the spectral radii. Inner iterations

are performed until the spectral radius for each group

converges to the user-specified criterion Rc"'_3r :

_( m'+i)

IPG-s _(m') Ecrit
I

Note the m' refers to the inner iteration number, and

the subscript "G-S" refers to Gauss-Seidel. After the

spectral radii are computed, the (fixed) number of inners per

outer (which will be used for the duration of the

calculation) are computed using eqn. (5.18). The method

allows a different number of inners per outer for each group.

Inner iterations from this point on are computed using CCSI.

On the next and subsequent outer iterations, the shift factor

is computed using the current estimate of the eigenvalue plus

a small constant:

l'=I +81

bA= constant
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The value of the small constant does affect the

convergence rate of the outer iterations, and several studies

have been performed to determine the optimum choice [S-I,S-

2,Z-I,G-I]. Smith [S-2] reports an optimum choice of 0.04 or

0.05 for light water systems.

5.2.4 A d_oint Problems

The mathematical adjoint of a specified problem may be

computed using the above methods, with the following

adjustments:

, The scattering matrix is transposed in energy.

• The coupling matrix is transposed in space and

energy.

• The v_ cross sections are interchanged with the

_# cross sections. Both are then transposed in

energy.

e genvalue• The initial guess for the i and nodal

fluxes is the solution from the forward

calculation.

, The discontinuity factor ratios are held constant

and equal to the converged values from the forward

calculation.

• The CCSI inner iteration acceleration can be used

and Wielandt outer iteration acceleration can be

used. The eigenvalue shift, however, must be

larger than typical shift values used in forward

problems. Shift values of 0.5 to 1.0 appear to

work well for the problems tested.

• The group structure is flipped, the first group

becomes g=G and the last group becomes g=l. This

is necessary because the dominant scattering
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direction has changed from downscatter to

upscatter.

. The adjoint flux is normalized.

The solution of the adjoint problem will be important

for transient analyses.

5.2.5 Thermal Hydraulic _

The final major component of the solution for static

problems is the adjustment of cross sections to account for

temperature and density. In this work , we assume that cross

section sets at different temperatures are available, and

that the reference temperatures bracket the temperatures

computed during the solution. During the solution process,

the most recent nodal fluxes are used in a thermal hydraulic

model to compute fuel-averaged temperatures, coolant-averaged

temperatures and coolant-averaged densities for each node in

the reactor. These temperatures and densities are then used

to interpolate in the reference tables of cross sections to

obtain cross sections which reflect the temperature and

density profiles in the reactor. The thermal hydraulic

feedback, therefore, consists of two parts: the estimation of

the temperatures and densities, and the interpolation of the

cross sections. Due to the general nature of this work, a

very simple thermal hydraulic model was incorporated. The

cross section interpolation procedure which was used assumed

that the cross sections were quadratic functions of fuel and

coolant temperature. If this method is to be applied to a

specific reactor, more sophisticated models may be desired.

The computer code developed as a part of this work has been

set up in such a way that different models may be used in

place of those currently implemented.

The WIGL thermal hydraulic model [V-l] was used for the

temperature calculations because of its use in many other

studies [S-2,G-I]. It is a lumped heat capacity model, and
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is described in Appendix B. The WIGL model provides node-

averaged fuel and coolant temperatures, and can be used for

steady state calculations as well as transient thermal

feedback calculations,

The cross section interpolation procedure is similar to

the one implemented by Byers [B-l], It assumes that the

cross sections are a quadratic function of fuel and coolant

temperature, but not local coolant density. Figure 5.3 shows

the relationship between the cross sections at reference

temperatures and the cross sections at four other points.

The interpolation is two dimensional. As can be seen in the

figure, left of center is a set of cross section at reference

fuel temperature and low coolant temperature. Right of

center is a set at reference fuel temperature and high

coolant temperature, Above and below center are the high and

low fuel temperatures at reference coolant temperature,

respectively.
mr ....................

CronSec_onSet4

HIGtiF_I _m_ratu_
Re_renceCoolant_mperot_e

__7- __ - .____.- _ III II1|1I [_ [1/ J "-- _. - _ - 7 7| LI_ ._ IIII1__ -= _

CrostSectionSet3 I I Croll SectionSet| / CroMSectionSet2

/

/

ReferenceFuelTemperature l_ ReferenceFuelTempermture_ Refe_nceFuelTemperature

LOWCoolzntTemperature_ I Re,erenceCool_tTemper.t_eI FIIGHCoolzntTemper,ture

I Croz=SectionSet$

LOWFuelTeml_ratu_

ReferenceCoolantTempereture
L__ L I

Figure 5,3. The Cross Section Interpolation Model.

The quadratic interpolation is performed first in the

coolant temperature direction and then in the fuel

temperature direction (the order is arbitrary). The results

from the two independent interpolations are combined to
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obtain a new cross section. Using the symbol _ to

represent a cross section, this co_ination is:

t a _01 "

The next section will discuss solution methods for

transient problems.

$.$ Jolution of the Tzanlien_ |_a_ions

The transient nodal diffusion equations, described by

eqn. (4.7) and eqn. (4.16), form a set of first order

differential equations in time. Connon solution methods for

first order differential equations cannot be used for this

system, however, due to the characteristics of the constants

which appear in the equations. It turns out that the time

constants associated with these equations have widely

differing values because of the fast response of the prompt

neutrons and relatively slow response of delayed neutron

precursors to changes in the reactor. Equations of this type

are "stiff", and for unconditional stability, an implicit

method is required. It turns out that tl%e fully imp1_icit

form of eqn. (4.7) is the best choice, which means that we

shall use 8=| for all applications of (4.7).

5.3.1 The Improved 0uasi,Static Method

A very common approach to solving the transient

equations is to factor the time dependent neutron flux into a

shape function and an amplitude function. That is:

O(t) = S(t)T(t) (5.22)

where $(t) is a vector containing the shape function and the

scalar T(t) is _he amplitude. A definition of the amplitude

is given by [H-l]:

T(t) - wTv"_)(t) (5.23)
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where the vector w has been introduced as a weight function.

Using eqns. (5.22) and (5.23), a normalization requirement

for the shape function can be obtained. Substituting eqn.
t

(5.22) into (5.23) for the flux vector on the right hand side

gives:

T(,) = wTV "'{S(t)T(t)}
(5.24)

.'. wW"S(t)- 1

Many types of solution methods have been developed using

this flux factorization technique. Its success derives from

the fact that f __many transient problems, the flux shape,

after a quick i: _cial adjustment to composition changes,

changes much more slowly than the amplitude. The shape

function and the amplitude function can be computed

separately, and the nodal flux solution can be constructed at

any time by using (5.22). An equation for the amplitude

function can be derived in a formally exact way by

multiplying eqn. (4.7) and (4.16) by an arbitrary weight

function, substituting (5.22), using (5.23) and (5.24), and

defining the reactivity, the effective delayed fraction, the

prompt neutron lifetime, and the effective delayed neutron

precursor concentration, respectively [H-l]:

wT[M(t) - L(tl]S(t)

....w'[M(,,lS(')
[

r..v,,c
wr[M(t)]S(t) _pre,:,,I

(5.25)

wTv-ts(t)

A(,).

WTClpt_(t)

c£(t),w'V"S(,i
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The result is the point kinetics equations:

T(t) P(t)-_(t)T(t)+ C_ 26= _._A_,,__,_(t) (5. )
A(t) _,,c.,

dc;,,_c(t ) _,_'_¢(t)T(t) _ (y., (_-- = --_@r.c_er.c,t, (5.27)
dt A(t)

It is important to point out that the point kinetics

parameters, defined in (5.25), were derived in a formally

exact way [H-l], which means that if the correct shape

function is known, the correct point kinetics parameters are

known and the correct amplitude can be computed using (5.26)

and (5.27).

The methodology for obtaining the shape function is the

distinguishing feature of the many flux factorization

approaches. In traditional point kinetics, the shape

function is obtained from a static calculation and held

constant throughout the transient. The attraction of point

kinetics is that once the point kinetics parameters have been

computed, the solution of (5.26) and (5.27) can be very fast.

The result is a solution for the amplitude as a function of

time. However, the use of the static shape neglects

distortions caused by the direct perturbations to the system,

as well as any distortions caused by feedback during the

transient. In general, point kinetics is only valid for

transients in which the shape does not change significantly

during the transient. The adiabatic method improves upon the

point kinetics approach by estimating the shape during the

transient using several static calculations [O-i]. This has

been done using pre-computed shape functions, which account

for distortions due to composition changes but do not reflect

feedback effects. The adiabatic method has also been

implemented using static calculations during the transient,

which do account for feedback effects. The adiabatic methods

suffer from the fact that static calculations assume that the
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delayed neutron precursors are in equilibrium, which they of

course are not. In addition, the time derivative is

neglected and the static calculations are expensive [O-i].

The quasi-static method estimates the shape function by

substituting (5.22) into the transient equation and

neglecting the time derivative. The resulting shape equation

includes the amplitude function, which comes from the

solution of the point kinetics equations [(5.26) and (5.27)]

over the last time interval. The improved quasi-static

method does not neglect the time derivative, but rather

approximates it using a first order backward difference [O-i]

(recall that eqn. (4.7) used this approximation for the

derivative).

Kao [K-I] proposed that the improved quasi-static method

be implemented using the transient nodal equations, (4.7) and

(4.16), for the shape function. The nodal flux solution from

these equations could be used to determine the shape function

by applying eqn. (5.22) and imposing the normalization

requirement [eqn. (5.24)]. In this way, the amplitude does

not appear in the shape function equation.

The general approach which will be used here is to solve

eqns. (4.7) and (4.16) using a large time step. The solution

of these equations yields the nodal fluxes and precursor

densities at each time step. The amplitude associated with

the nodal fluxes can be obtained using eqn. (5.23) (the

choice of weight function will be discussed shortly). The

shape associated with the nodal fluxes can be obtained using

eqn. (5.22). At the end of each large "shape step", the

shape function is expected to be accurate while the amplitude

is expected to be poor. The amplitude is therefore re-

computed over the time step using point kinetics. The point

kinetics parameters (i.e. reactivity, etc.) are obtained

using the definitions in (5.25) by interpolating the shape

function between the beginning of step and end of step.

Because the shape is expected to be accurate, and the point
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kinetics parameters were derived using a formally exact

procedure, the amplitude estimate from point kinetics is

expected to be excellent. Figure 5.4 shows the time stepping

algorithm.

SHAPE UPDATES:
Time Dependent CMFDEquationsSolved with LargeTime Steps

I ShapeComputed at
Step andEnd of

..... Time Step

% "_%%% %

•".... Thermal HydraulicFeedback Steps
% ",,

"-.. Between Shape Updates
% %%

% %1,_%

% "%.,

' ""," "","., Cross Sections atTernt_rature
e ntng and End of Step,I

'_ ,,, , , """,.. . areUsed to Compute Reactivity
*b

Calculation Between Thermal "-,. • Compute New Amplitude
Hydraulic FeedbackSteps ,,, ,, for the Endof Step

!

Figure 5.4. The Time Stepping Scheme for Transient
Problems.

In Fig. 5.4, it can be seen that there are three levels

of time steps. The top level is the shape update level. The

transient nodal equations are solved using large time steps.

Each time step is then re-computed using point kinetics. The

second level shows that thermal feedback is modeled during

the point kinetics calculation. At this level, the point

kinetics parameters are computed at each feedback step.

Gehin [G-l] demonstrated that if thermal feedback is not

allowed during the point kinetics calculation, the amplitude

can be severely over or under estimated. This is because the

point kinetics parameters are computed using the cross

sections, and if the cross sections reflect "old"
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temperatures, the combination of "new" shape and "old" cross

sections can give poor estimations of the reactivity.

The third level of computation is the point kinetics

calculation. The point kinetics parameters used for the

solution of eqns. (5.26) and (5.27) between thermal feedback

steps are found by interpolating between the parameters at

the beginning and the end of the feedback step.

At the end of each (shape) time step, the nodal fluxes
!

are scaled by the ratio of the point kinetics-computed

amplitude to the shape-computed amplitude.

5.3.2 Solution of The Point Kinetics EauatiQns

The discretization of the point kinetics equations is

completely analogous to the discretization of the transient

nodal equations. The theta difference approximation is used

for the prompt equation, and a direct integration procedure

is used for the delayed equations. The prompt equation

becomes:

-- { " rfllf_c''__cqrec (t.+l ) }m[ Air..,)
(5.28)

+(1-0)
A(t.)

The A_ i in (5.28) refers to the time step size used

for the point kinetics solution, which will be different from

the time step size in eqn. (4.7).

The direct integration of the precursor equations

follows directly from Section 4.4.2. The result is:
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= g,(iprec, (t. )
,#

(t.)
+ g=(iprec, At.) l_iprec-_-_.. (5.29)

fl;{,c (t.+,)T,.+,+ g3 (iprec, at,) -_- -- ...... )
X_recA(t,.l)

where the functions gl, g2, and g3 are defined by eqn. (4.15).

The best choice for the weight function, which appears

in eqn. (5.23) and in the definitions of (5.25), is the

adjoint flux from the static problem. The adjoint flux can

be shown to be the best choice for minimizing errors in the

point kinetics parameters when the shape function is not

known exactly [H-l]. The use of the adjoint as a weight

function, however, is less important for the improved quasi-

static method than in the traditional point kinetics method

because the shape function is updated frequently during the

transient. Nevertheless, the adjoint will be used as the

weight function for all transient computations.

5.3.3 Numerical Solution of the TransieDt Pro_bl@m

An equation for the nodal flux at each time step can be

obtained by substituting the equation for the nodal

precursors, eqn. (4.16), into eqn. (4.7) . The result is:
?

" p -- 2.,t g3 (iprec, Lit..""lp.,¢ c_(n+l)
_,,',c-I

(5.30)

____. (n) (n) Iprec _'
._+ _ga(ipr, c,m,)M,pr,, t_ +_ _.._g,(iprec, m,tprec..l [ tprec=i

The matrix on the left hand side of eqn. (5.30) must be

inverted at each time step in order to solve for the nodal

fluxes. This inversion is similar to the inversion of the

loss matrix for the static problem. Motivated by the same
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arguments, the inversion will be accomplished using the

Chebyshev Cyclic Semi-Iterative (CCSI) method.

The transient quadratic equations will be solved using

the non-linear iteration scheme. Thus, the procedure at each

time step is to perform inner and outer iterations. The outer

iterations in the transient case are not used to compute an

eigenvalue, as was the case in the static problem, but they

are used to compute the discontinuity factor ratios. At each

time step, the discontinuity factor ratios from the last time

step are used in the transient CMFD equations [eqn.(5.30)].

The transient CMFD equations are solved by inner iterations,

using the CCSI acceleration procedure. Unlike the static

problem, however, a fixed number of inners is not used.

Rather, the inners are converged to a user-specified

criterion at each time step. The quadratic currents and the

discontinuity factor ratios are re-computed using these nodal

fluxes, and the outer iterations are continued until the

nodal fluxes between iterations have converged to a user-

specified criterion.

The terms on the right hand side of eqn. (5.30) are all

obtained using last time step values. The right hand side is

therefore treated as a source. An adaptive time stepping

scheme was not used for the solution of eqn. (5.30).

Instead, the shape at each time step is computed over fixed,

user-defined 'time domains.' A time domain is a time span

during which a constant time step size is used to compute the

shape function. Time domains can be defined in such a way

that certain portions of a transient are modeled with

relatively small time steps, and others are modeled with

relatively coarse time steps. The spectral radii of the

inner iteration matrix, which is required by CCSI, are

computed at the beginning of each time domain on the first

time step of the domain. The thermal hydraulic feedback

steps, the second level in the improved quasi-static scheme,

is also user-defined and given as a fixed number of feedback
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steps per shape update. The number of feedback steps per

shape update can be different for each time domain.

The point kinetics calculation for the amplitude, which

is performed between thermal feedback steps, is solved using

adaptive time stepping. The equation for the amplitude can be

obtained by substituting eqn. (5.29) into eqn. (5.28). Before

this is done, however, eqn. (5.28) is put into fully implicit

form by setting 0=| . The fully implicit form is used for

the same reasons as before. The result is:

i Lg3(iprec, Atn )iO_re<c(t.+l)
A(t.+,) ,p.o.,

}-- f_ 82 (ipr"¢, At_n* )jOi;r'_c(t.) Y 'm ( 5.31 )
A(t.)

gt (iprec,mP* '#) _ iprecCiprec( t. )
_.c-I

The pk superscript on the time step size in (5.31) is
I

used to distinguish between the time step size in the point

kinetics calculation and the time step size used in the shape

calculation. The right hand side of (5.31) is computed using

the last (point kinetics) time step values and is treated as

a source. The adaptive time stepping rcdtine used for the

point kinetics calculations is "step doubling" [P-2,G-I]. In

step doubling, the amplitude for the end of the current time

step is computed twice. The first is computed using one

step, and the second is computed using two steps of half the

size. The truncation error is then estimated using these two

estimations of the amplitude. For 0=| , this error is

given by :

"I_do"+1) _. T(n.l)
uble -- sintfle

Sp, : _,+I) (5.32)
double
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The current time step is then either rejected or
_c_t

accepted based upon a user-defined acceptable error, _pk •

If the step is rejected, the time step is redone with a

smaller step size. If the step is accepted, the next step

size is estimated using [G-l] :

= O.9At k
I 15.3 1

If the error is much smaller than the acceptable error,

a step of twice the size is used for the next step.

5.4 Summary

In this chapter, the solution methods for static and

transient problems were described. For static problems, the

non-linear iteration procedure was introduced, describing an

efficient method for solving the quadratic equations. A two-

level iteration scheme is used, with acceleration methods

used on both levels. The solution of the adjoint problem was

discussed, as well as thermal hydraulic feedback. For

transient problems, the improved quasi-static method was

introduced. This three-level time _tepping method allows

relatively large shape steps to be taken using the transient

nodal equations, with very fine point kinetics calculations

between each shape step to correct the amplitude.

These static and transient solution methods have been

implemented for testing into a computer code with the name

QUARTZ (QUAdratic Reactor code in Triangular-Z geometry).

QUARTZ has been written in FORTRAN 77 for general (l-D, 2-D

or 3-D) problems in any number of groups, with upscatter.

The computer code has been tested on different systems

successfully (IBM-PC Compatibles, DEC VS3100, IBM RS/6000,

CRAY XMP 416), and should be portable to other systems with

minor changes. Details of the structure and use of QUARTZ
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can be found in the User's Manual, which is distributed with

the soucce code.

The next chapter will present the results of selected

static and transient problems.
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Chapter 6

Testing the Static and Transient Methods

6.1 Introduction

In this chapter, the static and transient methods are

tested. The static methods are tested using simple benchmark

problems, and the nature of the quadratic equations is

explored. The transient methods are tested using two

problems. An analytic solution was available for the first,

which consisted of a simple zero current cell. The second

problem consisted of a large heterogeneous heavy water

reactor. QUARTZ results were compared to published results

for this problem.

6.2 Tostln_ the St_ti_ Method

6.2.1 A SimD!e _alvtic TeS_

An initial test of the static methods in QUARTZ was made

'nus_ g a simple test problem for which an analytic solution

was known. The first test consisted of an infinite medium

calculation with the cross sections given in Appendix C,

Section 1. The second test was similar to the first except

that an infinite slab of finite thickness was modeled.

The analytic solution for the eigenvalue of an infinite,

two group reactor is given by [H-I]:

Using this equation with the cross sections given in

Appendix C, the critical eigenvalue is 1.35439. The computed

value using QUARTZ was also 1.35439.
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The analytic solution for the eigenvalue for a two group

infinite slab, where the leakage is modeled using geometric

buckling is given by:

=Z,+D,B2

where B2 is the geometric buckling. Neglecting any

extrapolation length, the buckling for this problem is given

in terms of the thickness of the slab, H:

B2= (cm"2)

Using the cross sections given in Appendix C, and

assuming a slab thickness of 250 cm, the eigenvalue is

1.20444. The computed value using QUARTZ was 1.20444.

The next sub-sect{.on compares QUARTZ solutions to a 2-D,

finite difference nodal code in triangular geometry.

6.2.2 Cemparisons to MITH_X

In this sub-section, two problems are used to compare

QUARTZ to a 2-D, finite difference nodal code with the name

MITHEX [G-2], which has the capability to solve problems in

triangular geometry. In these two problems, QUARTZ was run

in finite difference mode, with the quadratic updating of the

discontinuity factor ratios turned off. All 'heterogeneity'

factors were unity. The first problem was a simple two-

group, heterogeneous, 24 node cell model with a zero current

boundary condition. The details of the cell, including cross

sections are given in Appendix C, Section 2. The problem was

solved by MITHEX and QUARTZ using an eigenvalue and flux

convergence criterion of 10 -6 . The results are presented in

Table 6.1.
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Table 6. i

Results from the MITHEX Infinite Cell Comparison

...............Mi E-×'..... "'........
i_envalue ,.. - .._...... ..,.!,_14_-6_....................1.6143_ L

Node I" Group i Flux 6.268E+00 6.2678E.00

......___-...... GrouP2 ......F19_ ......_.,.6!.9E+0_-__ ...!,6!89.E..0!_ ........
Node 6 Group I Flux 6.268E+00 6.2678E+00

_ .... ,,Group- 2 .....F!,u_ .....,I,j619,_E*-0_........_ - i-,,6189_+0_- --:-

No .7 Groupi Flux 7.29SE+00 I:2955E.°° 1.........._......Group_2 ....F!_ x_ ,, 1,473E,01 .....................4732E_.01_ _
Node 8 Group 1 Flu_ 1.044E+01 1.0435E.O1 l

........ ,,,G,rOp 2 .....FIu_ 1,015E+01 1.0151E+01 I
i _ _ ............ liI_IIllt....... I -- II .-- III - J --- _ ............

• The node numbers are shown on the figure in Appendix C, Section 2, The model has 60
degree rotational syTn_etry, so nodes 1,6,7, and 8 completely describe the results,

In Table 6.1, it can be seen that QUARTZ matches the

MITHEX-calculated eigenvalue exactly. The table also shows

that the flux distribution matches. This is to be expected,

because both QUARTZ and MITHEX solve the same finite

difference equations.

The second comparison problem was a two-group, 96 node,

core-sized heterogeneous problem. Four different material

types were used. The overall core geometry was a hexagon,

with the outer nodes being reflector material. Appendix C,

' •Section 3 glv s the details of the model. The boundary

condition used for this model was zero net returning current

(referred to as "albedo" here). The MITHEX eigenvalue was

computed to be 1.07740. The QUARTZ eigenvalue was also

computed to be 1.07740. The fluxes and relative power

densities for each node were also compared. The MITHEX and

QUARTZ solutions for the group and node-averaged fluxes

matched, as was the case for the cell problem. It turns out

that MITHEX, when computing relative power densities,

averages over all nodes in the reactor, including non-fueled

regions. QUARTZ, on the other hand, averages over fueled

zones only. This difference was accounted for by multiplying
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the MITHEX-computed relative power densities by the ratio of

fueled zones to non-fueled zones. When this adjustment was

made, the relative power densities matched. This problem was

not encountered in the cell problem because all regions were

fueled in that model.

These two MITHEX comparison problems demonstrate that

QUARTZ is capable of properly solving the mesh-centered

finite difference equations for triangular geometry. The

quadratic methods incorporated into QUARTZ may now be tested

and compared with the mesh-centered finite difference method.

The next sub-section shows that the quadratic equations

reduce to the Coarse Mesh Finite Difference (CMFD) equations

in the limit of small mesh size.

6.2.3 _educinu the Quadra_icMethod tQ the CMFD Method in
the Limit of S_ail M@sh Size

It can be shown algebraically [H-3] that the equations

for the quadratic currents (eqns. 3.50,3.74,e_c.) can be cast

into a form of first order terms in Xc (similar to the finite

difference expression for the current) and second order terms

in Xc. It is expected that, in the limit of very small mesh

spacing, the quadratic te_ms will disappear more quickly than

the first order terms. Thus, the quadratic method should

reduce to the Coarse Mesh Finite Difference (CMFD) method

i when very small mesh spacing is used. To test that this is

the case, a simple test problem was used. Appendix C,

Section 4 gives the geometry and cross sections used for the

test problem. The problem consisted of a 6 node hexagon,

with homogeneous material and an albedo (zero net returning

current) boundary condition. This problem was run initially

3'with a node _ize of 5 cm ("size here means the side of the

triangular node). The node size was then reduced, and the

eigenvalue was recorded for the CMFD and Quadratic methods.

Fig. 6.1 shows the relative difference between the quadratic

and finite difference eigenvalues as a function of S, the
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node side. As the node size shrinks (to the left of the

figure), the quadratic terms in the quadratic method

disappear, and the quadratic eigenvalue reduces exactly to

the finite difference eigenvaiue.

i

' eIt should be noted that some of the elg nvalues produced

by this study were very small and non-physical (~ 3.E-6 for S

=I.0E-4 cm). The problems were run in double precision and

the eigenvalues were converged to 10 -12 .

6 Node Hexagon - Homogeneous MateMal
Relative DifferenceBetweenQuadraticand

CMFD £1genvaluesvs.NodeSize
0,10_ -............. ,.......

Figure 6.1. Relative Difference Between the Quadratic
and CMFD Eigenvalues vs. Node Size.

Zt was mentioned in Chapter 5 that the Coarse Mesh

, i 'Finite Difference equations in the 1 mlt of very small mesh

size, are guaranteed to converge to the exact solution.

Because the Quadratic method becomes the CMFD method in the

limit of very small mesh size, it too is guaranteed to

converge to the true solution in the limit.

d
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Another important result of Fig. 6.1 is to add

credibility to the application of continuity of current

through the point of a triangle in Chapter 3. That

approximation was vital to the derivation of the quadratic

equations for both internal nodes and nodes with boundary

conditions. This result shows that if the approximations in

Chapter 3 are poor, problems associated with the

approximations disappear in the limit.

6.2.4 ComDarina the Ouadratic Method to the CMFD Method

The quadratic equations were derived and implemented in

order to improve the spatial approximation. In general, we

expect that for a given node size, the quadratic method will

give a more accurate representation of the node-averaged

fluxes than the finite difference method. If this is the

case, then larger nodes may be used, which will result ini

less computational work and faster run times. The penalty

associated with using the quadratic method is the

computational work required to compute discontinuity factor

ratios during the solution. In general, the quadratic method

will be attractive if the computational cost of solving the

quadratic equations (using the non-linear iteration

procedure) is less than the cost of solving the CMFD

equations with a finer mesh (a mesh size which gives

comparable accuracy).

Three sample problems were used to compare the quadratic

method to the CMFD method. The eigenvalues and relative

power densities were used for comparison. The relative power

densities are defined such that the average power density in

the fueled nodes is unity. The problem descriptions are

given in detail in Appendix C, Section 5. In each of the

cases, a 24 node, 2-D problem was used. The tests consisted

of refining the mesh, which in the case of equilateral

triangles, can only be achieved by subdividing each
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equilateral triangle into four sub-triangles. Figure 6.2

shows one subdivision of a triangular node.

Figure. 6.2. A Single Subdivision of a Triangular
Node.

Each subdivision increases the number of nodes by a

factor of four. Thus, for a model of 24 nodes, one

subdivision gives 96 nodes, two subdivisions gives 384 nodes,

and so on. In each of the comparisons, the eigenvalue and

the relative power densities were compared to a reference,

6144 node (4 subdivisions of 24 nodes), fine mesh solution.

The percent eigenvalue error is computed by:

,_ - x 100

The absolute, maximum error in the relative power

density over all fueled regions is used for comparison and is

computed by:

max ([P_' Pi]) x 100

The absolute, average error in the relative power

density is also presented. This is given by:
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The first problem, which will be referred to as case I,

was a homogeneous, two-group model with a zero net returning

current boundary condition. The quadratic and CMFD methods

were used to solve the case I problem with 0, i, 2, and 3

subdivisions. The eigenvalue error as a function of mesh

size is given in Figure 6.3 (figures and tables are located

at the end of this sub-section). In this case, both the

quadratic and CMFD eigenvalue errors decrease linearly with

respect to the mesh spacing squared. Both the quadratic and

CMFD eigenvalue errors approach zero in the limit of small

mesh size, but for larger mesh sizes the quadratic eigenvalue

error is much larger than the CMFD eigenvalue error. The

results for the eigenvalue error comparison are also given in

Table 6.2. In the table, it can be seen (where it is a bit

difficult to see on the graph) that the error for the

quadratic eigenvalue actually changes sign at the fine mesh

of 64 nodes per assembly (3 subdivisions). To minimize the

possibility that the problem was falsely converged, the

eigenvalue was converged to 10 -12 . In order to minimize

roundoff error, the problems were run in double precision on

a CRAY XMP 416. Several other problems have been run with

different cross sections and numbers of nodes. The cases

with albedo boundary conditions consistently show the

eigenvalue error approaching zero from below and crossing

over (changing sign) at small mesh size. It is difficult to

further reduce the mesh size for these problems because the

number of nodes increase by a factor of four each time. In

addition, the spectral radii become very close to unity for

the very small mesh, and even the accelerated convergence

rates are very slow.

The results of Section 6.2.3 demonstrated that the

quadratic method does reduce to the CMFD method in the limit

of small mesh size, so it appears that there is a region

between ~i cm and ~i0 cm, within which the quadratic method
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displays inconsistent error reduction with decreasing mesh

size.

The maximum error in the relative power density is given

in Figure 6.4. It can be seen in the figure that the spatial
[

discretization error for the CMFD method is on the order of

the mesh size squared, and reduces to zero as the mesh

spacing approaches the fine mesh reference. For the

quadratic method, the maximum error is much lower than the

CMFD error at coarse mesh, but as the mesh size decreases to

two subdivisions (mesh size of -i0 cm), the error increases

slightly and then decreases.

For this case, it may be concluded that, with large mesh

size, the quadratic method gives a much better estimate of

the nodal relative power densities, but a poorer eigenvalue.

At fine mesh, the solution is comparable to the CMFD

solution, but displays inconsistent error reduction with

decreasing mesh size.

The second problem, case II, was identical to the first

except that a zero flux boundary condition was used. Tables

6.4 and 6.5 show the results for the eigenvalue error and

relative power density error, respectively. Figures were not

constructed for these data because the results qualitatively

matched Figs. 6.3 and 6.4. However, in Table 6.4, it can be

seen that at the small mesh sizes, the quadratic eigenvalue

error does not change sign, and decreases consistently, in

Table 6.5, it can be seen that the maximum and average

relative power density error decreases consistently in small

mesh sizes also. The difference between case I and case II

is the boundary condition applied to the outer surface.

Recall that the boundary conditions are specified by two

parameters in eqn. (3.18), which is reproduced here for

convenience:

aci,j) _i,J_ _¢i,j_<i,j)(p) (3 18)
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The albedo boundary condition, used in case I, is

specified by setting _=2.0 and _=|.0. The zero flux

boundary condition is obtained by setting _=0 and

=|.0. Recall also the discussion in Section 3.6.2 about

the difficulties associated with identifying the proper

normal to the reactor surface. It is proposed that the

quadratic method's inconsistent error reduction in the

eigenvalue and relative power for small mesh size is due to

the boundary condition difficulties. The difficulties do not

appear in the zero flux cases because the alpha parameter is

zero, which causes the entire left hand side of eqn. (3.18)

to become zero.

The third problem, case III, was constructed to test the

two methods without the interference of the boundary

condition difficulties. Case III is a 24 node, 2-D,

heterogeneous problem with a zero current boundary condition.

The results from the quadratic and CMFD calculations can be

seen in Figs. 6.5 and 6.6. In these figures, it is apparent

that the quadratic method gives significantly better results

than the CMFD method for both the eigenvalue and the relative

power densities. Tables 6.6 and 6.7 give the numerical

results for this case. In Table 6.7, for example, it can be

seen that in order to achieve a maximum error in the relative

power of less than 1 percent, we can run either a quadratic

calculation with 1 node per assembly (0 subdivisions, or 24

nodes total) or a CMFD calculation with 16 nodes per assembly

(2 subdivisions, or 384 nodes total). The run times for

these two cases, for a VAX 3100 machine (and no numerical

acceleration used) were I.i seconds for the quadratic case

and 27 seconds for the CMFD case.

Based upon the eigenvalue results for the zero current

boundary condition case, it appears that the nodes on the

boundary of the reactor may be causing problems with the

eigenvalue calculations at coarse mesh. The reaction rates

and leakages were examined for a node at the corner of the 24
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node hexagon. This node is shown as node 1 in Fig. 6.7.

Table 6.8 shows the percent errors in the group 2 absorption

rate and the group 2 in-scatter rate for the CMFD and the

quadratic methods with 1 node per assembly (0 subdivisions).

It can be seen in the table that both reaction rates are much

better for the quadratic method. This indicates that the

nodal fluxes are better for the quadratic method, and this is

consistent with the low power density errors in Table 6.5.

Table 6.9 shows the percent errors in the leakages for

the three faces of node I. The leakage for side L is zero

because of symmetry (i.e. the flux in node 1 is.equal to the

flux in node 2). The error in the leakage for side 1 is

lower for the quadratic method, but the error is higher for

side 3. The quadratic calculation of the surface-averaged

current for side 3 is performed using the "case 5" boundary

condition equations (see Chapter 3, Table 3.2, where node 1

is "node (i,j)"). The boundary condition at the "top" point

(the point opposite side 3) is used in that calculation. It

is proposed that the poor estimation of the leakage at side 3

is influenced by the fact that a boundary condition is

imposed at the opposite point.

A study performed by Gehin [G-l], comparing quadratic,

cubic, and quartic polynomial nodal methods in Cartesian

geometry, has shown that the quadratic nodal method is

capable of producing accurate node-averaged fluxes, but can

give poor estimations of the current at surfaces. This is

because the quadratic polynomial has few degrees of freedom.

The quadratic method is even more rigid in triangular

geometry because of the requirement that the polynomial must

match the value (i.e. flux) and derivative (i.e. current) at

the point to the polynomial in the node beyond the point.

This is done without the benefit of discontinuity factors at

the point.
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The error in the leakage for side 3 may be caused by the

inability of the quadratic polynomial to satisfy the boundary

condition at the point and accurately predict the current at

the face. The difficulty in accurately predicting the

leakages at faces along the boundary is likely to be the

reason for the relatively poor eigenvalue estimates using the

quadratic method at coarse mesh. The accuracy of the

quadratic eigenvalue calculation improves with finer mesh

because the boundary nodes become less and less important

with more nodes, and the errors become averaged with the

better interior nodes.

These results indicate that the quadratic method may

perform poorly in cases where the flux changes drastically,

such as reactor boundaries and material interfaces.

Preliminary tests with reflectors have given mixed results.

A reactor model with a light water reflector was briefly

tested. The quadratic method was found to give poor results

for the eigenvalue (similar to previously presented results

for bare cores), and even led to some numerical instability.

It was suspected that the leakage in the nodes on the

fuel/reflector interface and the reactor boundary adversely

affected the eigenvalue calculation. Instabilities have been

experienced in other geometries with light water reflectors

[G-I,B-I], requiring that the discontinuity factor ratios be

set to unity in the reflector. In this brief test, the

discontinuity factor ratios were not unity.

Another preliminary test was run with a heavy water

system with a heavy water reflector. The eigenvalue errors

for the quadratic method were on the same order as the CMFD

method. The reflector may have improved the quadratic method

by decreasing the severity of the flux change at the reactor

boundary. It should be emphasized that these two tests were

very brief, and in order to fully understand the nature of

the quadratic method with material interfaces, further tests

are strongly recommended.
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In conclusion, the quadratic method has been shown in

certain cases to give significant benefit over the CMFD

method. In fact, the quadratic method has produced better

node-averaged fluxes at coarse mesh for every case tested.

However, the quadratic method produces relatively poor

estimates of the leakages in nodes along the boundary of the

reactor and at severe material interfaces. These leakage

errors can produce poor estimates of the eigenvalue at coarse

mesh. It was mentioned that the quadratic polynomial may not

have enough flexibility to accurately model the surface-

averaged current at the points and surfaces of the triangular

nodes. Experience in Cartesian geometry (see Ref. [G-l])

supports this argument. Certainly, more research is needed

in this area.
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CASE I: Homogeneous Reactor
Albedo Boundary Condition
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Figure 6.3. Comparison of the Quadratic and CMFD
Eigenvalue Errors in Case I.

Case I: Homogeneous Reactor
Albedo Boundary Condition
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Figtlre 6.4. Comparison of the Quadratic and CMFD
Absolute Relative Power Errors in Case I.
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CASE I11: Heterogeneous Reactor
Zero Current Boundary Condition
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Figure 6.5. Comparison of the quadratic and CMFD
Eigenvalue Errors in Case III.

CASE III: Heterogeneous Reactor
Zero Current Boundary Condition
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Figure 6.6. Comparison of the Quadratic and CMFD
Absolute Relative Power Errors in Case
III,
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Table 6.2

Eigenvalue Errors for the Homogeneous Model with an Albedo
Boundary Condition

CASE I: EIGENVALUE COMPARISONS
Nodes Per Quadratic Quadratic CMFD .....CMFD'

"Assembly" Eigenvalue Eigenvalue Eigenvalue Eigenvalue
Error(%) , I Error(%)

I ' I'iO1452 "':2,34'%- -I'._314 '_,_2 %_
ill I I I III ............ _] H ....... II I I -

4 1.03381 .0'.,1_% 1,04032 +O,I5 %-
.........t6 ...... _ 1.03842 .0.04 %-.... -I,03920 ' +0,04%

_::- ....-_ .... - - -_1.03928..... +0.05 %- -1.03889 .............._.0i"% -
_FERENCE E OENVALUE:'256Nodes'_er-_s_sembl_=I;03879 . /_i-

Table 6.3

Absolute Maximum and Average Relative Power Errors for the
Homogeneous Model with a Albedo Boundary Condition

CASE I: POWER COMPARISONS
.... Nodes Per ......Quiidratic MAX] QuadraticAVE CMFD MAX CMFD AVE

"Assembly" Relative Power Relative Power Relative Power Relative Power
Error tABS) Error(ABS) Error (ABS) Error _ABS)_

..... '"1 .....i-i1-__ ' " "0'55 %- 7,33 % 4.6_
4 0.53 ......... 0.2d'%...........  .24%.... 036 %

_-_ "t6 - 0.69 % .............. 0:29% .... -0.56 %.... 01'26%-- -
-_ ......... 0.61% ......... 0,25%-- - -0.33% 0.17% -

',REFERENCE.CASEi256N.od.esPerAssembly _ - .... ...._ -- _-

Table 6.4

Eigenvalue Errors for the Homogeneous Model with a Zero Flux
Boundary Condition

CASE If:EIGENVALUE COMPARISONS

....Nbdes-Per QuadratiC ........ Quadi'afic .... CMFD CMFD
"Assembly" Eigenvalue Eigenvalue Eigenvalue Eigenvalue

Error__.(%)..... Error(%) _
...... 1 "" O19-995'3 -2.67 % - 1.032_ +0.50 %
........ 4..... --i.02026 ..... -0,65% ---i.02'879 ........... _.i8 %--

"_ -- i6- .... ].D2536 ...... --0.i5 _ - - - ],02745 - -+0.0-59b--- I
64 " 1.02655 ......... .0.04 % ....i.0270'7 _.01% -

REFER'ENCEE|GENV.AL_UE:.256NodesPcrAs_mbI¢_ 1,02694 ........ _ _ - _-
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Table 6.5

Absolute Maximum and Average Relative Power Errors for the
Homogeneous Model with a Zero Flux Boundary Condition

CASE II: POWER COMPARISONS

.......Nodes Per Quadratic MAX....Quadratic AVE _ CMFD MAX CMI-u AVE
"Assembly" Relative Power Relative Power Relative Power Relative Power

Error(ABS) ErrorABS) Error(ABS) Error(AB_
I 1.29 % "" 0.5' _s._,,_, 5.63 %

''_4 ....... 0.5_/% 0.27 _ ....... 1.37 % 0.63 %--
..........16....................0,53% .... 0.26% =" .......0'54% ......'0.25% ....
......64 0,3|'% 0.16 d_ 0.32% .... O_Id'%-
REFERENCI_ CASE: 256Nodes ! ............. ....................)erAssembly......... _._ i i ii i --- '"' ,,,,,0/ i i,,uurl .....] III II II Ir r, ,,, , ,,, i ,, , , ,

Table 6.6

Eigenvalue Errors for the Heterogeneous Model with a Zero
Current Boundary Condition

CASE HI: EIGENVALUE COMPARISONS
ii 61 i,JL,........ L ,....N des Per Quadratic Quadratic CMFD .....CMFD
"Assembly" Eigenvalue Eigenvalue Eigenvalue Eigenvalue

Error(%) Erro[(%)_
- .....l .... 1,23'§39 ...............+01(}4% 1.2:H23 +1.00 %_

.......4 .....1.23889 ........+0.00 % * Ii_4247 _ +0,27 %
..............16 .................. 1.23882 ........ +0.01 _ ..... 1.239l_I +0,07 %

64 .............1,23884 ' +0,00 % * I._3910 _ _,02 %-

REFERENCE ElGE_ALUI_: 256 NodesPro"As_mbly,= 1.23889 i .....
-*Not zero:"s, ; ......... , .... , , , , ,ii m --

Table 6.7

Absolute Maximum and Average Relative Power Errors for the
Heterogeneous Model with a Zero Current Boundary Condition

CASE Ill:POWER COMPARISONS

Nodes Per Quadi'atic MAX QuadratiCAvE CMFD MAX CMFu AVE"
"Assembly" Relative Power Relative Power Relative Power Relative Power

Error (_S) ,,Error IAB&S) E_or (LABS)ErrorIABS)
l ....Li5 0.59- i 438%

.........4 ......... O.18 % 0;09 _ - 3.36% .......1.29% _"
+--.......[6 ............0:_'% 0104 % .... 0.92 % 0,34%

- - _ ........0._% ............0.03% 0.21_ 0,08%

_FERENCE CASE: 256/Nodes Per Assembly ..... ' ..... _ _
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Figure 6.7. Relative Position of Node 1 for the
Homogeneous Quadratic Tests.

Table 6.8

Node i, Group 2 Reaction Rate Errors for the Homogeneous
Model with a Zero Flux Boundary Condition

I ii i

i CMFD (% E_or) Quadratic (% E_or)

Abso_fion Ral_ -8.5 % + 0.24 %

In-Scat_r Ram -8.7 % + 1.5 %

Table 6.9

Node i, Group 2 Leakage Rate Errors for the Homogeneous Model
with a Zero Flux Boundary Condition

I I I

CMFD (% Error) Quadratic (% Error)

Side 1 -8.5 % + 3.1%
i i

Side 2 0.0 % 0.0 %
i iii i iii

Side 3 + 10.3 % + 22.2 %
I
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6.2.5 Numerical Instability of the Ouadratic Method

In the results presented in the previous sub-section,

all the cases converged. However, it was discovered that

certain computations, performed at small mesh sizes, can lead

to a numerical instability when the quadratic equations are

employed. A rough mapping of the unstable cases showed a

relationship between the number of nodes in the model and the

size of the nodes used. Figure 6.8 shows this mapping for a

homogeneous problem with a zero flux boundary condition. The

stability line for same problem with an albedo boundary

condition is a straight line at 0.01 cm.

Instability Line for the Quadratic Method
2 Group, 2-D, Bare Homogeneous Problem

Zero Flux Boundary Condition

1O0 ._

t Nodes
104 .................................................

z_ 4 Node
I _ ,. L

Numeri Nodes

_6 . Instability i_.1

384 Nodes

,01 , • •., ..... • ._,,...... • • •
1 10 1O0 1000

Numberof Nodu

Figure 6.8. A Rough Mapping of the Numerical
Stability of the Quadratic Method for 5
Outers per Update and a Zero Flux
Boundary Condition.

In each of the cases run for Fig..6.8, and in the cases

where an albedo boundary condition was used, the

discontinuity factor ratios were updated every 5 outer
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iterations. This number was used because previous experience

with problems of small mesh size proved that 5 outers per

update worked efficiently. Further study into the

characteristics of the unstable region showed that the number

of outers per update had a large effect on whether or not the

problem converged. Surprisingly, the 6 node case was found

to converge for all mesh sizes tested (as low as IE-3 cm) if

either 2 or 1 outers per update were used.

In order to further understand the nature of the

instability, the 24 node case was tested using an albedo

boundary condition. In these tests, the computer code was

modified to test for diagonal dominance of the iteration

matrix. Recall that a necessary condition for convergence is

diagonal dominance, and if this is lost, the method is not

guaranteed to converge. Because the discontinuity factor

ratios are not constrained in value, and these discontinuity

factor ratios are computed during the solution by the

quadratic equations, it was thought that the value of these

ratios may be disrupting diagonal dominance.

A summary of the results is presented in Table 6.10. It

was previously mentioned that for an albedo boundary

condition and 5 outer iterations per update, the instability

was encountered at mesh sizes below ~0.01 cm. This can be

seen in the second column of the table. It is difficult to

explain the apparent trend (in the lower section of the

table) of convergence with even numbers of outers per update

and non-convergence with odd numbers of outers per update.

This trend appears when diagonal dominance is lost for all

outers after the first update.

Details from a few select cases of this brief study will

be presented in figures showing eigenvalue convergence as a

function of iteration. The eigenvalue convergence is defined

as the relative difference between the current eigenvalue

estimate and the estimate from the last iteration. For
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reference, the first figure presents a case which converges

well. Figure 6.9 shows the eigenvalue convergence as a

function of iteration for a 5 cm case, where the

discontinuity factor ratios were updated every 3 outer

iterations. The first update is performed after a specified

convergence criterion is met. This can be seen in the figure

between iteration 5 and 9, where the convergence is close to

zero (it is not as close to zero as it looks). The spike at

iteration 9 represents the first update of the discontinuity

factor ratios. The update "changes the problem" by

correcting the Coarse Mesh Finite Difference (CMFD) equations

to match the Quadratic solution. The convergence drops in

the subsequent 3 iterations because the problem is converging

to the solution which is consistent with the most recent

values of the discontinuity factor ratios. The second spike

at approximately iteration 12 represents the second Update,

and this continues until the spikes "dampen out" and

discontinuity factor ratios approach a constant value.

The next case tested was for a node side of 1 cm. Two

outer iterations per update was used in this solution.

Figure 6.10 shows that the spike is much larger than the one

previously seen in Fig. 6.9. The diagonal dominance was lost

on iterations 15 and 16, but restored for subsequent

iterations. One possible explanation for this behavior is

that the first estimate of the discontinuity factor ratios

for some or all of the nodes were such that they disrupted

diagonal dominance, but the converged (or asymptotic) values

of the ratios were not. The problem converged despite the

problems with diagonal dominance.

The next case demonstrates the effect that the number of

outers per update can have on the convergence. The node size

was chosen to be 0.i cm. Figure 6.11 shows the results for

the case of 5 outers per update. Note that the problem

converges more slowly in the first few iterations (before the

first update) than in previous cases because the spectral
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radii of the iteration matrix approach unity as smaller mesh

sizes are used. The usual spikes are apparent in the figure

(although it is interesting that the first spike is not the

largest in this case), and the problem is seen to converge.

Diagonal dominance was lost from iteration 65 until

approximately iteration 95. Figure 6.12 shows the results

when 1 outer iteration per update is used. In this case, the

problem did not converge. The eigenvalue and eigenvalue

convergence oscillated until the case was terminated at

approximately 1080 iterations. It is interesting to note

that the problem appeared to be converging well between

iteration i00 and 200, but then began to oscillate. The

diagonal dominance was lost on every outer iteration after

the first update.

The last cases to be presented are for a node size of

0.001 cm. These cases also show dependence on the number of

outer iterations per update. For each of these cases, the

diagonal dominance was lost for all outers after the first

discontinuity factor ratio update. Figure 6.13 shows the

results for 5 outer iterations per update. The results show

milder spikes than in previous problems, which continue for

approximately 50 iterations, then dampen out. The problem

appears to be converging when "ripples" begin. The error

then begins to oscillate with increasing magnitude and the

solution fails. Figure 6.14 presents the results for 4 outer

iterations per update. The initial behavior is almost

identical to Figure 6.13. In this case, however, the

"ripples" never occur, and the problem converges. Figure

6.15 shows the results when 3 outer iterations per update are

used. The initial behavior is again very similar to Fig.

6.13, but when "ripples" begin here, they lead to

oscillations. The oscillations were followed until

approximately i000 iterations, and then the problem was

terminated. The case of 2 outer iterations per update gave

results almost identical to Fig. 6.14. The case of 1 outer
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iteration per update is presented in Fig. 6.16. The initial

behavior is similar to the previous cases, but the solution

immediately afterward leads to failure.

In conclusion, the numerical instabilities were only

found to occur for the quadratic method at small mesh size.

These difficulties should not be a problem for typical

reactor applications. Nevertheless, an in-depth study is

badly needed to better understand the nature of the non-

linear iteration scheme and its use with the quadratic

equations.
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Table 6.10

A Summary of the Instability Tests for a 24 Node, Homogeneous
Model with an Albedo Boundary.

Numberof OutetsPet-Update
Node 5 4 3 2 1 Converged
Sizet Eigenvalue
5 cm _ in C.cmm_rgedin Ccm_ m CAmvergedin Converged in 4.31761E-1

1"10_ 145 Oulegs 149 Outegs 1210uters 510uters
I cm Ceavtwl_l in Ctmverged in Ctmverged in Ctmverged in Coaverged in 7.70863E-2

160 Oule_ 81 Oulem 118 Oulers 98 Outers 58 Outers
i)iagrDom.Loeloa Diag. Dmn.Loston Diag. Dom. Loston Diag. Dmn. Loston Diag. Dom. Lost on

_#20-25 Outer# 18-22 Outer# 16-18 Outer# 15-16 Outer #12
0.5 _ _ ill _ ill Collverged ill Coltvegged ill I Coltverged in 3.66196E-2

176 (haem 168Oule_ 127Outers 106Oulers ] 66 OutersDrag.Dc
L. OelerIt 27-31 Oulef # 25-28 OuterIt 23-25 Outer# 21-22 Outer# 19-23

0.1 cat Cemmn'llmlin C_meq_] in CAm_ in Converged in Oscillation: 7.00668E-3
28[JOtae_ 249 Otaen 215 (kaets 165 Outets No Convergence

Dia_DtmLl.mtoa Diag.Dom.Lomm Diag. Dmn. Loston Diag. DmLL_on Diag. Dom. Loston
It65-95 Outer#73-124 Out_# 72-119 Oumr #7_97 agOuwJsafmr#69

-0.01 cat _ Cemvt_ in Om:lBatlem: CAmvergedin _ 6.93602E-4
No q_mverBem_ 821 OuumJ No Comvet,_moe 401 _ No C_mv_

on Dia_Dom._m I_.a__._on Dia_Dom.l._ston Diag._.l._tston
tim all Oua_ afterfirst all Outersafar first _ Outersafterfu-st all Oum_ _ first

up e epd, upda
0.001 cut _ _ in OsclllaUe_ CAmvergedin Instability 6.92898E-5

3433 (]arms No Cemvergm_ 3432 Outers
Diag.Dom. IAmon Diag.Dmn. Loston Diag. Dm_Loston Diag. Dmn. Loston Diag. Dom. Los_on

(ham afar first all Outm afterfirst all Outersafterfirst allOete_afterfirst allOutersafterin'st
update .pda

L"r-..i,



Eigenvalue Convergence vs. Iteration Number

24 Node Homogeneous Test Problem
Node Side = $cm

.3Outer Iterations Between d.f.r. Updates

0.I0 -

0.08 -

0.06 -

i
0.04-

i
_ 0.02-

-0.02 -
0 10 20 30 40 SO 60 70 80 90 tO0

Iteration Number

Figure 6.9. Eigenvalue Convergence for Node Size of 5
cm and 30uters per Update.
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Eigenvalue Convergence vs. Iteration Number
24 Node Homogeneous Test Problem

Node Side = Icm

2 Outer Iterations Between d.f.r. Updates

0.I0 'i ........ ..............................

0.08 -

0.06 -

0.04-

J
_ 0.02 -

0.00- _

Iteration Number

Figure 6.10. Eigenvalue Convergence for Node Size of
1 cm and 20uters per Update.
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Eigenvalue Convergence vs. Iteration Number
24 Node Homogeneous Test Problem

Node Side = 0.1cm

5 Outer Iterations Between d.f.r. Update_

0.I0

0.08

0.06

0.04

._ 0.02

0,00

I
-0.02 !_-:l " ' ' -.........................................................................i..... w i w w w I , "i' i i I t l

i _ _ _ am i

Iteration Number

Figure 6.11. Eigenvalue Convergence for Node Size of
0.i cm and 50uters per Update.
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EigenvalueConvergencevs. Iteration Numhe0'
.'4 NodeHomogeneousTest Problem

NodeSide= 0.1¢m

1Outer Iteration Betweend.f.r. L:pdate_

010. ....................................................'""'...... '" ' .............................................

-0.02 .........."'i' " | ........_'__'i ' , ' , ' , , i " --' ,

t

Iteration Number

Figure 6.12. Eigenvalue Convergence for Node Size of
0.I cm and 10uters per Update.
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EigenvalueConvergencevs.Iteration Number
24Node HomogeneousTest Problem

NodeSide-.001em
$ Outer Iterations Betweend.f.r. Updates

0,I0 - .... '_ _- ....... '"................... _'

0.08

" 0.06

0.04

1
0.02
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Figure 6.13. Eigenvalue Convergence for Node Size of
0.001 cm and 50uters per Update.
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ElgenvalueConvergence vs. Iteration Number
2.1Node HomogeneousTest Problem

Node Side = .001era
4 Outer Iterations Betweend.f.r. Updates

010. "- *'"'- -_ '..... _........... , ................

0.08 -

0.00
!

i

Iteration Number

Figure 6.14. Eigenvalue Convergence for Node Size of
0.001 cm and 40uters per Update.
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Eigenvalue Convergence vs. Iteration Number
24 Node Homoseneous Test Problem

Node Side = .001cm

3 Outer Iterations Between d.f.r. Updates

010. .................. '...................... '......... _- '....... ............_"

0.08 -

!-0.02 ....., , , r_ w' , ' ,, , , , , , , u. _" "'" ' _"' I I !1 I I I I I 1 I I
e o

Iteration Number

Figure 6.15. Eigenvalue Convergence Eor Node Size oE
0.001 cm and 30uters per Update.
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EigenvalueConvergencevs. Iteration Number
24 NodeHomogeneousTest Problem
NodeSide= .001cm

I Outer IterationsBetweend.f.r. Updates

010 ........................
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Wigure 6.16. Eigenvalue Convergence for Node Size of
0.001 cm and 10uters per Update.
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6.3 Testing the Transient Method

In order to test the transient solution methods, two

benchmark problems were run. The first was a simple model

with a zero current boundary condition involving a uniform

step change at time zero. The analytic solution to this

problem was available from Ref. [B-l]. The second benchmark

problem consisted of a non-uniform step change transient in a

large, heterogeneous heavy water reactor. This problem was

originally used in the verification of the computer code

TRIMHX [P-2], a three-dimensional diffusion theory code for

hexagonal-z geometry which was developed at Savannah River

Laboratory. Results obtained from QUARTZ are compared to the

TRIMHX results given by Ref. [B-2].

Because of the difficulty in obtaining other benchmark

problems for triangular-z geometry, the remaining studies

were used as simple 'consistency checks', to verify that the

transient methods in QUARTZ give physically acceptable

results to selected transients.

6.3.1 Transient Analvt_q Test Problem

The analytic test problem, constructed by Byers [B-I]

(from the work of Dias [D-I]), was used to test the transient

solution methods in the computer code ZAQ. It is a simple

model, independent of spatial mesh because of the zero

current boundary condition on the outer surfaces. Appendix

C, Section 6 presents the cross sections and constants used

for the model. The analytic solution of the reactor power as

a function of time is given as [B-I]:

p(t)= a2e "+ a3e (6.1)

where the constants are given in Table 6.11. The eigenvalue

for this problem is exactly 1.00.
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Table 6. ii

Constants for the Analytic Solution

A static calculation of the perturbed system gave a

reactivity estimate of 2.5236E-3 (the eigenvalue was

1.00253). The transient problem was solved by the quasi-

'nstatic method and the point kinetics method usl g the

computer code QUARTZ. The transient was initiated by a step

decrease in the sigma cross section in group 2 at time zero.

The quasi-static solution is shown in Fig. 6.17. As can be

seen in the figure, the QUARTZ solution matches the analytic

solution very well. It should be noted that the neutron

speeds for the reference solution were not given, so typical

speeds were used (see Appendix C). The fact that the prompt

jump occurs sooner for the quasi-static method in Fig. 6.17

indicates that the assumed speeds were higher than the speeds

used in the reference problem.

The asymptotic reactivity computed during the solution

was 2.5253E-3.

The point kinetics solution is shown in Fig. 6.18. In

the figure, it can be seen that the point kinetics solution

is acceptable, but does not quite match the reference

solution.
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QUARTZ Quasi Static Method vs. Analytic Solution

1.6 ....................

1,5 .... -------

I

StepDqcreasein_;ignmGr,,up2 atT me0,0
/1,0

0.0 0.1 0.Z 0.3 0.4 0.G 0.6

Time in Seconds

Figure 6.17. QUARTZ Quasi Static Solution to the
Analytic Benchmark Problem.

QUARTZ Point Kinetics vs. Analytic Solution
Unperturbed Flux Shape and Adjolnt

1.6 ...........................

A

1,3 ...........................................................................................

AnaI_¢--w-- PointgJ_ti=
1.2 ......... ,.... '"'

Step Dqcrease in SigmaGr,Dup2 at T rne0.0

1.0 '
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time in Seconds

Figure 6.18. Point Kinetics Solution to the Analytic
Problem Using Static Flux and Adjoint.
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The point kinetics solution uses the unperturbed flux

and unperturbed adjoint to compute the point kinetics

parameters. Point kinetics usually gives poor results when

the flux shape during the transient differs significantly

from the static flux shape (i.e. the shape that was used to

compute the point kinetics parameters). In the analytic

benchmark problem, the perturbation is spatially uniform,

meaning that the spatial shape does not change during the

transient. However, because the perturbation is made to the

group 2 cross section only, the fast-to-slow flux ratio (the

ratio of the group 1 flux to the group 2 flux) changes, and

thus the point kinetics parameters used during the transient

reflect the incorrect, static energy shape. To test this, a

static calculation was run using the p_rturbed cross

sections. The forward and adjoint fluxes were edited and

I then used to compute point kinetics parameters. The

transient was then run exactly as before, except that the

improved point kinetics parameters were used. The result is

shown in Fig. 6.19. It can be seen that the solution now

matches the reference very well.

QUARTZ PointKineti_ vs. AnalyticSolution
PerturbedFlux_apeandA_nt

1.6 .....................

..e..i bI,,4-I, _ _
1,5 _ --------------

PointKbneUcs
1.2 ,,, ' ...............

StepD_createin SigmaGr ,up2 atT me0.0

1.0

0,0 0,1 0,2 0,3 0.4 0,5 0,6

Time inSeconds

Figure 6.19. Point Kinetics Solution to the Analytic
Problem Using Perturbed F].ux and Adjoint.
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6.3.2 Buckner,Stewart Heteroaeneous Test Problem

The Buckner-Stewart benchmark problem was obtained from

Ref. [B-2], and consists of a non-uniform step change in the

central region of a large, heterogeneous heavy water reactor.

The details of the model are given in Appendix C, Section 7.

It was originally used to test the finite difference,

hexagonal diffusion theory code TRIMHX [B-2]. The core

consists of hexagonal assemblies arranged in a pattern with

60 degree rotational symmetry. The model has five unique

axial planes, and is symmetric about the center plane. The

perturbation consisted of an axially uniform 15% decrease in

the thermal capture cross section in the central patch of

assemblies at time zero. Thermal hydraulic feedback is not

modeled.

The 1/6, full height core was modeled using QUARTZ. The

total number of nodes, using six triangles per hexagon was

4468. The quasi-static method was used with two time

domains. The first time domain, from 0 to 1 second, used a

time step size of 5 msec. The second time domain, from 1

second to 5 seconds, used a time step size of 50 msec. The

spatial model was the CMFD method. The total calculation

time for this problem was 77 minutes on a VAX 3100 computer.

The reactivity as a function of time is given in Fig.

6.20. The asymptotic reactivity was computed to be 5.8738E-

3, or 90.37 cents (beta is .0065 for the single delayed

neutron precursor group). The reactivity computed by TRIMHX,

and reported in Ref. [B-2] was 87.15 cents. In this

transient, the shape of the neutron flux changes dramatically

over the first second. Figure 6.21 shows the radial

distribution of the thermal neutron flux at midplane as a

function of time, where radial position 0 is at the center of

the reactor, and position 12 is at the outer surface. All

four of the thermal flux profiles are normalized in this

figure such that the flux in the central node (radial
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position 0) is unity. The reactivity reaches its asymptotic

value when the flux reaches its asymptotic shape. The flux

shape at 1 second in Fig. 6.21 qualitatively matches the

asymptotic flux shape reported in Ref. [B-2].

The normalized central node thermal flux as a function

of time is shown in Fig. 6.22. Because the reactivity is

close to prompt critical, the three to four percent

difference between the QUARTZ and TRIMHX reactivity has a

relatively large effect on the power as a function of time.

The QUARTZ solution for the power is consistent with the

larger estimate of the reactivity.

One major difference between the TRIMHX model and the

QUARTZ model is the spatial mesh. The QUARTZ model uses six

nodes per hexagon, and the TRIMHX model uses one node per

hexagon. This difference may account for the difference in

the reactivity estimate.

This benchmark problem was also solved by the quadratic

hexagonal code DIF3D [T-l]. Ref. [T-l] did not specifically

state the spatial model used in the calculation. However, it

is implied that the quadratic nodal method (in hexagonal

geometry) was used. The published asymptotic reactivity was

given to be 84 cents.

It is difficult to draw strong conclusions about the

transient methods based upon the results of this benchmark

problem. The reactivity calculation, using the quasi-static

method, predicted the correct value within 4% of reference,

but because the reactivity was close to prompt critical, the

power was significantly overpredicted. It appears that the

solution is sensitive to the spatial model used. The

reference calculation used 1 node per hexagon in CMFD. The

QUARTZ model used 6 nodes per hexagon, in CMFD. The DIF3D

model used 1 node per hexagon with a quadratic method. All

three gave different estimates of the reactivity.
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The next logical step would have been to use the

quadratic method in the QUARTZ model. Unfortunately, the

quadratic method in QUARTZ can only be used for problems with

unifo_ boundary conditions on the outer periphery of the

reactor. The benchmark problem is a 1/6 core, with zero

current boundary condition on two sides. A full core model

could have been used, but the size of the problem would have

been prohibitively large.

The requirement of a uniform outer boundary condition is

not imposed by limitations in the method, but rather by the

limitations of the computer code. The difficulties are

caused by the inability to properly locate the points of the

triangles on the reactor surface. The fact that a point lies

on the surface can be ascertained by the fact that the node

beyond the point does not exist. However, sufficient

information is not available to specifically locate the point

on one side of the reactor or another. This problem chiefly

arises at the corners of the reactor, where two surfaces meet

with different outer boundary conditions.

In short, it is disappointing that the quadratic method

could not be used for this problem. In the future, these

difficulties may be circumvented by customizing the

triangular quadratic method to the specific reactor type of

interest. In that way, a systematic way of identifying

points on the reactor surface would be tractable. In an

effort to keep the computer code QUARTZ very general, a

systematic way of identifying points on the surface became

too difficult to overcome.
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Reactivity vs. Time
Buckner.Stewart Benchmark (TEST III)
Step Decrease in Thermal Capture XS
in Region I (Center) at Time = 0.0
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Figure 6.20. Reactivity as a Function of Time for the
Buckner-Stewart Benchmark Problem.
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Thermal Flux Shapevs.Time
Buckner.StewartBenchmarkProblem
(Position0 = ReactorCenter)
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Figure 6.21. Thermal Flux Shape as a Function of Time
for the Buckner-Stewart Benchmark
Problem.
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Figure 6.22. Central Node Thermal Flux aS a Function
of Time for the Buckner-Stewart Benchmark
Problem,
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6.3.3 Other Consistency Studies

In order to further test the transient methods, three

generic problems were created to check the power response of

the method to co_on transients, in each of the three tests,

a 3-D, two-group, homogeneous model was used.

The first test consisted of a uniform step decrease in

the thermal absorption cross section at t-5 seconds. The

problem was run with and without thermal feedback. Figure

6.23 shows the power response as a function of time for the

feedback case (dotted line) and the no feedback case (solid

line). The case without feedback immediately jumps to a

positive and constant value of reactivity. The power

increases without bound, as expected. The case with feedback

is shown as the dotted line in the figure. The power

initially increases because of the decrease in the absorption

cross section, but as the temperatures rise, the cross

section feedback eliminates the positive reactivity and the

power goes to a constant value at a higher level.

The second test consisted of a step decrease in the

inlet flow rate to 80% of the initial value from t=5 seconds

until t-30 seconds, when the flow rate was restored to 100%.

Inlet coolant temperature was assumed constant throughout the

transient. Figure 6.24 shows the total reactor power

response to the transient. In this figure, the solid line

represents the power response, and the dotted line represents

the steady state power level. The decrease in the flow rate

causes the temperatures in the reactor to rise. The cross

section feedback gives a negative reactivity, and the power

decreases. At 30 seconds, the flow rate is restored. The

temperatures drop, the reactivity becomes positive, and the

power level goes to its initial, steady state level.

134



The third test consisted of a step increase in the inlet

coolant temperature at t=10 seconds, and restoration of the

initial temperature at t=30 seconds. The coolant flow rate

was assumed to be constant throughout the transient. Figure

6.25 shows the results for the test. The solid line is the

power response and the dotted line is the initial power

level. The power decreases at t=10 seconds due to the

increase in temperature, and returns to its steady state

level a short time after the inlet temperature is restored.

In conclusion, the transient thermal feedback models

have been shown to give expected results to three types of

transients. This further indicates that the transient

methods have been implemented correctly.
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Figure. 6.23. The Reactor Power as a Function of Time
for the First Consistency Check.
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Power Response to Inlet Flow Transient
Flow Decreased to 80% of Original Rate
at 10 sec and Restored at 30 sec
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Figure. 6.24. The Reactor Power as a Function of Time
for the Second Consistency Check.
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Power Response to Coolant Inlet Temperature
Increase from 533 K to 538.07 K at 10 sec

Temperature Returned to 533 K at 30 sec

1.05x109 . . . .................................................

1.00xl09

_ 9.50x108 -

9.00xlO 8 -

8.501:108 I I J i' , I --, -_,-- ' -
0 20 40 60 80 100 120 140 160 130 200

Time (Seconds_

Figure. 6.25. The Reactor Power as a Function of Time
for the Third Consistency Check.
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6.4 S"'maW

In this chapter, the static and transient solution

methods have been tested. The static method was initially

shown to match very simple infinite cell and infinite slab

analytic solutions. The static method was also compared to

results from a 2-D, finite difference triangular code MITHEX.

These comparisons demonstrated that the Coarse Mesh Finite

Difference (CMFD) equations were correctly implemented and

solved. The quadratic equations were then shown to reduce to

the CMFD equations in the limit of small mesh size. This was

a very important result because the CMFD equations, in the

limit of small mesh size, are guaranteed to converge to the

true solution of the nodal diffusion equations.

The efficiency and accuracy of the quadratic method was

then compared to the CMFD method. The results from a

homogeneous test problem were presented first. The quadratic

method was shown to give a more accurate estimate of the

nodal fluxes at coarse mesh for both zero flux and zero net

returning current boundary conditions. However, the

eigenvalue estimates were less accurate. Also, for the zero

net returning current boundary condition case, the quadratic

method exhibited inconsistent error reduction with mesh size

when small mesh sizes were used. This problem was not seen

in the zero flux boundary condition case, and is attributed

to the boundary condition approximations mentioned in Chapter

3 and discussed in Appendix A. A heterogeneous, zero current

case was run to test the two methods without the influence of

the boundary conditions. The quadratic method produced very

accurate estimates of the eigenvalue and fluxes at coarse

mesh. It was proposed that the poor estimations of the

eigenvalue by the quadratic method was caused by the

inability of the quadratic polynomial to accurately predict

the current at the points and surfaces of the triangular

nodes. Previous work by Gehin [G-I] in Cartesian geometry
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has shown that quadratic polynomials can accurately predict

node-averaged fluxes, but can have difficulty predicting the

current at the surfaces of the node.

The quadratic method was found to be numerically

unstable when very small mesh sizes were used. This

instability was investigated for a 24 node, 2-D problem, and

the results were presented. It was mentioned that these

problems should not be encountered in typical reactor

applications.

The transient solution methods were tested using a

simple analytic problem, and the Buckner-Stewart benchmark

problem. A few consistency test cases were also run. The

simple analytic problem demonstrated that the fundamental

transient equations worked properly, although the problem did

not include leakage. The results from the Buckner-Stewart

problem were difficult to interpret. The shape distortion

due to the initiating perturbation was presented, and it was

mentioned that the results "qualitatively" matched the

published results (quantitative numbers were not published).

The reactivity was computed to be 3-4% higher than the

published, reference value. It was also mentioned that

results from this problem were published by a third,

independent researcher, using DIF3D. The DIF3D calculation

under predicted (with respect to the reference) the

reactivity by 3-4%. Thus it appears that this benchmark

problem is difficult to solve, and three different computer

codes have given three different estimates of the reactivity.

It was proposed that the different estimations of the

reactivity were caused by the differences in the spatial

models. The QUARTZ model used the CMFD method with 6 nodes

per hexagon. The TRIMHX model used the CMFD method with 1

node per hexagon, and the DIF3D model used a quadratic method

with 1 node per hexagon. The triangular quadratic method

could not be run for this problem because of limitations in

the computer code, QUARTZ. QUARTZ, when running in quadratic

140



mode, models one boundary condition for the periphery of the

reactor per axial plane.

The remaining problems, which were run as general

consistency checks, demonstrated that the thermal hydraulic

feedback model was capable of giving physically expected

results.

141



Chapter 7

Conclumlons and Recommendations for Future Work

7.1 Summary of Remultg

A quadratic nodal method has been developed in

triangular-z geometry for static and transient problems.

Solution methods have been presented, and several test

problems have been used to demonstrate the nature of the

quadratic method. A summary of the test results is given as

follows:

• The quadratic equations were shown to reduce to the

Coarse Mesh Finite Difference (CMFD) equations in the limit

of small mesh size. Thus, if the assumptions made in the

derivation are poor, the problems disappear in the limit of

small mesh size.

• Comparing the node-averaged fluxes for the quadratic and

the CMFD methods to reference solutions showed that the

quadratic method produced much better results at coarse mesh

for all models tested. At smaller mesh size, however, the

quadratic method exhibited inconsistent error reduction with
i

shrinking mesh size when an albedo boundary condition was

used. This behavior was not seen when either a zero flux or

zero current boundary condition was used. It is suspected

that the problem is caused by incorrectly treated boundary

condition parameters, which only appear in albedo boundary

conditions.

• Comparing the eigenvalue for both methods to reference

solutions showed that the quadratic method gave poor results

at large mesh size when either an albedo or zero flux

boundary condition was used. When a zero current,

heterogeneous model was used, the quadratic method gave

excellent results. It is suspected that the problem is

caused by incorrect leakages in nodes on the boundary of the
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reactor. It was mentioned that the quadratic representation

of the transverse-averaged flux may be too rigid to model

accurately the current at the points and surfaces of the

triangular nodes. Previous work in Cartesian geometry [G-l]

showed that quadratic polynomials were capable of accurately

predicting node-averaged fluxes, but sometimes incapable of

accurately predicting the currents at the surfaces. The

problem is more severe for the triangular quadcatic method

because the polynomials are forced to match valde and

derivative to other polynomials at the points of the

triangular nodes. It was mentioned that this rigidity may

lead to problems at any location where the flux changes

drastically.

. A numerical instability was encountered for extreme

(very small mesh) cases. The cause of the instability was

found to be the loss of diagonal dominance due to the values
!

of the discontinuity factor ratios.

• The transient solution to a simple, zero current test

problem using the quasi-static method was shown to match the

analytic solution.

• A large, heterogeneous, heavy water benchmark problem

was used to test the space-time transient methods. The

reactivity computed using the quasi-static method was shown

to be within 3-4% of published results. Because the amount

of reactivity was very high (i.e. close to prompt critical),

the 3-4% difference led to large differences in power as a

function of time. It was mentioned that the shape distortion

caused by the non-homogeneous perturbation qualitatively

matched published results. It was proposed that the

difference between the QUARTZ, TRIMHX, and DIF3D estimates of

the reactivity could be attributed to the different spatial

models used.
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, Three thermal hydraulic test problems were used to

demonstrate the adequacy of the thermal feedback model.

These tests showed that transients could be initiated by

changing the inlet thermal hydraulic conditions, and that the

thermal feedback to other types of transients behaved as

expected.

7.2 Conclusions

In conclusion, the quadratic nodal method in triangular

geometry has been shown to give much better estimations of

the nodal fluxes than the CMFD method at the same mesh size.

The eigenvalue estimations, however, were shown to be poorer

than the CMFD values in certain cases. It is suspected chat

the cause of these eigenvalue difficulties is the quadratic

representation of the transverse-averaged flux. The results

consistently show that the quadratic method can accurately

predict the node-averaged fluxes, but can have difficulty

predicting the surface-averaged currents. The quadratic

polynomial simply does not have enough flexibility to match

the surface-averaged current at the face and at the point.

The triangular quadratic method is more 'rigid' than the

Cartesian quadratic method because the polynomial is forced

to match the value and derivative at the point of the

triangle to the polynomial in the node beyond without the

benefit of discontinuity factors. The triangular quadratic

method may therefore give poor leakage estimations for nodes

at material interfaces or reactor boundaries. These leakage

errors may then adversely affect the eigenvalue.

One topic which has not been discussed in detail is the

effect of the "heterogeneity factors." Recall that these are

the discontinuity factors which appear in the quadratic

current equations, and correct for heterogeneity, Fick's law,

and the spatial approximation. If the "reference"

calculation to get the heterogeneity factors was performed

using a patch of nodes (which is likely because reference
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calculations typically model assemblies, and there will

always be two or more triangles per assembly), then the

heterogeneity factors should somewhat correct for the leakage

difficulties. If this is the case, then the quadratic method

would give accurate node-average fluxes and the heterogeneity

factors would improve the eigenvalue solution.

In select cases, the quadratic method has been shown to

give significant benefit over the CMFD method. The essential

question of whether or not the quadratic method is useful

must be answered for each specific reactor type. It appears

that the method has its greatest difficulty near reactor

boundaries, and it is conjectured that it also suffers at

interfaces across which there are severe material

discontinuities. To the extent that these severe conditions

exist, the quadratic method may or may not be very useful.

In the current implementation, numerical instabilities

were encountered when very small mesh sizes were used. In

typical reactor applications, the mesh sizes will be much

larger, and therefore the instabilities should not be of

major concern.

The transient methods were tested using a simple

analytic problem, three problems with thermal feedback, and a

detailed heterogeneous problem. The results from these tests

showed, in a preliminary way, that the transient methods were

developed and implemented correctly. However, there was a

difficulty in obtaining good benchmark problems for

triangular geometry. Further testing is recommended with a

wider variety of problems.

7.3 Recommendations for Futuro Research

During the course of this work, the nature of the

quadratic nodal equations for triangular geometry was

investigated. Many questions remain, however. It is
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recommended, for future research, that the following areas be

investigated:

, It has been mentioned several times that the quadratic

polynomial may not have enough flexibility to accurately

predict the currents at both the points of the triangular

nodes and the faces. It is recommended that higher order

polynomials be investigated. Methods as high as fourth order

have been developed successfully in Cartesian geometry [G-l].

The development of higher order methods, however, might pose

a considerable challenge because of the unusual geometry.

• It is strongly recommended that the quadratic method be

tested thoroughly for other reactor systems. Results have

indicated that the quadratic method can give significant

benefit over the CMFD method for certain reactor

configurations. It is necessary to develop a knowledge and

'nunderstandz g of which reactor systems the method is suited

for, and why.

• An in-depth investigation of the numerical stability of

the quadratic method is recommended. The instabilities were

only found for extreme cases, but a full understanding of the

i causes and remedies is needed. An important question is

whether or not the triangular nodal method is particularly

susceptible to numerical instability, or if this type of

instability is generic to all nodal methods.

• The non-linear iteration scheme currently uses surface-

averaged currents from the last iteration on the right hand

side of eqn. (3.50). Previous implementations of the non-

linear iteration scheme (in other geometries) have found that

attempting to solve these equations simultaneously for the

currents is unstable. In the triangular nodal method,

however, the extended coupling may allow the stable,

simultaneous solution of the currents. Additionally,

extended coupling might be considered for the axial
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dimension. Extended coupling is not required for Cartesian

geometry, but it might allow the currents to be solved for

simultaneously. The overall goal is to reduce the run time

by converging the quadratic currents as quickly as possible,

which might be accomplished by simultaneous solution.

, A very simple thermal hydraulic feedback model was

incorporated to Lest the general feedback response of the

static and transient methods. A more detailed, elaborate

model could be employed for application to a specific reactor

system.
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Appendix A

Special Boundary Condition Considerations

In Chapter 3, a difficulty was encountered when a

boundary condition was applied to the point of a triangular

i node. It was mentioned that the boundary condition

parameters which appear in eqn. (3.55) are not necessarily

equal to the 'traditional' boundary condition parameters in

eqn. (3.18). The computer code QUARTZ currently assumes that

the boundary condition parameters which appear in eqn. (3.55)

are equal to the parameters input by the user. This appendix

will discuss the relationship between the two sets of

boundary condition parameters, and evaluate the assumptions

made in the implementation.

A general, albedo boundary condition will be assumed for

the work in this section, so that both alpha and beta are

non-zero. Traditionally, the parameters 'alpha' and 'beta'

are input by the user to describe the condition at the outer

surface of the reactor. This relationship is given by:

_'_re_tor
--= (A.I)

where _,e=tor is an outward-directed normal to the reactor

surface. In Chapter 3, an equation for the boundary

condition at a point of a triangular node (which lies on the

boundary of the reactor) was introduced as eqn. (3.55). This

equation is similar in form to eqn. (A.I), but although both

are applied at the outer surface of the reactor, eqn. (3.55)

uses the component of the net current density which is normal

to a small "e surface" (see Chapter 3). Dropping the group

and node notation, eqn. (3.55) is rewritten as:

poi_
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For a particular node, if _esu_c, does not point in the

same direction as _r,aaor, then:

_i_

The goal is to allow the user to specify one alpha and

one beta (for the whole reactor, or for a whole side of the

reactor) which describes the boundary condition according to

eqn. (A.I) . The appropriate boundary condition parameters at

any given triangular point can be determined by:

--_ poim

where _ is a constant which is determined for each

triangular point which lies on the reactor surface. For a

regular pattern of triangular nodes, there are few unique
I

values of _. In general, the _ constant depends on the

orientation of the node to the reactor surface, and the

nature of the adjacent nodes. A systematic way of obtaining

this constant is currently not available. Under many

conditions, however, this constant is unity. In order to

evaluate the approximation that this constant is unity for

all points on the reactor surface, it is useful to examine

specific cases. Figure A.I shows the point "A" on the

reactor surface.
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Reactor

A A /k surface
al

Figure A.I Two Triangular Nodes Which Share the Same
Point on the Reactor Surface.

We shall examine the point "A" for node II. Figure A.2

shows the tip of node II. The small area of interest is

bounded by the "S surface" below, and the two sides of the

triangle near the tip. In the figure, the surface currents

are shown on each ef the three surfaces (the subscripts do

not carry any special meaning). As the _ surface

approaches point A, the reaction rates within this small area

become negligible, and the balance of neutrons is then

largely determined by the leakage in or out of each face.

The net current into this area should equal the net current

out. That is:

As the e surfaces for both node I and node II approach

point A, the leakage between these two z'egions becomes small.

In the limit, _ =0. The current at the S surface is then

equal to the current on the reactor surface. Assuming that

the boundary condition parameters at the point of the

triangle (i.e. e surface) are equal to the boundary

condition parameters at the surface is equivalent to assuming

that the current at the E surface is equal to the current

at the surface. Thus, the boundary condition approximation

is valid insofar as J3 =0.
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Point

e surface

J_ Reactor

/ E surface Surface

Figure A.2. Surface-Averaged Currents at the Tip of
. Node II.

Another situation which must be considered is when the

point of a triangular node is at the corner of the reactor.

Figure A.3 shows this situation for node III. The point of

interest is labeled 'B.'

Reactor

SoU_fa_e •

/_/_ __ / Reactor

Surface
No rma 1

.:Is DEII],::

Figure A.3 A Point on the Reactor Surface which
Occurs at the Corner of the Reactor.

For node III of Fig. A.3, the tip of the triangle is

shown in Fig. A.4.
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Appendix B

The WIGL Model

The WIGL thermal hydraulics model [V-l] is a lumped heat

capacity model which gives node-averaged fuel and coolant

temperatures for static and transient applications. The WIGL

model assumes that no boiling occurs within the nodes. The

transient form of the WIGL equation for the node-averaged

fuel temperature in node (i,j,k), , is:

p/V_"J'*'Cf d_/'J'*' = (1- rl(q")("J'*'V_/J'*'dt

_V_,,,,,) 1 +----1 (W! °'s (_,,,,)__,j,,))
AnU Anho_,-_o)

_cL J'k)and for the node-averaged coolant temperature,

V:"J")( cgpcH)cgTcd_/"J")=dt

AnU Anho -_o) (r/"")-T:""')) (B.2)

+2 W_,"I"'C_( _"J'* ' - r_ ''j'' ' ) + r( q'O)("J" ' V_"J"'

where the coolant inlet temperature for node (i,j,k) is _ij.,)

( b is for 'bottom'), and for any k greater than I, is given

in terms of the node-averaged coolant temperature and the

inlet coolant temperature of node (i,j,k-l) :

_,,_.k, = 2T(/,J,k-t)_ _,,_,k-t) k > 1 (s. 3)

The notation in (B.I), (B.2), and (B.3) is used in order

to match previous implementations [S-2,B-I,G-I]. The

quantities used in the WIGL model are defined as:
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COMPUTED UANTITIES :

....._,j,k_ = node-averaged fuel 'temperature for node "ii,j,k)(K).
ii i i iH

_/,j,k) = node-averaged coolant temperature for node
(i,j,kl (KI

ill i ill i lJl
_.j.k) = node coolant inlet' temperature for node (i,j,k)
.... i ( if k .> I) (K 1..............

USER INPUT QUANTITIES:

° - core inlet coolant temperature at time t (K)

pl = fuel density (g/cm 3)
i i i HH Ill , ll,iII

el = SPecific heat of the fuel (erg/g K)

Cc = specific heat of the coolant (erg/g K)llll, i .... ,iii i

T = fraction of fission power deposited directly
....................................into .the co01ant ....... liiH i i

V_'_.i,1) = volume of fuel in node (i,j,k) (cm 3)
j i i ! [ ii H,Hil Ill i Ill

_i.j.k) = volume of co'olant in node (i,j,k) (cm3)
i ii i H ,H,i ii,,,,ii,[ ,fl i ii ii.H llll li,Hil, ,l,ll [ II ii II

AH = t0tal heat transfer area / coolant volume in
nod e (i,.j,k)(Cm-lli i i H

ho = convective heat transfer coefficient at the
initial core flow ,gate (erg/s cm 2 K)

U = conductivityconduction lengths of the fuel,
gaD, and claddinq

Wo = initial core (i.e. total) mass flow rate (g/s)
W = core mass ......flow'rate at time t (g/s) .............

............ i ........................ im .........
_;.J.*) = mass f ow rate in node (i,j,k) at t e t (g/s)

1 = the ener'gy required to raise the temperature of
_p_S a unit volume of coolant one degree g (erg/cm 3

.........................

SOLUTION-GENERATED _UANTITIES : ......

I t ,,,,(_._.I_l= volumetric energy generation 'rate in node 1[q ) J (i,j,k) at time t (er_/cm 3) .....

The volumetric energy generation rate in each node is

computed using the nodal power densities at each time step.

If a composition change in the reactor initiates a transient,

the nodal power densities change as a function of time, and

new temperatures are computed using the WIGL equations. The

temperatures affect the solution by adjusting the cross

sections.
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Two other mechanisms for initiating a transient have

been implemented. The core inlet temperature can be adjusted

as a function of time, and the core flow rate.

The thermal hydraulic equations are solved using a fully

implicit integration over time, identical to the

implementation by Gehin [G-I] .

The static WIGL equations are used to compute the steady

state temperature distributions during static problems. The

static WIGL equations can be obtained from (B.I) and (B.2) by

setting the time derivatives to zero, and using the steady

state values of the inlet coolant temperature and core mass

flow rate.
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Appendix C

Model De|arlptlons

In this appendix, the descriptions of several models

which were used to verify the code QUARTZ are given.

C.! Static AnaZMtlC Test Problem

The first of the analytic tests was a zero current

problem with the following 2 group cross sections (taken from

Byers [B-I]) '

I D Chl Fission Nu Flnlon Sigma

[ !i15689E'_0 I °i0_ Ii i35888E-3 l 5,89720E-3 l.....3'37634E:3......l

Scatterlnll

[ Z',.,i = 2.37634E-3

[ s o.o....

The second of the static analytic tests involved a bare,

homogeneous slab (the computer code QUARTZ has the option of

solving problems in I-D Cartesian geometry). The thickness

of the slab was taken to be 250 cm. This gives a buckling

of:

= (250 cm)_'=1.57914E- 4 (era"2)
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C.2 MZTHRX Znfinite Cell Comparison Problem

The first problem used to compare QUARTZ to MITHEX was a

heterogeneous, 24 node cell with a zero current boundary

condition. The geometrical layout of the model is given as:

Material 1

Material2
NodeI

Node'/

Nod,6

wheze the cross sections for materials 1 and 2 were

taken from Ref. [G-2] (note that the cross sections differ

slightly from published values in [G-2]) :

MATERIAL 1

D Chl Fission Nu Flulon Sigma
I-................. .....' E '_' 0 "'"""' "'09 'm"''_.....1,2900OE+0 ! I,O(XX_ _ ....... 0. ! 0,0 ....... [ 8. 2 !3E-3 I
l......8.83000E'[. ........| ...... .. O.0...."".. [ "..i'.'"'..0 '0 .. _[: ..........0'0'":i' ...".....! ' 7.9626.8E'_I I

Scattering

!........................?
[ 22.I= 0.0,u_J_ - - ::.......

160



MATERIAL 2

D Chl Flulon _ Nu Fluion Slllma ,

Ii ...............i l'°'_'__..... ' _'"_E'3'__°'°5__l1'385_E_11 I.O(_X)E+O _ .521911E,2[ 3'70308E'2 J 2.[8_24E-2

,_ Scattertnll ................... :,_

[_:i ,; = 6'_203E23 I1_.,, =4139126E _5_

Other Data:
LENGTH OF NODE SIDE : i0 2650 cm
BOD-NDA.RYCONDITION: Zero Current
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C.3 MZTH|X aoze-g£sed Compar£son Problem

The second problem used to compare QUARTZ to MITHEX was

a 96 node, heterogeneous, 2 group problem. The geometry is

given as follows, where only the top half of the s_etric

layout is shown:

Mater(a]4

The cross sections are defined as follows:

MATERIAL 1

D

.....]._E+O' l I.'16741E._....'_',2:-_5][6E-_ i 8.8650SE-3-]
I '-iI3s'_'E_",_?' Ch! . .......riulon Nuriuion,,,,,,, Si_,
_;i8'98526EI il0:_......i.....1.5219oE-2| "3'70308E'2'|....,.2;18824E'2....]

$catterlnll
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MATERIAL 2

D Chl Flulon Nu Fission St ma

Scatterlnllii i I i i ............

i 2

MATERIAL 3

D Chl Fission Nu Fission Slama
[_....1.17_7E+O -'"II,_E+O l"........5'69906E-4l 1.50390E-3l1.29105E-2_'......_-'_ '"".....""
l - -_"8.80244E_.II:l......0'0 .......1 3':'6..)256E'3l_ 8'81442E-3[....1.365.47E,2.1'...,i

Scatterlnll
• iiiiiii 1 _uJ ...... iiiiiii i iiiij ii iii ii ii

_2.,, = 3.5_7473E'S

MATERIAL 4

D Chl Fission Nu Fission Slllma
[ III I IIIII LJl L] IIIII I] I l_l [11

I 1,29_E_ I _ 0.0...................I 0.0 I' "'"''0,0"" l 8.02913E-31
i s,s3_E-_ ! .......o,o....._i .......i .....o,o ii v.0626sE.si

Scatterlnll
ii [THI[II]I I I flllll .....

Other Data:
LENGTH OF NODE SIDE : 17.7805 cm
BOUNDARY CONDITION: Albedo (No Net Returnin&'Current)
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C.4 Reduotion of 0uadratic to CMFD Limit Problem

This model was used to test the quadratic equations at

very small mesh sizes, to see if the quadratic equations

reduced to the CMFD equations in the limit. The model is a

2-D, 6 node homogeneous problem arranged in an overall

hexagonal pattern:

The cross sections are given by:

P Chi Fiuion Nu Fiulon $111ma

[ ','.4239iE_ ....l"".""'l:O_X_]O_+O'.! ,,6_E-2 ! 4._E-'2'-I" 5,_E-2" !• i..... o.o'' ..... ......... ,.... ....[ ' 3,S63'I'OE-I 3.2_E,2 S._E-2 1 S.'_E-2 I

Scllll_rlnl .........E...... .....,+,+,:,i=+,.+..+!
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Other Data:
LENGTH OF NODE SIDE :

Tests: 5.00 cm 0.05 cm
2.00 cm 0.01 cm
1.00 cm 0.005 cm
0.80 cm 0.001 cm
0.60 cm 5.0E-4 cm
0.40 cm 1.0E-4 cm
0.20 cm 5.0E-5 cm
0.i0 cm 1.0E-5 cm

BOUNDARY CONDITION: Albedo (No Net Returning Current)
CONVERGENCE: 10 -12 on eigenvalue, double precision
1 Outer Iteration Between d.f.r. Updates
THERMAL FEEDBACK: None
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C.5 Quadratic Test Problems

Two models were used for the quadratic tests. The first

was a 2-D, homogeneous model with 24 nodes. The second was a

heterogeneous version of the same model. Case I and Case II

used the homogeneous model with albedo and zero flux boundary

conditions, respectively. Case III used the heterogeneous

model. The heterogeneous model is represented by:

Material 1

Material 2

The homogeneous model used type 1 cross sections

everywhere. The heterogeneous model used both type 1 and

type 2, in the patterns shown in the figure. The two-group

cross sections are:
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MATERIAL I

D Chi Fission Nu Fission Sigma ,,,,

[ 1.49750E+O [ I'_E_ ! 1.38519E-4 ] 3,46297E-4 ] 3.32_21E-3 [....1.15689E+0 0.0 I 2.35888E-3 5.89720E-3 3.37634E-3
i

Scattedn8 .....

Y_1--,2= 2.37634E'3

Z2-_1 = 0.0

MATERIAL 2

D Chi Fission Nu Fission Si[_ma

9.833(_]_7 !....... 0.9' 2.12299E-3 5.30748E-3 4.22043E-3 .....

Scattering

_1-.,2 = 2.47634E-3

Z2_ l = O.O

O_erData:
LENGTH OF NODE SIDE :

1 Node /Assembly 67.7805 cm
4 Nodes/Assembly 33.8903 cm

16 Nodes/Assembly 16.9451 cm
64 Nodes/Assembly 8.4726 cm

BOUNDARY CONDITION:
CASE I Albedo (No Net Returning Current)
CASE II Zero Flux
CASE III Zero Current

CONVERGENCE:

Eigenvalue: 10-6
Static Power: 10-4
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C.6 Transient Analytic Test Problem

The transient analytic test problem consists of a single

node with a zero current boundary condition on all sides.

The details were obtained from Ref. [B-l], although the

neutron speeds were not given, and typical values were

assumed. The problem is two group, with one delayed neutron

group.

The cross sections are given as:

D "[ Chi Fission Nu Fission Sigma I[ 1.42391E+0 I._E_ II_i._O000E-2 I 4.0(KIoOE-2 I 5._E'2 _'3'563i0E- i ii 0.0 ! 3,20000E'2 8.0(0)00E-2 8._E-2

, ,,Scattering

EI_,2 = 1.00(_E-2 I)'_2_ 1 =0.0 ii

Other Data:
LENGTH OF NODE SIDE : 1.35561E+2 cm
BOUNDARY CONDITION: Zero Current
CONVERGENCE:

Eigenvalue: 10 -6
Static Power: 10 -4

Flux at Every Time Step: 10 -7

METHOD: CMFD
THERMAL FEEDBACK: None

Transient Data :

Precursor Group Precursor Half Life Delayed Neutron Fraction
II I III I I ' I ',, _ I IIIMII I

1 0.08 0.0075
..... H,H II II I

Energy Group Delayed Spectrum Neutron Speed

1 1.0000E+0 1.2500E+7
, ll,ll iN . ,,,, _ a _

2 0.0 2.5000E+5......
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Time Step Size: 0.0 < t < 0.2 sec deltat = 5E-5 sec
0.2 < t < 0.9 sec deltat = 5E-4 sec

Cross Section Adjustments:

@ TIME = 0.0 seconds

TYPE = Absolute Change in Cross Section

D Chi Fission Nu Fission Si ma

..... o.o o.o olo o.o ........ 6,0
0,o ..... o.o - o.o ..... o.o .... -£0ooooE-3

_ ; ,, ,,. ,, .H. , ,, , ,.,H

_ Scattering .....

Iz,_,2--o.o
o:o .......
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C.7 Buckner-Stewart Benchmark Problem

The data for this benchmark problem was obtained from

Ref. [B-2]. The problem is a 3-D, heterogeneous, heavy water

reactor. The 60 degree sector is given as follows:

......
10 11 12 13

ii i ,, L, i i , i

" 6 7 8 9

-1' 2 3 4 5

• 8 7 8 9

i, ,, [ ,, , , i llil ill

,. _ • 10 11 12 13
_cm }

The cross sections are given as:

D Chi Fission Nu Fission Sigma _
IIIlil i II

] 1._7_+0 i'I'_E+0 8"16650E 4 1.3,0_, E.28'_E'i' ! 0.0 [ 6:124901_:3 J 1.98446E-3

Scattering

_t.-,2 = I.O0000E-2 J

[[L[L__ ill

Z2_ l ; 0.0 i
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** The group 2 sigma differed for each region:

Region 1 1.355E-2 Region 8 1,325E-2
Reglom 2 1,355E-2 Reglon 9 1,320E-2
neglon 3 1.350E-2 Reglon 10 1.3i5E-2
Reglon 4 1.345E-2 Reglon 11 1,310E-2
Region 5 1.340E-2 Region 12 1,305E-2
Region 6 1.335E-2 Region 13 1,300E-2
Reglon 7 1,330E-2

O_er Dam:
LENGTH OF NODE SIDE : 17.78 cm
BOUNDARY CONDITION: Zero Flux
CONVERGENCE:

Eigenvalue: 10 -6
Static Power: 10 -4

Flux at Every Time Step: 10 -6
Point Kinetics Amplitude:10 "6

METHOD: CMFD
THERMAL FEEDBACK: None

Tranlient Data :
........................................ i ii iii illljiii i ii ,iiiiii i i ii iiiiiiiii iii

Precursor Group Precursor Half Life Delayed Neutron Fraction
II I IIIII!1 / I1 III JI IIIII I! HIIIII III IIIIIII..................

1 ..............................0.1 ......... 0. 0065 .....

.......................... ,,,,llluf !lllii i i i i i iii ill

Energy Group Delayed Spectrum Neutron Sp_I I IIII II III I IlllllllllI III III III I IIII II I

...... ! i. O000E+O ............ !, 000E+30

2 0.0 5.0000E+6
, , ,,,,,,,,,,,,,,, , i i

Time Step Bile: 0 < t < 1 sec deltat = 5 msec
1 < t < 6 sec deltat = 50 msec
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Cro|o Section AdJuotmento:

@ TIME = 0.0 seconds

TYPE = Absolute Change in Cross Section

LOCATION = Region 1

D Chi Fission Nu Fission SI ma
............==,

0.0 0.0 0,0 0.0 0.0
0.0 0.0 ......0.0 .................... 010..................- 1.11377E-3

i =............. ii iiiii i i ...... HI ii]1 .... •

Scattering ...........................

I_,_2=o.0....
I_2..,,=o.0 _
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C.$ Tzanslent Thermal Hydraulic Test Problems

Three transient thermal hydraulic tests were performed

on a 3-D, homogeneous, 2-group model. The first test

consisted of a composition change, which was run with and

without thermal feedback. The second test consisted of a

step decrease in the inlet flow rate, and the third was a

step decrease in the inlet temperature.

The model consists of four homogeneous axial planes,

each with the 2-D pattern:

The cross sections are given at three fuel temperatures:

reference, high, and low. The cross sections were obtoined

from Appendix B.2 of Reference [G-l]. The data is for the

"LMW LWR Transient Problem" (see [G-l] for details). The

reference gives cross sections at the reference fuel

temperature and cross section derivatives at 533 K. In order

to use these data in QUARTZ, which does not accept cross

section derivatives (recall that a quadratic interpolation
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model is used for feedback), the derivatives were used to

obtain cross sections at 583 K and 483 K. These are:

AT REFERENCE FUEL TEMPERATURE: 533 K

D Chl Fission Nu Fission Sigma

[ 1.42391E+0I I,_F+O ] 2,5_I08_':31 _I]_769E.3I 2.79_76_E-2]1 3..56310E-I[....010 ,,l.............',,4.5093!,,E'2......,'i]iI,2733B"!

.......Scatteflnll.......................

[ ]_,-,i _ 155555E-2
z_2,- o.o !I !" I III [I I111III III [HIlt

AT HIGH FUEL TEMPERATURE: 583 K

D Chl Fission Nu Fission ....['"'"' Sigma _f II14-3207E+o....... I _2.59108Ei3.,],,,6'47769E-,3.'..... 2.8_326E-2,i
L3.64754E-I,l___II_0,0__ _iiIll_4.4678,.!E-2_ ! I,!I724E-1 I 8,68372E-2I I IIIIII J I

'..............IIZi..2_=1:74805E.2
l ,o,o
AT LOW FUEL TEMPERATURE: 483 K

D Chl ,_ Fission Nu Fission . Sigma .....": 2.591'08E '3'"'fil'41585E_I I.OC_E+O....i
[i 3.48241E-1 ! 0'0 ...... ] 4.5_08iE_2.... ....]..'I.I'!3741E-1 I' 8.848_2Ei _..........l

Scattering

[Zi_ 2 = 1.76305E-2 I

I, s-o.o I___ I I I I UIl

O_erData:
LgNGTH OF NODE SIDE : 1.35561E+2 cm
BOUNDARY CONDITION: Albedo (No Net Returning Current)
CONVERGENCE:

Eigenvalue: 10 -6
Static Power: 10 -4

Flux at Every Time Step: 10 .6

Point Kinetics Amp!itude:10 -6

METHOD: CMFD
THERMAL FEEDBACK: WIGL Model
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Pr_unorGroup ..........Precunor HalrL!_ ...... Delaye,,d,Neutron Fracdoq

l 0,Q!27 .0,+000..2+47

........................2 ..........................0+,03!7 ....... 0.0013845

..... 3 ................ 0,1150 ................. 000!222

4 + 0,3.1.10...................... 0,0026455 ....

............. 5 ............................... !40 .... 0,000832

........................6 .................... . ................ 3_.87 ............ ............0,.000!69

....._E+mrc, G:oujp__...........D, lay_++$p_trum ............ Neutron Speed , ,

+ ............_0ooom+0 z25_gm,?.........................
................2...................00 ........ 25000E+5

Time Step Si=e: deltat = 0,1 sec

W_GL+DATA .....(see Appendix B for Defin!tio: s):
533 K - "

.......... T_ ...........

.... p/ i0.3 g/cm3................... _ +- ___ tl _2 .

..........................C++! .... 2.46E+6 (erg/g K)

..................C+ ..... 5 43E+7 (erglg K)
r o.o....................

j lll [i i ii i iii ii iiii ii i lllt jt£ .....

vj(v++v,) o.+++
............ A. ........... 259 (ca "I )

U 2.2E+6 ergs/ cm= S
K

....... i ii j ....L ./ i

h,_ 2.71E+7 '(erg/s cm 2
.................K1 + I
W_+ =2.2E+6 (g/s) I

.............t._OP+H)oT'c._.,)P................ I ,'"'60E+7 +(e+rg/cm _ Ki+l...... i + j N + = ..... " .......
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TEST 1

Czo|| IIo_tion Ad:juetment:lls

TIME = perturbed at i0 .-_econds, reset at 30 seconds

TYPE = Absolute Change in Cross Section

LOCATION = All Regions

D Chi Fission Nu Fission Sl ma

Seatterlnll .......
., .o.o!_.,................ i

IX1..,,,o.o..........i.i.......1

TEST I1

Inlet flow rate reduced to 80% of original value at time

ffiI0 seconds, returned to original value at 30 seconds.

TEST 111

Inlet temperature increased from original value o_ 533 K

to 538.07 K at time = I0 seconds, returned to original value

at time ffi30 seconds.
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