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Abstract

Many systematically-derived nodal methods have been developed for Cartesian
geometry due to the extensive interest in Light Water Reactors. These methods typically
model the transverse—integrated flux as either an analytic or low order polynomial
function of position within the node. Recently, quadratic nodal methods have been
developed for R-Z and hexagonal geometry. In this work, a static and transient quadratic
nodal method is developed for triangular-Z geometry. This development is particularly
challenging because the quadratic expansion in each node must be performed between the
node faces and the triangular points. As a consequence, in the 2-D plane, the flux and
current at the points of the triangles must be treated.

The quadratic nodal equations are solved using a non-linear iteration scheme,
which utilizes the corrected, mesh—centered finite difference equations, and forces these
equations to match the quadratic equations by computing discontinuity factors during the
solution. The transient nodal equations are solved using the improved quasi—static
method, which has been shown to be a very efficient solution method for transient
problems. A simple thermal feedback model is used to demonstrate feedback response in

static and transient problems.

Several static problems are used to compare the quadratic nodal method to the
Coarse Mesh Finite Difference (CMFD) method. For select cases, the quadratic method
is shown to give significant benefit over the CMFD method. In all cases tested, the
quadratic method is shown to give more accurate node-averaged fluxes. However, it
appears that the method has difficulty predicting node leakages near reactor boundaries
and severe material interfaces. The consequence is that the eigenvalue may be poorly
predicted for certain reactor configurations.

The transient methods are tested using a simple analytic test problem, a
heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test
problems. The results indicate that the transient methods have been implemented

correctly.
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Chapter 1
Introduction

1.1 Motivation and Background

Modern, systematically derived nodal methods have been
used for the efficient and accurate modeling of nuclear
reactor cores for over fifteen years. The focus of research
in this area has primarily been directed towards the
development of tools for the analysis of Light Water Reactors
(LWRs). Typical LWRs have Cartesian geometry, and thus many
different static and transient nodal methods have emerged
suited to the study of reactors with Cartesian geometry.
Recently, a quadratic nodal method was developed and
implemented for R-Z geometry (B-1], which can be used for
High Temperature Gas Reactors (HTGR). A quadratic method was
also developed for hexagonal geometry ([S-3]), which is ideally
suited to many liquid metal fast breeder reactors, modular
high temperature gas cooled reactors, and heavy water
reactors. Recent interest in space reactors [M-1,P-3] has
produced new designs in hexagonal geometry such as the
Particle Bed Reactor, and re-produced old designs such as the
NERVA [A-1] rocket. These designs are small, highly coupled
cores in which diffusion theory is not generally valid.

The research reactor at the Massachusetts Institute of
Technology, called MITR-II, is a unique design which is
ideally suited for a triangular nodal mesh [R-1]. This
reactor has been modeled in the past by the finite difference
diffusion theory code CITATION [F-1], and als~ the Monte
Carlo code MCNP [B-3]. Figure 1.1 shows the geometry of the
MITR-II reactor. Recent interest in upgrading the MITR-II
has created interest in a triangular nodal code for static
and transient calculations,

Modern nodal methods have demonstrated that the accuracy
of fine mesh finite difference methods can be achieved at
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much lower computational cost. A reduction in the number of
unknowns is achieved by using relatively large, homogeneous
nodes. In order to retain the fine-mesh, heterogeneous
accuracy, correction factors are introduced which force the
nodal solution to match the results of independent, detailed,
fine mesh calculations. It is desirable to restrict the
independent, detailed calculations to a few, representative
assemblies (if the nodes are assembly-sized) with a zero
current (or, if known, an albedo) boundary condition. The
goal is to obtain acceptable correction factors for every
node in the nodal model without having to model the whole
core in detailed calculations. The independent, detailed
calculations are ideally transport models with a fine mesh,
and heterogeneity. Thus, the correction factors correct for
heterogeneity, the use of a finite difference approximation
with large node sizes, and transport effects. Clearly, it is
difficult to adequately correct for these three factors with
“one degree of freedom” if one or more of the approximations
is severe. Nodal methods which model the flux as a low-order
polynomial or an analytic function within the node somewhat
“relieve” the correction factors from the need to correct for
the large node sizes by replacing the finite difference
expression by a higher order one. Another way to “relieve”
the correction factors from the finite difference
approximation is to decrease the node size. In LWRs, a
strong desire exists to maintain assembly-sized nodes, so
polynomial representations as high as fourth order have been
developed [Z-1]. Nodal methods in hexagonal geometry are
forced to model one node per assembly because hexagons cannot
be subdivided.

A motivation to produce a triangular nodal code exists
for two reasons. First, the unique geometry of the MITR-II
requires a triangular mesh. The extensive calculations which
will be required for an upgrade of the MITR-II should be
performed using state-of-the-art static and transient

13




solution methods. Second, hexagonal reactors with severe
heterogeneity or transport effects may not be adequately
modeled by hexagonal nodal codes which require one node per
assembly. A triangular nodal code has the capability of
modeling 6,24,96,384, etc. nodes per assembly, as well as
some degree of heterogeneity. The ability to model the
spatial mesh and heterogeneity using a triangular mesh
“relieves” the correction factors from these approximations
and allows transport effects to be corrected. A triangular
nodal code will therefore be much more flexible than a
hexagonal nodal code, and may be able to model cores (such as
space reactor cores) which hexagonal codes cannot.

1.2 Regearch Objectives

The objectives of this research are to develop a
quadratic nodal method in triangular-z geometry for both
static and transient applications. The goal is to provide
both accurate and efficient computational tools.

For the solution of static problems, a corrected, three
dimensional mesh-centered finite difference model will be
developed. To improve upon the spatial treatment, a higher
order expression for the surface-averaged current will be
derived by assuming the transverse-averaged flux has the form
of a quadratic polynomial within the triangular-z node. The
non-linear iteration method will be used to solve the
quadratic equations. In addition, acceleration procedures
will be implemented to improve convergence rates of the
iterative methods.

The transient nodal equations will be cast into fully
implicit form to ensure unconditional stability for all time
step sizes. The delayed neutron precursor ‘equations will be
treated using a direct integration procedure. The resulting
equations will be solved using the improved quasi-static
method. The improved quasi-static method is a very efficient

14




solution scheme for many types of transient problems, and has
been implemented successfully in other nodal methods.

A simple thermal hydraulic feedback model will also be
incorporated to verify the thermal hydraulic response of the
static and transient methods.

1.3 Thesis Organization

In Chapter 2, the time dependent nodal balance
equations are derived for a single, homogenized node, [, and
energy group, g. In Chapter 3, these equations are cast into
steady state form, and discretized using Fick’s. Law and the
finite difference approximation. The Coarse Mesh Finite
Difference (CMFD) equations are presented for fully internal
nodes and nodes on the surface of the reactor. The quadratic
equations are then derived by assuming that the transverse-
averaged flux can be represented by a quadratic polynomial
within each node.

Chapter 4 returns to the transient nodal equations. The
time dependent CMFD and quadratic equations are derived in
this chapter. Chapter 5 discusses the solution of the static
and transient equations. Iterative methods are presented,
along with the non-linear iteration procedure for the
quadratic equations. The improved quasi-static method is
presented for the solution of the transient equations. A
thermal feedback method is also presented.

Chapter 6 presents test results for both the static and
transient methods. Chapter 7 presents conclusions and
recommendations for future research.

15
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Chapter 2
The Time Dependsent Nodal Balance Equation

2.1 Introduction

The equation that describes with adeguate accuracy the
space, time, energy, and directional distribution of neutrons
in a reactor is the time dependent neutron transport equation
[H-1). The solution of this equation, however, is both
difficult and costly in terms of computer resources. The
diffusion equation is an alternative which, in a physical
sense, is based on Fick'’s law, which states that the net
neutron current is proportional to the gradient of the
neutron flux. Mathematically, the diffusion equation can be
derived from the P71 form of the transport equation. However,
the equation we will begin with can be derived from a balance
equation performed on a control volume [(H-1]. This equation
is continuous in the space, energy, and time variables, and
will be developed into diffusion theory with the application
of Fick'’s law in the next chapter. The starting equation is,
therefore, derivable directly from the neutron transport

equation.

This chapter will develop the time dependent nodal
balance equation. |

2.2 The Nodal Balance Equation in Time Dependent Form

The time dependent, continuous energy balance equation
is given by [H-1]:

a|l 1 v _
5[;{5“””} V- J(r.Et)=Z (. E.)P(r. E.t)
+2,(EX1=B)[VE (2. .)(z. B'.1)dE" (2.1.a)

+J-0.Z"(E' E' - E,‘)¢(E, E'»I)dE’ + "ianc(E)A’ipuccipuc(E’t)

iprecwl
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OCpre (1,1

—lprec 220 7 ﬁipm_ J:;)Zf(LE',r)q)(_r;, E'.1)dE’

ot

(2.1.b)

-A.,.pmcq,m (r.t) iprec = 1, nprec

where it has been assumed for simplicity that there is one
fissioning isotope and no external source. The terms in
(2.1) are defined as follows, where G is the total number of
energy groups and nprec is the total number of delayed
neutron precursor families:

v(E)

¢(r.E.1)
J(z.Enr)
Z,(c.En)
Z,(t.E - Ex)

2,(E)

VI, (£,E.1)
Zprec (E)
pipnc

B,

neutron speed at energy E (cm/s),

]

scalar flux density at position x, energy E,
and time t (cm~2 s),

= net current density at position x, energy E,
and time t (cm~2 s),

= total cross section at position x, energy E,
and time t (cm~1),

= scattering cross section at position g, for

scattering from energy E’ to E, at time t (cm~
1)

= prompt neutron fission spectrum at energy E,

= average number of neutrons per fission times
the fission cross section (cm-1),

= delayed neutron fission spectrum for
precursor family iprec,

= fraction of fission neutrons that appear
from precursor family iprec,

= total number of fission neutrons that appear
from all delayed neutron precursors nprec,

B, = ’gicﬂ.pm

iprecm]
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Cwu(EJ) = density of delayed neutron precursor iprec
at position r and time t (cm=3),

The goal is to structure these equations in such a way
that they can be solved on a computer. 1In general, this
means constructing discreet forms of continuous variables,
integrals, and derivatives. The range of energy is broken up
into discreet energy ‘bins’ called groups. The spatial
domain is broken up into a mesh of nodes, in which the cross
sections in egns. (2.1.a) and (2.1.b) are averaged to yield
homogenized, spatially constant values. The spatial
derivatives will be expressed in terms of node-homogenized
quantities, and the subsequent solution to egns. (2.l1.a) and
(2.1.b) will be the node and group average scalar flux

densities.

If the volume of node !/l is V,, and the range of energies

is broken up into G total energy groups with each group being
defined as the energy bin AE,®E,_ -E, then the energy and

node averaged quantities may be defined as follows:

a{l)( )= -‘-I;I-J'VIdVJ'AE. dE ¢(r.E.1)

11 1
-‘;— = WJ‘Vfivjw, dEW(E' E't)

()= ngz(z.E.r)

E”’ dV| dEZ (¢, .
= 5 (:)V I f (L.E)P( Et)

Xps = LE, dEZ,(E)

1 .
Vel = ¢g (:)V, -[v, dv .Lz, dEVE (£, E.0)@(L.Et)
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1
H 4 ’ ’
z\ s-—-m—-—-ag ” ‘.,‘VIdVJ' ‘dEJ.d‘E (B —>EP(E )

Xfpr«:.g = J-AE, dE xlprec (E)

w(l)

1
Ciprcc(t) =2 V; J‘V,dv Cipmc(f-‘)

In the above definitions, the superscript (I) on the

cross sections signifies a spectrum weighted, homogenized
quantity over the node /. The double bar and (!) on the

scalar flux and precursor density signifies a volume averaged
quantity over node /. We also combine the total cross section
and the in-group scattering cross section (g to g):
(O] ) _s(h
28 = z‘u&' 288

If eqns. (2.1.a) and (2.1.b) are integrated over the
volume of one node and the energy bin that defines group g,
and the above definitions are substituted, we obtain
equations which describe the neutron balance for a single
node ! and group g:

do, @ 1 b
= . R XUTAY S
-&;-{;’—-- v [,aVE Len-20 08, @)
g -l) g -(l)
+3 Z0.)8, () +X,, (1= B) Y VEL(1)P,, (1)
ro ! (2.2.2)

rec (1)
+ x:pnc.g)'iprcc C'p""(‘)

iprecs|

d = - ) =(l)
'&;C!prcc (l) = ﬁ,p,,ch‘,;)(t)tbg (I) - A‘PncCipm‘ (1) iprec = 1, nprec (2.2.b)
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The spatial and energy group discretization is complete
for both (2.2.a) and (2.2.b) except for the leakage term
involving the net current density. It will be of use later
if the form of the leakage term is that of a surface-averaged
quantity rather than a volume-averaged quantity. Gauss'’'s

divergence theorem allows the volume integral over the
divergence of J,(r.t) to be replaced by a surface integral:

P
IV.V.'l,(z.r)dV’—'ZL S (c.t) n,ds (2.3)
1 put “ 4

where AP is the surface area of face p of node /., is the

outward directed normal vector to face p, and P is the number
of faces on node /. A face averaged net current density can

be defined as:

Iy (b )*-—-—f L, (c.0)ds (2.4)

node |

Combining eqn. (2.4) with the right hand side of eqn.

(2.3) we can write:

-(l)

de, () - ____ZA lm (o)1, _z(g,,(‘)-au)(‘)
dt V! l p=l
+ZZ‘,U) (t)¢,, (t)+xn(1 ﬁg)ZvZ‘” (‘)-5(;)( )
gal ‘ol
“l 8 (2.5.a)
’Ex#’m: dprec 3('3’“(‘ )
iprecwi

d = )
-(-Emp:.c(r) ﬂ,p,,chZ”’(:)q) (1) - A.'p“chprec(f) iprec = 1,nprec (2.5.b)
g

where it can be seen that the time dependent neutron balance
is now expressed in cerms of homogenized cross sections,
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volume averaged fluxes and precursor concentrations, and
surface averaged currents. Eguations (2.5.a) and (2.5.b)
together form the time dependent nodal balance equation.

2.3 Summary

The goal is to be able to solve eqns. (2.1.a) and
(2.1.b) efficiently and accurately on a computer. It was
mentioned that the energy domain is broken up into discreet
energy groups, and the spatial domain is broken up into
nodes. The chief problem with solving eqn. (2.5) is that we
require an additional relation between the surface averaged
current and the volume averaged fluxes. The next chapter
will discuss such a relation. It is important at this step
to review our progress and the approximations used to make
that progress. Equation (2.5) represents a discreet form of
(2.1). It was made discreet by defining node-hcmogenized and
group-averaged cross sections to replace the continuous cross
sections in eqn.(2.1). Volume-averaged fluxes and precursor
concentrations and surface averaged currents were also used.
If the ‘true flux’' (i.e. the solution to eqn. (2.1)) were
used to compute the node-homogenized and group-averaged Cross
sections, the solution to eqn. (2.5) would match exactly the

solution of (2.1). This situation is not only circular but
impossible because of the need for an additional relationship
to solve (2.5). It points out, however, that eqn. (2.5) is a

formally exact consequence of eqn. (2.1).

In practice, eqn. (2.5) contains homogenization errors.
The magnitude of these homogenization errors depends upon the
estimate of the flux used to compute the cross sections.
These homogenization errors should be kept in mind as the
equations are further developed and more approximations are
made,
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Chapter 3

Derivation of Static Nodal Diffusion Theory Equations for
Equilateral Triangles

3.1 1Introduction

In the last chapter, equations were derived which
describe the overall neutron balance in a single node, for
each energy group g, in terms of node and surface-averaged
quantities. In this chapter, we shall simplify the basic
problem by treating the static case. This simplification
will not only make it easier to work with the equations and
apply them to equilateral triangles, but is of direct use
since, in many cases, it is only the static solution that we

seek.

The first step will be to use Fick’s Law to relate the
net current density to the gradient of the scalar flux
density. This is the diffusion approximation. The gradient
operator in Fick’s law contains spatial derivatives. 1In
order to evaluate these spatial derivatives for a node of
triangular-z geometry, an approximation will be made that the
flux is flat within the node (the finite difference
approximation). Discontinuity factors will be introduced to
correct for sources of error: the homogenization of the cross
sections, Fick’s law, and the finite difference
approximation.

The quadratic nodal method will then be introduced for
triangular geometry. The derivation will first be shown for
equilateral triangles in the 2-D plane, and then for the
axial dimension. In the 2-D plane, three independent
coordinate directions will be identified, each perpendicular
to one face of the triangle and passing through the opposite

point,
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It will be assumed that the flux within each triangular
node can be represented by three, independent, one-
dimensional fluxes (one in each coordinate direction). Each
one-dimensional flux will be modeled as a quadratic
polynomial and forced to match the surface-averaged flux at
one end and the flux at the point at the other end.

In previous implementations of the polynomial nodal
method, the nodes have had an even number of faces [in 2-D:
Cartesian = 4, Cylindrical (r only) = 2, Hexagonal = 6].
Hence, each coordinate direction passes through two surfaces,
and not a surface and a point. Because we do not wish to
solve for quantities at the points of the triangular nodes,
the quadratic polynomials for each coordinate direction will
be “connected”’” (equal in value and derivative) through the
points to the quadratic polynomials in the nodes beyond the
points. The consequence of using connected polynomials is
that the traditional nearest-neighbor coupling is extended to
include a “patchwork” of nodes surrounding each node of
interest.

In the quadratic derivation, discontinuity factors will
be introduced to correct for the same reasons as before,
although the correction will be less for the spatial
approximation,

The equations for both the finite difference and higher
order approximations will be derived for cases when the node
of interest is in the interior of the reactor, as well as
when it is adjacent to the external boundary of the reactor.

3.2 The Static Nodal Balance Equation

The first step is to take the steady state version of
(2.5.a) and (2.5.b). In steady state, the time dependence is
dropped for all cross sections, currents, and fluxes. 1In
addition, the time derivatives disappear. Thus, when (2.5.b)
is used to eliminate the precursor terms in (2.5.a) we have:
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ZA Z(l)( ). ﬂp+z(“ pyll Zz(l) l)+._.£.2 2(” (3.1.a)

8
where
rec
Z, = (l _ﬁl )Zpg + Eﬁiprccxgmc,g (3 1. b)
iprecwl

and A is the critical eigenvalue.

Eqn. (3.1.a) is written for a general node ! with P

faces, numbered p=1,2,3...P. Our goal is to solve (3.1.a)
for nodes with triangular-z geometry. For reference, we
introduce an equilateral triangle with side length S and

height Z4:

|a—5—»/

P
's\;/

Figure 3.1. Three Dimensional View of Node 1.

The volume of this node is given by:

3
V, = =52 3.2
7 (3.2)

The surface area for the top or bottom face of this node
is:

Alriangk:Szl/&z (3.3.a)
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and for each of the three sides is:

A =52, (3.3.1)

A mesh of nodes in the 2-D plane is numbered as follows:
i=1 j=2 m3 (=4

Figure 3.2. Mesh Layout in the 2-D Plane

The node numbering scheme for the axial direction is
shown in Fig. 3.3.

k+l

k-1

Figure 3.3. Axial Mesh Layout.

We also need to identify the surfaces between nodes in
Fig. 3.2 and Fig. 3.3. It turns out to be convenient if we
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identify the surfaces by numbering them p=1,2,3...P for each
node. Examining the 2-D mesh of triangles in Fig. 3.2 shows
that nodes with even i are '‘inverted’ with respect to nodes
with odd i. We label the surfaces for each node in such a
way that surface 1 of node (i,j) is always adjacent to node
(i-1,3), and surface 2 is adjacent to node (i+l,j). Surface
3 is then adjacent to either the node above or node below.
Fig. 3.4 shows the surface numbering for the 2-D mesh when i

is odd:

i+1,3+1
[ J

Figure 3.4. Side Numbering for Node i,j when i is
odd.

Fig. 3.5 shows the surface numbering for the 2-D mesh

when i 1s even:

Figure 3.5. Side Numbering for Node i,j when 1 is
even.
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Each surface can be uniquely identified by node
coordinate (i,j) and surface number (p).

The axial surfaces are numbered such that surface 4 is
adjacent to the node above, and surface 5 is adjacent to the
node below:

k+1

k-1 +2

Figure 3.6. Surface Numbers for the Axial Dimension.

Consistent with the surface numbering scheme in the 2-D
plane, we define three positive axes which define the
positive direction relative to each face (p=1,2,3). Fig. 3.7
shows this numbering scheme.

4

*XB

oddi even i

Figure 3.7. Positive Axes in the 2-D Plane.
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For the axial surfaces, the positive axis points in the
direction of increasing k, as can be seen in Fig. 3.6.

Rewriting eqn. (3.1) for node i,j,k yields:

1 & (irjuk) L DU < -ifh) X & -, k)
AL . |j‘k) — “ujnk) (‘njo*) '
v ZAPZB (p) 1, +Z, g szs' Py +‘f2"zﬁ Py
ij.k p=l g":l 8'=1
4

(3.4)

Recall that the vector pn, is an outward directed normal

to the surface p.

3.3 Prick’s Law and The Finite Difference Approximation

The scalar flux density can be related to the net
current density by Fick’'s Law, which states that the net
current density is proportional to the gradient of the scalar

flux:

J(,E)==D(r.E)V (1. E) (3.5)

We are interested in applying this at the interfaces
between node i, j,k and its adjacent nodes. For simplicity,
we treat the 2-D case first and derive an expression for face
1. The expressions for the other faces can be derived in a

completely analogous way.

For face 1 of node (i,j), the adjacent node is node (i-
1,7). This is the case if i is odd or i is even. Fig. 3.8
shows the two nodes with positive axis Xj; and transverse
direction Y;, where Xc is the center to center node distance,
and is given in terms of S, the length of the triangle side:

\3

X =5— (3.6)
3
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>+X

-X4 -Xc/2 x=0 Xc/2 Xd
Figure 3.8. Node (i,j) and Adjacent Node (i-1,3).

X3 is the altitude of the triangle, and is given by:

V3

X, =5— 3.7
d 2 { )

Using the component of (3.5; in the +X; direction, we
have:

Jxl(x.y.E)s—D(x.y.s)—a—(p(x.y.E) (3.8)
ox

where the X; subscript means that the current points in
the positive Xj direction.

Integrating over the transverse direction y; and energy
group g, and defining the following quantities:
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..-AE;{E f:; dyJy,(x=0.y,E)
[t
I XJ J‘Y( 2 dy Dix.y, E)¢(X .5)
Idbjx‘d J‘Y( - dy(x..E)

)]
8. (P = 1) =

D) =

4

[ 4E[ ., dyb-x—(p(x =0,y.E)
S/2
[n

-5

d -,
'é;d",‘j)(pﬂ)

2
y(x)— S ﬁx
we obtain:

J -
Tk (p =02 =Df ==8,"(p=1) (3.9)

To approximate the derivative in eqn. (3.9), we write:

Tex(p=1)= DM 5 —3;(“1) (3.10.a)
2
where
g, ——-—jdEj J"(():zzdyd:(x.y.e) (3.10.b)
and
9, 1)-—-—-—jdEJ dy@(x=0,y,E) (3.10.c)

An analogous expression can be written in terms of node

(i-1,3j) quantities, where p’ refers to the face of node (i-

1,3)

and the X; subscript on the face-averaged current means

that it is positive in the +X; direction:
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-a-(;-l.j)(p, -2)- -a(;-u)
%
Equations (3.10.a) and (3.11) can be used to eliminate
the surface-averaged flux at x=0 by applying continuity of
flux and current at x=0. Before this is done, however, we
divide each surface-averaged flux by a correction factor for
the appropriate side of the face at x=0. This correction
factor will correct for the errors introduced in the
homogenization of the cross sections, the approximation of
diffusion theory, and the finite difference approximation.
When the continuity of flux is applied, it is still applied
to the uncorrected (physical) surface-averaged fluxes. Thus,
if the correction factors for each side of the face are not

equal, the corrected flux is discontinuous at the face. For
this reason, the correction factors are known as

_'“"l»j) ’ ~ (l"‘l.
Te (= 2) 2 =D

(3.11)

discontinuity factors.

When discontinuity factors are introduced, eqns.
(3.10.a) and (3.11) become:

~=(i,j)
=i ¢, (p=1)
(i.j) % £,
iU i 2=
X (p=1)==D"" A
%

po -

(3.12)

ke e

(p'=2) wwi-1))
(i-1.)) "'¢s

:‘.-:\’l.'”(l" -2)= _D;f-l.j) s.p’-ZX/ (3.13)
¢
2

- .

[ ~=(i-1./)
9

where jﬁ;ﬁ is the discontinuity factor for the right side of
("'lui)

the face at x=0, and f,,.; is the discontinuity factor for

the left side of the face at x=0. Note that egns. (3.12) and
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(3.13) are formally exact due to the introduction of the
discontinuity factors. Applying the continuity of the
corrected fluxes at x=0:

and the continuity of current at x=0, remembering that the
current was defined as positive in the +X; direction:

, (i=1.4)
Tex(p=1)=Tox " (p =2) (3.15)
we obtain:
n./)(p 1) = 2 1 + 1 :fp‘-jz) f;‘,,'.jz) 3‘“ LJ) -‘-p-u.n (3.16)
=)= ) (=1)) i) up Ys T Y :
X; l% L% 8:.p=l 8.pel

An analogous expression can be derived for each face of
the node. The relation for the other two faces of the
equilateral triangle has the same form as (3.16). For the
top (p=4) and bottom (p=5), the center to center distance X

is replaced by the axial center to center distance, 24.

Substituting eqn. (3.16) for face 1 and the
corresponding expressions for the other faces into eqn.
(3.4), we get, for i odd, the discreet nodal balance
equation for node (i,3j,k):
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-1
A_ 2 1 (=14 =(i.j b =10 ety
p=l g.p'»2 oy g.p'=2 oy
V ‘}" D +D“"""” (1.6 ¢a fu.; ) a:
Lk e (] (] f;P‘l p=1
B i+1,).k i+1,jk)
+Ap-2 2 1 1 f(;.jg ) a(uk) ._’, -¢-u+un
umn 1)) p(ijk) g (uk) ]
Vi.}.t Xc _Dg U f.p-2 8.p»2
i i+1,j+1k i
+ Ap-:! 2 1 + 1 f( ;-j;l )} (llk) HJ bl E(M JHLE)
v 1K) i+1,j+1,k) (ijk) i}J) [
V‘-Ivk x‘-' _D: D: ‘P'j 8.p=}
e --l-
i,J,k+1 Lj.k)
+4;_-4 2 1 + 1 ;.Pj.;) Eun) f(”j -JWM)
(1,J.k) iJk+D)  o(ifik) ] (k) Vs
‘@J&_q q ap=d | | fw4
[* Lgk=0 T ~L k) 7
+ A 2] 1 + 1 f(,’“ ) au.].n _ : Pt ¢ '3«/.&-1) (3.17)
N3) iJk=1)  p(ijk) ] (k) Tg )
Vu.z Xd _D: D( f # ] L pe$
(‘J.n -n(i,j, k) (‘ i k)-“ v k) _...‘. . J n-“ J k)
+EN G 2 o, + 2 VEGN G,
“- ‘-l
For i even, superscript (i+l,j+1,k) in the third line of
eqn. (3.17) becomes (i-1,3j-1,k). EQn. (3.17) describes the

neutron balance for an interior node (i,j,k) in terms of node

homogenized cross sections, constants, discontinuity factors,
The next section will derive an
(3.16) for nodes adjacent to the

and volume-averaged fluxes.
equation of the same form as
boundary of the reactor.

3.4 Boundary Conditions

In the previous section, a relationship between the
surface~averaged currents and volume-averaged fluxes was
derived by writing the finite difference approximation to
eqn. (3.9). Eqgns. (3.10.a) and (3.11) were used to eliminate
the surface-averaged flux for face p=l1 of node (i,j). If
(i,j) face p=1 is on a boundary, eqn. (3.11) cannot be
written. In this case, we use a general equation for a
boundary condition which relates the surface-averaged current
to the surface-averaged flux:

node
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ol Ty (p) n, =BG () (3.18)

where, as before, B, points out of the node and is

normal to the surface p. The group and face dependent

coefficients, aﬁﬁ’and :g% are specified by the type of
boundary condition desired. Table 3.1 gives appropriate

values for typical boundary conditions.

Table 3.1
vValues of a““ and “” for Typical Boundary Conditions.

Condition at aﬁ:’ :g)
Boundary o

Zero Current 1 0

| Zero Flux 0 1

Zero Net Incoming 2 1

current

Albedo 1 el

1 C is the ratio of the outg?:inq current at the
face to the face-averaged flux, as defined by
eqn. (3.,18) with alpha equal to unity.

Our goal is to obtain an expression analogous to (3.16).
If we examine the case of face p=1 of node (i,j) on the
boundary, then we re-write egqn. (3.18) as:

==(i,J) (U)
—a"2 Tek(p=1)= B2, 88" (p=1) (3.19)

where the dot product on the left hand side of eqn. (3.18)
produced a -1 because the normal vector fi, points in the -X;

direction.
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Equation (3.12) remains valid and can be used with
(3.19) to eliminate the surface-averaged flux at face 1 of
‘v
node (i,j). Solving (3.19) for a;”(p-l) and inserting the

result into (3.12) we obtain:

(i) apn 1T
) _ 2 B 2 0 Ljy )
Tex(p=1)= _--[-J-L-D(m-o-x —J-P-—(‘,,J [ ;,f_,ai ] (3.20)
pl

I1f face p=l, p=2, or p=3 of node (i,3j, k) is on a
boundary, the discreet nodal balance equation (eqn. (3.17))
is used with line 1,2, or 3 replaced by:

(:) )
A 2 [ f a&,] [ “hnuh] (3.21)

U) ()
V. X.| Dt

If the face is p=4 or p=5, (3.21) is used with X4 in
place of X., and inserted into eqn. (3.17) in line 4 or line

5, respectively.

In this section, the derivation of the discreet nodal
balance equation was extended to include the case where face
p was on the boundary of the reactor. Equation (3.17) was
written for node (i,j,k) for odd i. A complimentary equation
exists for even 1. If node (i,j,k) is on the boundary of the
reactor, eqn. (3.21) is used to replace the appropriate line
in (3.17). These equations can be written for each node in
the reactor, and solved on a computer to yield volume-
averaged fluxes and a critical eigenvalue, provided that
cross sections and discontinuity factors are available. The
more traditional mesh-centered finite difference equations
can be obtained from the above equations by setting all of
the discontinuity factors to unity. Because the
discontinuity factors correct for the use of the finite
difference approximation, the above method will allow the use
of larger nodes. We shall refer to the above method as the
Coarse Mesh Finite Difference (CMFD) Method.

36




3.5 Quadratic Based Coupling Equations

Our goal in this section is to develop an improved
relationship between the surface-averaged current and the
volume~averaged fluxes.

3.5.1 Transverse-Averaged Flux in Ouadratic Form for an
Equil 1 Tri ]

We once again examine face 1 of node (i,3j), shown in
Fig. 3.8, Equation (3.10.c) was used to define the face-
averaged flux for p=1 (x=0). We can generalize this and
define a transverse-averaged flux as a function of x within
the node (i,j):

=(i.)) 1 Kon
: (*)';'(‘;';J‘AQ{E[K,,,,dM(x.y.E) (3.24)

The right hand side of eqn. (3.24) can be represented by
a quadratic polynomial. This quadratic polynomial is forced,
within node (i,j), to equal the face-averaged flux,
$?n(p-)). when x=0, the value of the flux at the point,

¢$”(&p0), when x=X4, and when integrated over x according to
eqn. (3.25),
-(i.j)

-i/-l:-:f‘dxy(x)a‘,‘"’(x)=¢, (3.25)

it is forced to equal the volume-averaged flux for the node.

Suppressing the group and node notation temporarily for
simplicity, and defining a dimensionless parameter § where

Emx/X,, we write the polynomial expression as:
$(2)=0(x,.0)P(8)+G(0) P,(&)+ F Py (%) (3.26)

where
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P(2)m C, +C,§+C.¢E
P;(C)' C2a+CZb§+C2cgz (3.27)
P(&)= C, +C,¢ +C, &

The coefficients in (3.27) are found by forcing P,(¢),
P,(¢), and P,(¢) to meet the following requirements:

P|(€'0)="0 Pz({-0)=l P;({-O)‘JO

P|(¢'1)=1 Pz(enl)ac PJ(g-l)zo (3.28)
and
Ly(c)P(e)dg
Iy(e)dg
Jpeorwdg
[y()a o
[yc)P,e)dg | )
= y(§)m—==(1-¢
[yerae 7i-e)
The result is:
P](¢)= "6 +2€2
Pz(‘)zl"5§+4€2 (3.30)

P,(3)= 65"'652

Putting these results into eqn. (3.26), we obtain the
quadratic expression for the transverse-averaged flux:

3(:) = [-——- + 22’ ]¢(x,.o)+[l - -5-5-4- if—-]c)(o)

X, Xt X, X
6 6 {(3.31)
X X |-

+ —— o So———

[x, X }‘°
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The analytic derivative of (3.31) with respect to x is:

...._.....dzi‘) = --[ -1+ ——-:,db(x,,,o) + —-—[-—5 + —--Jd’(o)

X, X, X, X,
| 1 (3.32)
X
+—|6-22
Xa[ X }3

Writing eqn. (3.32) in terms of node (i,j) quantities
and returning to the group and node notation, we have:

damh [ 4x] [ Sx] “n
= —| =1+ = (¢ (x,.0) +—| -5+ =9,
X, X, X, X,

12x |wiy
Ak A

(3.33)

We can now use this expression in egn. (3.9) to produce
a relation between the surface-averaged current and the
volume~averaged fluxes which is more accurate than eqn.
(3.10.a). Evaluating eqn. (3.33) at x=0 and substituting the

result into eqn. (3.9) gives:

i)

7“”(p-1)--%—— 0D (X,,0)+ 58, (p=1)- 60, ] (3.34)
d

In order to write an analogous equation for face p=2 of
node (i-1,j), we must first re-write (3.32) for a node of
opposite orientation where x varies from x=0 to x=-Xq:

dé(x) |1 J &
5 [X xd]d’(x,. )+[A+ ]6()

6 12x]=
[x, X ]¢

In terms of node (i-1,3j) quantities, eqn. (3.35)
becomes:

(3.35)
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darbhn(x) 1  4x 5  8x |=-1
o--l...__.__: ..._..+___ (=4 - , _+“ S -
T X, % @, " (-x,.0)+ X% 8, (p=2)
6 12x [=si-1p
[&:*73’]“

(3.36)

The equivalent of (3.34) for face 2 of node (i-1,3) is
then:

“lo))
8% (P = 2) =

D(l-l..l)

"‘5(_['¢;‘-l'”('xd'°) -56, " (p=2)+ 63‘,""”]
d

(3.37)

At this point, we could apply a continuity of surface-
averaged flux and current at the face at x=0, and eliminate
the surface-averaged flux with eqns. (3.34) and (3.37), but
the resulting equation would contain the point fluxes
¢ (x,,0) and ¢~ (-x,,0). We do not want to solve for the
point fluxes during the solution, so we require additional
equations to eliminate the point fluxes from eqns. (3.34) and
(3.37).

In order to obtain these additional equations, we expand
our view of the nodes surrounding node (i,j) from the nearest
neighbor coupling of Figs. 3.4 und 3.5 to the extended
coupling of Figs. 3.9 and 3.10. Fig. 3.9 shows the extended
coupling for nodes of odd i, and Fig. 3.10 shows the extended
coupling for nodes of even i.
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i+3,j+1
.

Figure 3.9. Extended Coupling for Node
is odd.

(i,j) when i

Figure 3.10. Extended Coupling for Node
is Even.

(i,3) when 1

For face 1 of node (i,j), the nodes of interest are now:
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=.2Xd =-Xd x=0 x=Xd x=2Xd

Figure 3.11. String of Nodes for Face 1 of Node (i,3)
where i1 is odd.

The next sub-section will develop expressions for the
surface-averaged current at x=Xq in terms of node (i,3)
quantities and node (i+3,j+1) quantities. 1In addition, an
expression for the surface-averaged current at x=2Xq will be
written in terms of node (i+3,j+1) quantities. These
equations will be used with (3.34) to obtain an expression
for the surface-averaged current for the right side of x=0
that does not contain the point flux ¢9”(X¢0).

3.5.2 Eliminating the Point Flux at x=Xg

Strictly speaking, the surface-averaged current cannot
be written for the point at x=Xq. We therefore write an
expression for the surface-averaged current across a surface,
perpendicular to the X; axis, a very small distance, €, to
the left of the point x=X4q. In the limit as this distance €
shrinks to zero, we approximate the surface-averaged current
at x=Xg. Evaluating egn. (3.33) at x=X4 - € and substituting

the result into eqn. (3.9) we get:
9)] -
e, (x=X,-¢) =
¢ i —(i.j) =i, j)
~—L—[3¢(x,0)+38, (s = - 63,
d

(3.38)

Using the same argument as above, the surface-averaged
current can also be written for x=X4q in terms of node

(i+3,j+1) quantities. This is done by evaluating eqn. (3.36)
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at x=Xgq + € and substituting the result into egn. (3.9).
This gives:

(|+3 Jj+1)

(x=X,+¢)=
D"*’~”" . —ies —(i4+3,41) (3.39)
—_— ~3¢;,+3J+1)(Xd'0)—3¢L+3J+l) )+6¢ +3j+ ]

X,

The surface-averaged current for face p=2 of node
(i+43,Jj+1) can be written by evaluating (3.36) at x=0 and

inserting the result into egn. (3.9). This gives:
—=(i+3,j+1) _
J;X‘ (p= 2)=
D(l+3j+l) 43 il —(i+3,j41) (3.40)
EX [¢('+31+”(Xd,0)+5¢(+ j"‘) ) 6¢‘ J ]
d

The goal is to obtain an expression for the surface-
averaged current for the right side of the face at x=0 that
does not contain the flux at the point x=X4, nor the surface-
averaged flux at x=2Xgq. The procedure is outlined as

follows:

1) Apply a continuity of current and continuity of
flux at the point x=Xg. As the distance € shrinks to zero,

the small surface for which egqn. (3.38) was written
approaches x=Xg from the left and the small surface for eqn.

(3.39) approaches from the right. We assume that these
surfaces become one surface, and the current is continuous
across that one face. Use equations (3.38) and (3.39) to
arrive at (3.41):

[D(c+3 }+l)’$('+3 J) + DD ':p'(i-j)'
8 8
(i+3,j+1) i.j)
| Dy 4 D)
[D(HS j+l)¢('+3 l+l)( - 2) + D(,/)¢(;j)( _ 1)]
[D(1+3 J+HD + D(; j)]

¢g(xd'0) =

(3.41)
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where, because of the continuity of flux at x=X4,

¢,(x,.0)= ¢;"”'“”(xd.o) = ¢\ (x,.0) (3.42)

There is no theoretical justification for applying the
continuity of current at x=X4, but results in Chapter 6

should testify to the adequacy of this approximation.

2) Substitute Egn. (3.41) into (3.34) to obtain
(3.43):

X, 700 —(i.j) -i,j)
D“'j) le (p = l) 5¢ (p = ) 6¢
8
i+3,j+1) (43, I"'l) (f])-( )
K D g | ping
' [l)(u-s.}ﬂ) + DU./’)] (3.43)
[Dma J+) ¢(f+31+1) _2)+ D(' J) ¢<w) - 1)]
- i+3,/+1) N
[D{»7 + D]
3) Apply a continuity of flux at x=Xq. Add egns.

(3.34) and (3.40) and solve for the surface-averaged flux at
x=2Xq. This gives:

O [=(ij) ==(i+3, J+1)

—=(i+3,j+1) —=(i,j)
¢, " (p=2)-=-¢gj(p=l)--5-¢ -9,
i, Ci+3,j+1) (3.44)
Tex(p=1  Tex " (p=2)
i) i+3,j+1)
R

4) Substitute egqn. (3.44) into (3.43). This gives:
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Xd 4D;4‘+3.}'H) + SD;LJ') 7“,;) i
2007 | DERF 4 pin TeR (p=1)29,(p=1)
+_}_(_d, 7(3‘.}?'“”(1) -2) [ZOD;M') +24 D;M‘M)]-u,j)

1+3,j+1) ol (i+3,)+1) ) g

20 [ DY 4+ DI | 20 DI + D |

D(M'M) w-(i+3,j+1)

o 33 1
(i+ 'f’ ) (i-j) 8
5| D + D"

(3.45)

3.5.3 Eliminating the Point Flux at x=-Xq4

The prccedure that was outlined in the last sub-section
for eliminating the point flux at x=Xq from (3.34) can be
followed to eliminate the point flux at x=-Xq from eqn.

(3.37). When this is done, we get:

X, [4Dr e sp
i-1,/) i=4,j=1) (i-1,/)
20D~ | pli=4Ih 4 U=t
X, Ty [0 42D
20 [D;l—«‘.j—l) +D;f-l.j)] ZO[D;l-«t.j-l) +D;i-l.j)] g

~4.j-1
l%' = w-—(i-4,j-1)

- 5[ D;i—'t.j-l) + D;i—l‘jq ¢c

(i=1./) - FU=1))
Tex " (p=2)2 -8, " (p=2)

(3.46)

3.5.4 Eliminate the Surface-Averaged Flux at x=0

Eqns. (3.45) and (3.46) express the surface-averaged
current at x=0 in terms of node and surface-averaged
quantities to the right of the face at x=0, and the left of
the face at x=0, respectively. These two equations can be
used to eliminate the surface-averaged flux at x=0 by
applying a continuity of flux across the face. Before this
is done, however, we once again iacroduce discontinuity
factors for the same reasons as before. Eqn. (3.45) becomes:
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i) (i+3,j+1) (i.j
X, f( ;-1 4D‘«+ j+ +5Dxe.n (i.j)( )= 5(,,,-)( 1)
200241) D;i+3.j+l) + D;"’" gxp=1)=0¢, (p=
(i, J) (i+3,/+]) (i, )) (. (i43,j+1) ‘
Xifopm Jax” (p=2) f, ,,.,[2008 +24D, ]-w)

20 [Dmam) +D(ll)] 20[D;i+3./+l) + l);u)] ¢,

(LJ) i+, j+1)
g.p=! D

5[D<t+3 j+l) D“ ,)]

(3.47)
({43, j+1)

where f;'pjl, is the discontinuity factor for the right

side of the face at x=0. When the discontinuity factor for

the left side of the face at x=0, f;‘p,'_é) » 1s introduced into

eqn. (3.46), we get:

i- =4, j=1 (i=1.j)
X f(Plé) 4[);‘ J )+5DB' J (‘,?'/)(psz): ¢('~U)(pa2)
20 D;"”’ D;i“4.l-l) + D;""” L

XS T | fe[20D0 + DI

4

20 [D;"” by D;i—l.j)] 20[D“" =0 +D‘" ,,)] g

i-1, -4, j-1 (3.48)
ey DY iy
S[D(l—4j i} +D“ u)]‘p
Adding egns. (3.47) and (3.48), with:
~=(i,]) ==(i~1,j)
8, (p=1)=9, "(p=2) (3.49)

gives a higher order expression for the surface-averaged
current at x=0 in terms of volume-averaged fluxes, diffusion
coefficients, discontinuity factors, X4, and surface-averaged
currents at -2Xg and 2Xqg:

46



( )
Tex(p=1)=

i=1,j) i~4,j=1) (i) (i) aedjen
X, [50; +4Di" }+ X, fun [51), +4D! }
(i-1.)) (i-1.0) (i-4.-1) () gli=t)) i.J) i+3.541)
2OD8 D, +Dg 20D‘g epe D; + D;
D“ 40 wi-4-0 | Dy M)+ 6/5 D‘H"” —i-1,/)
S[Du—”«-n +D“ lj)]¢ [D(i—4j ”+D“ u)] ¢a
J _ ;';ll D:U) +6/3 D;M'j*,l ) 'Q',""” + :};’:l D(M D E(MM) |
sf;l'é) [Dl+3.}*l)+D;l.J)] g ;:;‘I-é) S[D“"””)-O-D“”] 2 (3.50)
(i-‘j E3)) (i.j) =2(i+d.j+1)
X Ty X, T paa)
i—4,j-1) (-1.)) (i=1.)) i+3.,+D) ()
Y0 [DF 4 o] e 20 [DF T 4+

Completely analogous expressions to eqgn. (3.50) can be
written for faces p=2 and p=3 of node (i,j). The next sub-
section will develop analogous expressions for faces 4 and 5.

3.5.5 Quadratic Baged Coupling Equations for the Axial
. ;

Polynomial representations for the transverse-averaged
flux have been developed and researched in Cartesian geometry
for as high as 4th order [Z-1,G-1). 1In this work, a
quadratic polynomial will be used for the axial dimension.

For face 5 of a node (i,j, k), Fig. 3.12 shows the
adjacent node (i,j,k-1), where it has been assumed that the
height of both (i,3j,k) and (i,j,k-1) is the same and equal to
24 .




pz4 zgzd
(i,3.,k)
ps3 z2=0
p=4
(ipj;k"l) ...z
pe3 Z=-2y

Figure 3.12. Conventions Used for the Quadratic
Expansion in the Axial Direction.

Using Fig. 3.12 as a reference, the quadratic form of
the transverse-averaged flux for 0Sz€2Z, vurns out to be:

$<z)=[ -t %%—]q»(z o)+ [~3z-‘-+-35%]3(z-zd)
(3.51)

Z, Z

Eqn. (3.51) can be used for

a(z* Zd) with 5(“ -2,,).

-Z,5250 by replacing
Taking the derivative of (3.51),

and
applying the node and group notation shown in Fig. 3.12 for
node (i,j,k), we get:
de’P) 1 62 1 62 |-
dz Z, Z, Z, Zd
(3.52)
1 122 |
+L 12z ¢'1)
Z,l ¢

Evaluating eqn. (3.52) at z=0,

and inserting the result
into eqn.

(3.9), we obtain and equation for the surface-
averaged current at face 5 of node (i, j,k):
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1.j.k) -
:.zl (p=9s)=

b (3.53)
_.2(32___[_4‘»“/»( .- 2¢““)(p 0+ 63““)]
'd

We can eliminate the surface-averaged flux at face 4 of
node (i,j,k) by evaluating (3.52) at z=Z24q, inserting the
result into egqn. (3.9), and solving the resulting expression
for E?L“(p-4). When this is inserted into (3.53), we get:

'Z NN} (i, .k) iJk)
Y, 0L 0 (p=5)= -8, (pus)+ G,
! 3z, (3.54)
(ivJ k)
D(”“ 7!& (p = 4)

An entirely analogous expression can be obtained for
face 4 of node (i,j,k-1). This is simply given as:

_Z,
3 D(I,j.k-fl)
8

wn(i,j,k=1)

(Ikl iJ.k=1)
T paa)z 0 (pea)-0,
(3.59)

(4, .k=1)
D“j*-n 73.! (P = 5)

Equations (3.54) and (3.55) can be used to eliminate the
surface-averaged flux at z=0 by applying a continuity of flux
across the face. Before this is done, however, we introduce
discontinuity factors to both equations. Equation (3.54)
becomes:

Z,f "’.'-‘s) ivjok) —(i.J, n i, ] k)
- B2 (p=5)= ¢ )+f(lik)¢

i,/,k) [ p=s
30
(3.56)

Zf - (1, ‘)
D(Uk)s-] :

and eqn. (3.55) becomes:
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U -k"l)
Z ) 7(:1&-1) “d)= aﬂ.!.k b fu;k -1 '“ -b
¢

3D“'J k-x) p g.p=4
(3.57)
+ 61)01h~n 7 P (pas)

Adding eqns. (3.56) and (3.57), with:

-=(i.j.k) w=(i,j k=1
(=)=, (pma) (3.58)

we get:

3D(Ukl) f(ljkl) 31)((/&)

8.p'n4

-1
T () s)= { Z froms 2, } ,

.
f ‘( 'g.i.s (Jb + au.m-n
"jv*"') 4 I 4
g.p'=4

Z, ,p.s (k)
D“"’“ fuu 1)7 (p=4)

Z F-sk=0
- (u,g-n Ll ( = 5)
6[%

. /

v

(3.59)

Thus, for an internal node, we may replace eqn. (3.16)
with eqn. (3.50) for faces 1,2, and 3., For faces 4 and 5, we
may use eqn. (3.52). Using these expressions for the
surface-averaged current, we obtain an equation describing
the neutron balance for a node (i,j,k) which replaces eqn.
(3.17). <he only task left to fully describe the equations
which govern the static problem is to treat the case in which
node (i,j,k) is on the boundary of the reactor. This will be
done in the next section,

3.6 Boundary Conditions for the Quadratic Based Coupling
Bquations

It turns out that the extended coupling of the quadratic
coupling equations in the 2-D plane introduces a number of
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different boundary conditions which must be addressed before
the method can be applied. There are a total of five
possible boundary condition situations which may be
encountered. For face 1 of a node (i,j,k), these are given
in Table 3.2:

Table 3.2

Posasible Boundary Condition Cases for Extended Coupling in
the 2-D Plane

Case 1 Soundary

ael) u:-x. AndXy

Case 2 poundary ' H’

=Xy ™ xeXy amiXy

Cﬂse 3 Boundary Boundary
o Xy

Case 4

Case §

To derive the quadratic based coupling equations for
these five cases, the procedure outlined in the last section
is followed. When a boundary is encountered, eqn. (3.18) is
used to relate the surface-averaged current to the surface-
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averaged flux. The derivation for each case will not be
given here, but it should be noted that these derivations are
somewhat simpler than the fully internal node derivation of
the last section. This is due to the fact that in these
cases, the surface-averaged fluxes at x=2X4q and/or at x=-2X4
do not appear, and therefore do not need to be eliminated.
Also, in the cases where the point of the triangle is on a
boundary, the surface-averaged flux is given by the boundary
condition and does not need to be eliminated,

3.6.1 gCase 1 Boundary Condition

In case 1, the left side of the surface at x=0 is
described by eqn. (3.18). The right side of the surface at

x=20 is described by eqn. (3.47). Using these, we obtain:
(4J)
7‘.:\"‘ (p [ l) -
, -1 -=i.j) i+3.j+l) (149, ,,,, (3.60)
:::l[rl] ' {"'rz ¢, + 133; Jt.x. )}

where, to simplify the appearance of (3.60), the following
constants have been used:

Uu) i.j) (143, j+1)
X f (1)) SD( +4D + ')
20 D(in g.p=1 [D"” +D"+““’]

g8.p=l
D(lj)+6/5 UHS}H)
rl' (f":| ‘[L i+3,j+
8P i D:U) D‘ un]

[ o=

‘ D(H-J JHD

)

l", B Jepmt S[D(u) + Dmsm)] (3.61)
T, = f) X, /20

8.p%! i) (i+3,j+l)
[ D + D]
3.6.2 Case 2 Boundary Condition

For case 2, the boundary condition occurs at x=-X4,
which is at the point of the triangular node (i-1,3j). The
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boundary condition is therefore applied to a small surface,
perpendicular to the X; axis, which is located a very small
distance, € , to the right of x=-X4. 1In this case, eqn.

(3.18) is replaced by:

—(i=1.))
a;f,f,,{,} "¢ surface) - Be nurgace = ﬁ;'p;,fu’ (& surface) (3.62)

where  f;.ume i8 the outward directed normal to the small €

surface, Using (3.62), the equation for the surface-averaged
current turns out to be:

L))

sx(p=1)=
-1 w(i=1.)) (¥)} w-i+3,)+) (i+3,/+1) (3.63)
{n}' {rg, " -ng " + 1.8, + IR (w0}
where, as before, the following constants are used:
iJ) (¥} (+3,j+1)
N m Xd LP" SD:‘ +4Dj‘~
| ZOD;L}) :l;:.:/‘) D(t.j) +D(l+3.j¢l)
X, +3D o)
un) (il) =1.0) Ali=1,))
D" | 5X,B; ,,,,,{,,HZD" Dol
(i=1.) (41) (i=L))
ra 12D, o i + 6 X By oint
(i=1,)) (i=1,)) p(i=1,)
5X, ,',,m, +lZD a,'m,{,,
(i) iJ) i+3,j+1)
r,m Jum D‘ +6/5 D}
i=1.j) i*3 j+l) W)
fish [D‘ + D
an [ i+3.j+1)
e g.pel L’
4 i-l.;) S[D(H-J J+l) +D(U)] (3.64)
8P
(i.J)
f_plnl /20
3 ;;15) [D(nﬂ J+l) + D(l /)]

In general, the boundary condition parameters for the
outer surfaces of the reactor (which appear in eqn. (3.18))
will be specified by the user, but the boundary condition

53




parameters for each € surface (i.e. each triangle point
which lies on the surface) will not. This is not a problem
if the outward directed normal to the € surface is
coincident with the outward directed normal to the reactor
surface. In that case, the user specified parameters may be
used in egn. (3.62). Unfortunately, the normal to the €
surface is often not coincident with the outward directed
normal to the reactor surface. Fig. 3.13 illustrates one
such occurrence, where the +X axis points in the direction of
the outward normal to the &€ surface at the point.

Reactor
Surface
Normal

+X Direction

Figure 3.13. Discrepancy Between the Normal to the
Reactor Surface and the +X Direction for
the Point of Node a.

In addition to the situation illustrated in Fig. 3.13,
there are other occurrences in which the relationship between
the reactor surface normal and the € surface normal is
different. It is not practical to require the user to input
the boundary conditions for every ‘triangle point' on the
reactor surface, so the parameters at the point must either
be obtained from the user input parameters, or an
approximation must be made that the parameters at the point
are equal to the user input parameters. This matter will be
discussed further when results are presented. Appendix A
briefly outlines a technique for using the known boundary
condition parameters at the surface of the reactor for the
parameters at a point,

1.6.3 (Case 3 Boundarxy Condition
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In case 3, there are two boundary conditions. The left
boundary occurs at face 1 of node (i,3j), and the right
boundary occurs at the point of node (i,j). The surface-
averaged current for this case is given by:

Tiho-0=-pen [T {50

(3.65)
where the constants are defined as:
(i) NP )]

f(ii) J) X 3‘1;’0"“ + 3D( ’ aS’POW + a(w)

:n 8.p=U-g,p=l1 (i.j) [ IP(N) 8.p=1
D‘ 5X,B. 0 +120‘ o 5 e

6X (i.J) +12D(l})a(')) )
r =f('.l) & poini 8.point
27 Jgp=l 5X (i +12D(u) (i.j)

8. point g point

Note the mixture of different boundary condition
parameters.

3.6.4 Case 4 Boundary Condition

In case 4 there are two boundaries, each at a point.
The surface-averaged current is:

(slljr?(P-l) [ ] {r¢‘ J) ¢:’—l.j)} (3.67)

The constants are:

Xd f(tl) X (i.j) +3D(U)a(l})

- g.p=1 £, point 8,poins
1™ i) pli=1)) (i) i) (i)
Dg fg,p=l2 SXdﬁ point + 121)( o 8.point
Xd dﬁ(‘;:ni: + 3D<‘ |J)a('p:‘.3
(i-1)) (i=1,)) (i=1,)) o (i=1,j)
D SXiBe om +12D, ", o)
_ S0 [6X,BYD,, +12D00ai),

27 p(i-1)) (i.j) i.J) ;i) (3.68)
apm2 | O XaBo moint +12D‘ Oy moint
(i-1j) i-1.j) ~(i=1,j)

_ | 6XBeoim 1200
3= (i-1,j) 011)(«ln
5X g.poind + 12D g point
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3.6.5 (Case 5 Boundarv Condition

The surface-averaged current for boundary condition case
5 was not derived. It turns out that a case 5 from the point
of view of node (i,j) is identical to a case 2 from the point
of view of node (i-1,3j). Therefore, if a case % is
encountered for node (i,j), the node of interest is switched
to the adjacent node, (i-1,3j), and a case 2 is solved.

3.6.6 Boundary Condition for the Axial Dimension

In the axial dimension, a boundary could occur at face 4
or face 5 of node (i,3j,k). The case of a boundary at face 5

is depicted in Fig. 3.14.

Boundary

Figure 3.14. Boundary Condition for Face 5.

For this case, the surface-averaged current becomes:

-1

u;t) (i.j.k) u;k) i,j k)i, j.k) 2&
(P 5) 8.p=5 p-s +.f(p-5 g.p=5 3D“’j'k)
f<uk>'¢;<'l"> (3.69)
8.p=5
Z,

” &
fiR T (p=4)

T AE
6[%

The surface-averaged current when face 4 is on the

boundary is:
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-1

Z,

(u k) (i, j.b) u; k) (ij k) (i, j k)
(p=4)= gomd | Fgpma T JgpaalPypia 3 Db
fum =(i,j k) (3.70)
p=4 ¢
Z (: J» k) (l A k)( 5)
6ly:zk) Fopmsd p=

3.7 Summary

In this chapter, the static form of the nodal diffusion
theory equations were derived for equilateral triangles. The
Coarse Mesh Finite Difference (CMFD) equations were derived
first, utilizing Fick’s Law and the finite difference
approximation to discretize the equations in space.
Discontinuity Factors were introduced to correct for errors
in homogenization, the use of Fick’s Law, and the spatial
approximation of assuming that the flux is linear within a
node. It was argued that the spatial approximation could be
improved by modeling the flux as a quadratic polynomial
within the node. Quadratic based coupling equations were
then derived with this model, and discontinuity factors were
once again introduced. It was mentioned that a difficulty was
encountered with the specification of boundary conditions at
the points of nodes on the edge of the reactor. This topic
will be discussed further in a later chapter.

In the next chapter, the transient equations will be
derived. Chapter 5 will outline solution methods for both
static and transient problems.

57



Chapter 4

Derivation of the Transient Nodal Diffusion Theory Equations
for Equilateral Triangles

4.1 Introduction

In this chapter, the discreet form of the transient
nodal diffusion equations will be derived. We shall start
with the semi-discreet equations (2.5.a) and (2.5.b), and
apply the same procedure to the leakage terms as was
presented in Chapter 3. This will lead to a set of equations
which describe the overall neutron balance for each node in
terms of node- and group- averaged fluxes, precursor
densities, discontinuity factor ratios, and constants. All
will depend upon the continuous time variable, t. In order to
simplify the notation, these equations will then be put in
matrix form. The theta difference approximation will be used
to discretize the prompt equation in time, and a direct
integration method will be used to discretize the precursor

equations.

4.2 Time Dependent CMFD and Quadratic Equations

Egqns. (2.5.a) and (2.5.b) describe the time dependent
neutron balance for a homogenized node, [/, and energy group,
g. In Chapter 3, these equations were written in steady
state form for a node (i,j,k), group g, and discretized using
the finite difference approximation. 1In this section, we
apply the results of Chapter 3 to (2.5.a) and (2.5.b) and
obtain the time dependent version of the coarse mesh finite
difference equations.

In the time dependent case, the cross sections and
discontinuity factors become time-varying. The time-
dependent expression for the surface-averaged current for

face p of node (i,j,k) is:
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1 1 J;l;ljk)(!)

_D:'j'k)(t) D(: ljk)(l) f(')k)(t)

f g(i_gl'j'k)(t) w-i=1,j.k)

f“ ¥ k) ¢

(ujk)

i3I

, (p.1)
(4.1)
=i jk)

(D-¢," ()

Equation (4.1) can be written for each face, p, of a
fully internal node. 1If a face, p, is on the external
boundary of the reactor, the expression becomes:

-1

(lm 2 ﬁ(u) (Ukl)
‘ (P')“"Bf' Lyuk) (uk;
‘ oM X for™ @ (4.2)
ij.k
;';lx.( s )(‘)]

where the boundary coefficient terms are assumed to be time
independent.

Inserting eqns. (4.1) and (4.2) for faces of node
(i,j, k) in the 2-D plane (p=1,2,3), and appropriate
expressions for the axial dimension into (2.5.a), the time-
dependent version of the coarse mesh finite difference
equations are obtained.

The development of Section 3.5 for the quadratic based
coupling equations is also valid in the time-dependent case.
The cross sections and discontinuity factors are again time-
varying. For the case of a fully internal node, the
diffusion coefficients, discontinuity factors, volume
averaged fluxes, and surface-averaged currents of eqn. (3.50)
become dependent on the time variable, t. This is also true
for the boundary condition cases of Section 3.6, except that
the boundary condition parameters are assumed to be time

independent.

59




4.3 Time Dependent Equations in Matrix Form

In order to simplify the notation of the transient

equations for subsequent discussions, matrix notation will be

used. A bold,

matrices. In this section,

uppercase letter will be used to represent

the definition of each matrix

will also include an illustration which shows the structure

of each matrix.

total number of energy groups.
total number of nodes.

- -4 --t--+4--1 :]2:

L

o

60

a G-element supervector
consisting of N-elemant
subvectors of the nodal fluxes

(i} k)
(1)

9

a GxG supermatrix consisting of
NxN element submatrices. The
diagonal elements of the
diagonal submatrices are the

inverse group speeds, —.
\"
8

a GxG supermatrix consisting of
NxN element submatrices. The
diagonal elements of the
diagonal submatrices are the
total minus the in-group
scattering cross sections,

)
00,



SN S O .

D a GxG supermatrix
consisting of NxN element
submatrices. Each diagonal
submatrix is an NxN, 7
stripe matrix (5 stripe for
2-D problems) of the
coupling terms. The two
solid lines on either side
of the diagonal represent
coupling through face 1 and
2. The broken lines
represent coupling through
face 3, which may be above
or below. The solid lines
furthest from the diagonal
represent coupling to the
plane above (face 4) and
below (face 5).

X,. a GxG supermatrix consisting of

NxN element submatrices. The
diagonal elements of the off-
diagonal submatrices are the
scattering cross sections for

(1.J.k) ,
group g’ to g, EZWP(1) geg.

hdp a GXG supermatrix consisting of

Iprec

NxN element submatrices. The
diagonal elements of each
submatrix are the prompt fission

operator, X, ,(1=B.)JvES/(1).

a G-element supervector of N-

element subvectors. Each
subvector consists of the node
averaged precursor
concentrations for family iprec

multiplied by the delayed
=(i.j k)
neutron spectrum, X, Cire (f)
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Sl I, hﬂw"( a GxG supermatrix consisting of
\ . M v

O NN DN O NxN element submatrices. The

MY Y IS AR diagonal elements of each

oSO submatrix are the delayed

o O e O fission operator for family

. . . S . (R}

MY RS S Y iprec, x(lg iprec 2 ( )'

In addition, we define:

L=D+X-ZX (4.5)

Combining these matrix definitions with the time
dependent CMFD or quadratic equations, we get:

v [dtb(t] [M,()-LO]O0+ 3 ApeCol)  (4.6.2)

iprecm|

dcdﬂ..:(:)=M.,m(:)w(:)-a,,,,,cc,,m(,) prec=loprec (4.6.b)

4.4 Time Integration Scheme
4.4.1 Theta Difference of the Prompt Equation

The theta difference method expresses the flux at the
new time step (n+l) in terms of a combination of the last
time step values and new time step values. The most common
values of 6 are 6=0, which gives a fully explicit method,
6=1/2, which gives the Crank-Nicholson method, and 6=1,

which gives a fully implicit method.

v—l[‘p(nﬂ) "‘b(n):, - 9{[M:,n+l) - L(n+1)]¢(n+1) + ’gcli‘mc “l;l':l)}

At iprecs|
(4.7)

+(1-9) {[M(n) (n)]‘b(n) + ilw«c lpm}

iprecel
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4.4.2 Direct Integration of the Delaved Neutron Precurgor
Equations

The theta difference method could be used on the delayed
neutron precursor equations. However, due to the form of
these equations, it is possible to use an integrating factor
and integrate the equations directly.

The first step is to define the following:

us A‘apm:( ‘n)
. Alpm:( n+l )

Also define the time dependent vector, B(1), for each

(4.8)

precursor family:

Bnpm(‘) = Mapm(‘)d’(’) iprec = |, nprec (4.9)
Substituting these definitions, we obtain:

‘M(u) Clpne( ) l

—B, (u) iprec = 1,nprec (4.10)
du A’iprcc pree

Using the integrating factor e€“, we can write (4.10)
as:

1

iprec

-,,d

du [ “C'vm (")]

B, (4) iprec=lonprec  (4.11)

Deorec

Integrating (4.11) from u=0 to u=u,,, we get:
L ~¢'B d
/1 Ipm(u) U iprec=l,nprec (4.12)

iprec

ehcbm(“ ) Clpm (0)

In order to evaluate the integral on the right hand side
of (4.12), we need to know the function B, () across the

time step fromu=0 to u=u,,. We will assume that the

function is linear across the time step:
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=1~ M
B,,,,(u).-[l - }B“’"‘(OHL ]B,w(um) (4.13)

max max

Substituting this expression for B,,.(«) into (4.12) and

[(1-e™) “e_um]n, (0)

iprec

um
N (4.14)

F,_(l-e‘“)]@.mium)

integrating yields:

Core (1) = €™ C,pr (0) +

um A’ipnc

Returning to the original notation, and defining the
following functions which depend only on 4,, and the time

step size ¢, -1,

- AOM(‘MI "l)

8, (iprec,&1,) m e

Q - e'*m('m“'.‘))
, ~A u(‘uol"‘n)
8, (iprec,ar,) = -
! A’Ipm‘(‘n#l "'n) (4.13)

Q - e"‘pm(‘.ol "n))

iprec. At ) |~
83("”“: ‘n) Aa‘pm‘ (‘IHI - 'n)

we obtain:

Clore = & (iprec,a,)Cipn

M(n) ‘p(n)
+ 8, (iprec, At ) —E=—— (4.16)

A'lpnc
M(ml) ¢(n'l)

iprec

+ g, (Ciprec, At,) 1
iprec

4.5 Summary

In this chapter, the time dependent nodal balance

equation was fully discretized, The spatial discretization

was achieved by applying the results of Chapter 3, but with
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time dependent cross sections and discontinuity factors. The
temporal discretization of the prompt equation was achieved
by using the theta difference method, and the delayed neutron
precursor equation was treated using a direct integration

technique.

The equations describing the static and transient
neutron balance for nodes of triangular-z geometry have now
been completely developed. The next chapter will discuss

solution methods.
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Chapter 8
Solution Methods for static and Transient Problems

5.1 Introduction

In previous chapters, the equations describing the
static and dynamic neutron balance in each node were derived.
In this chapter, the solution of these equations will be
discussed. The material in this chapter closely follows

Chapter 4 of Gehin (G-1]).
5.2 8olution of the Static BEquations

5.2.1 Numexical Solution of the CMFD Eguations

The Coarse Mesh Finite Difference equations, derived in
Chapter 3, can be put into matrix form using the applicable
definitions from Chapter 4. If, in addition to the loss
matrix L, we define a total fission operator M as:

N M a GxG supermatrix consisting of
N['\ W O OO A NxN element submatrices. The
Y ALY Y I diagonal elements of each

ST submatrix are the total
N 3 \
N OO o o G fission operator, XQVZZf"(O:
,“,“.“,“ where ¥, is defined by
NI RSN eqn. (3.1.b).
L |
G

we can write:

|
L®=—MD 1
) (5.1)

This is an eigenvalue problem with the largest
eigenvalue being equal to the critical eigenvalue for the
reactor, and the associated, all positive eigenvector being
equal to the solution of the neutron flux in the reactor.
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A common and effective solution method for eigenvalue
problems is the power iteration method (N-1]. The power
iteration method estimates the fission source, on the right
side of eqn. (5.1), using the flux and eigenvalue estimate
from the last iteration:

LY = %M&‘"" (5.2)

where m refers to the iteration number. During the solution
process, a new eigenvalue can be estimated using the Rayleigh

{n+1)
Amet =A““’%——5>w'¢: (5.3)
W,QM)

where the brackets in eqn. (5.3) indicate integration over
energy and space, and the weight vector, w is arbitrary but
does affect the convergence of the problem. A good choice
for the weight vector has been found to be the flux (or
fission source) from the last iteration,

quotient [N-1]:

At each iteration, the matrix L must be inverted to
obtain the new solution vector, ®™'., For problems with
greater than two groups, this inversion is best achieved
using iterative methods. In this implementation, an
iterative method is always used, and thus a 2 level iteration
scheme i3 used to solve the CMFD equations. The power
iteration scheme is commonly referred to as the outer
iteration, and the iteration scheme to invert L is referred
to as inner or flux iterations.

5.2.2 Qonvergence of the Iterative Methods

The iteration matrix associated with eqn. (5.1) is found
by multiplying both sides of (5.1) by the inverse of the loss
matrix:
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O+ = -;:-Rdﬁ'“’ (5.4)

where:
R=L"'M (5.5)

Recall that the mesh-centered finite difference
equations can be obtained from the Coarse Mesh Finite
Difference equations by setting all of the discontinuity
factors to unity. The L matrix for the mesh-centered
equations can be shown to be real, irreducible, and
diagonally dominant [N-1]. 1In addition, the diagonal
elements of L are positive and the off-diagonal elements are
non-positive (a matrix with these properties is an “S-
matrix”). The inverse therefore exists and has all positive
elements [N-1])., The fission matrix, M, is a non-symmetric,
non-negative matrix. The resulting Rmatrix, therefore, is a
non-symmetric, non-negative matrix. The convergence of the
outer iterations (to the largest eigenvalue and its
associated, all positive eigenvector) using the power method
is guaranteed when the Rmatrix is irreducible and non-

negative [N-1].

A method for accelerating the convergence rate of the
outer iterations is Wielandt's Method (N-1]. 1In this method,
the power iteration method is re-formulated by subtracting
the quantity:

1
(-A—'-;M)di (5.6)
from both sides of eqn. (5.2) and defining:
1 1 1
— - (5.7)
A A A

where A’ is known as the eigenvalue shift. This gives:
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(L - —I—M)(D(m“) = 1

a Mo™ (5.8)

A’I
The new eigenvalue problem is solved with:

, w, P!
A™Y =A‘”"L———2 (5.9)

<“udﬁmv

and the eigenvalue we seek can be found by:

A’(mol) — 1\(“"1))"

"szﬁifi7 (5.10)

The benefit of Wielandt’s method can be seen by
comparing the dominance ratio of the shifted problem (i.e.
eqn. (5.8)) to the unshifted problem. The dominance ratio is
a measure of the asymptotic convergence rate of the outer
iterations. The dominance ratio for the power method is
given by the ratio of the second largest eigenvalue to the
largest eigenvalue:

= (5.11)
4]

The closer the dominance ratio is to unity, the slower
the convergence rate. The dominance ratio for the shifted

problem is:

(5.12)

which will be less than the dominance ratio of the unshifted
problem if A’ is larger than A.

The nature of the acceleration method, as proposed by
egqn. (5.8), is such that all the energy groups must be solved
simultaneously. Sutton [S-1] has demonstrated that the
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Wielandt acceleration procedure can be adapted to group-wise
solution methods by introducing a diagonal NxN matrix of
“spectrum ratios.” These spectrum ratios are the group g’ to
group g fluxes. Formally, we define an NxN spectrum ratio
matrix, A, as:

Ags’ = [¢sl]-l¢s' (5.13)

where @, is an N-length column vector of the group g

fluxes. The matrix equation used for the solution of the
group g equations becomes:

1 & m m+ 1 < m |
(L S oo = S 5.1

g’-l g'-l

where it can be seen that the spectrum ratios from the last
iteration are used to compute the fluxes at the current
iteration. Egns. (5.9) and (5.10) are used to compute the
eigenvalue, as before.

The use of Wielandt’s method accelerates the convergence
of the outer iterations, but decreases the convergence rate
of the inner iterations. This is because the matrix to be
inverted at each outer iteration (left side of eqn, (5.14))
is nearly singular if A’ is close to the current value of
A (the choice of A’ will be discussed shortly). The best
overall convergence is achieved if an appropriate value of
A’ is chosen such that a balance is obtained between inner
and outer convergence rates [S-2].

The inner iterations, used to invert the matrix on the
left side of eqn. (5.14), can be solved using common methods
for linear systems. The Jacobi method, Gauss-Seidel method,
or Successive Over Relaxation (SOR) method (and others) [H-2]
could be used and each are guaranteed to converge for
irreducibly diagonally dominant matrices. The method which
will be used here is the Chebyshev Cyclic Semi-Iterative
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(CCSI) method. CCSI is similar to SOR except that instead of
a single, constant relaxation parameter, the relaxation
parameter is modified from iteration to iteration in order to
achieve a better overall convergence rate. Formally, the
CCSI method is obtained by partitioning the Jacobi iteration
matrix in such a way that the spatial mesh is ordered in a
checkerboard of “red” nodes and “black” nodes [H-2,S-2,G-2].
Chebyshev acceleration is then applied to this partitioned
matrix. The checkerboard pattern for a triangular mesh is

shown in Figure 5.1.

Figure 5.1. Checkerboard Pattern for Inner Iteration
Solutions Using CCSI.

It can be seen in Fig. 5.1 that each red node is
entirely surrounded by black nodes, and vice versa. The
iterative procedure calls for the solution of the red nodes
on the first iteration. The next iteration solves for the
black nodes using the solution of the reds, and so on. The
relaxation parameters for the first iterations are given by:

1

m _ m _
- 2 Jacobi
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and for subsequent iterations:

1 1
(m+1) (m+1)
a)ml = 2 (m) a)black = [ 2 ( ) (5.16)
1- %;Jacobia)black 1- Apjacobia)ryl

The P, Which appears in eqns. (5.15) and (5.16) is

the spectral radius of the Jacobi iteration matrix. This
spectral radius can be estimated at the beginning of the
calculation by performing Jacobi inner iterations and
computing:

+1
s _Jor=0t)
(pJacobi) - "(D(m) — d,(m-l)n
1

(5.17)

where it can be seen that the l-norm has been used to compute
the Jacobi spectral radius. In practice, it is more
convenient to perform Gauss-Seidel iterations in order to
compute the spectral radius. The Gauss-Seidel spectral
radius is equal to the square of the Jacobi spectral radius.

During the solution, the outer iterations are performed
until the specified convergence criteria have been met. The
criteria used here are the eigenvalue convergence and the
convergence of power in the fueled nodes. That is:

(m+1) {m) crit

P§m+1)__ P(im) et
maX|——r | S Epwr
i

et e .
where 8@, 1s the user-specified eigenvalue convergence and

€., is the user-specified convergence of the power in fueled
regions. PT+” is the current iteration’s estimate of the

power in node i, and P!™ is the power in node i from the

last outer iteration.

72



At each outer iteration, the inner iterations must be
performed until a specified criterion is met for the solution
of the flux. Smith [S-2] has shown that the overall
convergence of the problem is optimized if a pre-determined
number of inners are performed per outer, rather than
converging the inner iterations at every outer. The number
of inners per outer is computed at the same time as the
spectral radius, and for a user-specified reduction in the
this quantity is estimated by (G-1]:

it
error, &g ..

log(&;m../2) 5 18)

10g((@sen), = 1)

where @®,,, 1is the asymptotic relaxation factor for CCSI,

=

which is equal to the “best” relaxation factor for SOR.
Appropriate values for the error reduction, £  , range

from 0.1 to 0.4 [S-2].

§5.2.3 Numerical Solution of the Quadratic Equations

The quadratic expressions for the surface-averaged
current [eqns. (3.50), (3.59), etc.] were derived in Chapter
3 to replace the finite difference expressions for the
surface-averaged currents [(egn. (3.16)]. As was mentioned in
Section 3.5, the quadratic expressions for the currents could
be inserted into the nodal balance equation [eqn. (3.4)], and
the result would replace the discretized Coarse Mesh Finite
Difference equations (eqn. (3.17)]. The consequences of
doing so, however, are substantial. First, the computer
memory storage requirements rise dramatically, due to the
extended coupling of the quadratic equations, and the need to
store the coupling coefficients. Second, the beneficiai
convergence properties of the CMFD equations, which were
outlined in the last sub-section could be lost. A recent
implementation of this approach for a quadratic method in
hexagonal geometry showed that this solution method can be
quite inefficient [S-3].
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An improved way proposed by Smith [S-4), and
successfully implemented in several computer codes [Z-1,B-
1,G-1] is the non-linear iteration method. It proposes that
the structure of the CMFD equations be preserved, and the
discontinuity factor ratios, which appear in (3.17), be used
to correct the CMFD equations to match the quadratic
solution. In this way, the convergence properties and the
moderate storage requirements of the CMFD equations can be
maintained. This approach requires that the discontinuity
factor ratios be computed during the solution, and updated as
the solution progresses. It is important to point out that
the non-linear iteration method contains two sets of
discontinuity factor ratios. The first set is contained in
the CMFD equations. This set is computed during the solution
by the quadratic currents to force the CMFD equations to
match the quadratic solution. The second set is contained in
the quadratic current equations themselves (see (3.50)).
Recall that these were introduced in Section 3.5.4 to correct
for the use of Fick’s law, homogenization, and somewhat for
the spatial approximation. These discontinuity factor ratios
are supplied by the user and obtained from an external,
detailed calculation. 1In this work, we assume that these
discontinuity factor ratios are available, and only concern
ourselves with the computation of the discontinuity factor
ratios which correct the CMFD equations to match the
quadratic solution. From this point on, the discontinuity
factor ratios which appear in the quadratic current equations
and correct for heterogeneity etc. shall be called
heterogeneity factors. The discontinuity factor ratios which
force the CMFD equations to match the quadratic solution will
retain the name discontinuity factor ratios.

The solution begins with the discontinuity factor ratios
all set to unity. The CMFD equations are solved to obtain an
estimate of the node-averaged fluxes. Equation (3.50), the
quadratic expression for the surface-averaged currents, is
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then solved using the most recent node-averaged fluxes to
obtain quadratic-based currents. Using these surface-
averaged currents, and the most recent node-averaged fluxes,
the discontinuity factor ratios may be obtained. For the 2-
D, internal node shown in Fig. 3.8, the expression is:

(

-(f.J') s‘i’u)(l’ )

s [P T2 b
_ (5.19)
iJ

f( o=l 3(‘—1’” X W

g i-1,4)

2 D)

Equation (5.19) was obtained by solving both eqn. (3.12)
and (3.13) for the discontinuity factors, and taking the
ratio of the results. If the node surface is on the boundary
of the reactor, eqn. (5.19) is replaced by:

“=(i,})
=iy X Tyx(p=1)

(i.)) 8 2 D(u)
a .
—hE = et (5.20)

iy - un

fg,p-l [ gr\'n(P y ]
p(w)
8.p=1

Equations (3.12) and (3.19) were used to obtain (5.20),
Note that egn. (3.50), and the corresponding equations for
boundary condition cases contain surface—averaged currents on
the right hand side. Previous studies ([G-1,B-1] have
revealed that attempting to solve the quadratic current
equations simultaneously does not converge. An acceptable
method for solving the quadratic equations is to utilize
surface-averaged currents which are consistent with the nodal
fluxes and discontinuity factors from the last outer
iteration for the right hand side of (3.50). In other words,
after an outer iteration is completed, the nodal fluxes and
the most recent set of discontinuity factor ratios are used
in egn. (3.16) to obtain a complete set of surface-averaged
currents. These surface-averaged currents are then used on
the right hand side of the quadratic current equations.
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These quadratic currents are then used in (5.19) and (5.20)
to obtain a new set of discontinuity factor ratios.
Experience has shown that for most problems, the
discontinuity factor ratios do not need to be updated at
every outer iteration. Typically, between 2 to 5 outer
iterations per update works well,

Figure 5.2 shows the non-linear iteration procedure.

Begin Calculation with Nodal Fluxes,
Eigenvalue, and d.f.r. all set to Unity

I |
Solve CMFD Equations -
1 Outer Iteration
Compute Nodal Fluxes € 1

Compute Eigenvalue

yes
Problem Converged? End )

no

no

Time to Update d.f.r. ? >

yes

Compute Finite Difference
> Currents Consistent with the

Most Recent Nodal Fluxes
and d.f.r,

A

d.f.r. = discontinuity factor ratios .
Y Compute Quadratic Currents

N

Compute New d.fr,

Figure 5.2. The Non-Linear Iteration Scheme.

Sutton [S-1]) has demonstrated that the Wielandt outer
iteration method works with the non-linear iteration
procedure, but because of the constantly-changing
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discontinuity factor ratios, the shift factor, A’ , must be
updated during the solution., The overall static solution
procedure proposed by Sutton ([S-1] and successfully
implemented in several computer codes [2-1,G-1), will be used
here. The procedure starts with the nodal fluxes and
eigenvalue set to unity. An initial, non-accelerated (power)
outer iteration is performed to obtain a non-flat nodal flux
vector. The Gauss-Seidel method is used on inner iterations
until the spectral radii are computed (see below). The
second outer iteration is performed using an estimate of the
shift which is significantly larger than the expected
eigenvalue of the problem. The shift must be larger than the
expected eigenvalue to ensure that the problem converges to
the fundamental mode. In this application, a shift of

A’=15 1is used during this stage. A few outer iterations
are performed using this large shift until a convergence of
10-2 is obtained in the eigenvalue. The next outer iteration
is devoted to computing the spectral radii. Inner iterations
are performed until the spectral radius for each group

. : ; ' it
converges to the user-specified criterion €

(m’+1) (m’)

crit
pG-—S ~ Mag-~s 58"

Note the m’ refers to the inner iteration number, and
the subscript “G-S” refers to Gauss-Seidel. After the
spectral radii are computed, the (fixed) number of inners per
outer (which will be used for the duration of the
calculation) are computed using eqn. (5.18). The method
allows a different number of inners per outer for each group.
Inner iterations from this point on are computed using CCSI.
On the next and subsequent outer iterations, the shift factor
is computed using the current estimate of the eigenvalue plus
a small constant:

A =A™ + 84
O0A = constant
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The value of the small constant does affect the
convergence rate of the outer iterations, and several studies
have been performed to determine the optimum choice [S-1,S-
2,2-1,G-1). Smith [S-2] reports an optimum choice of 0.04 or
0.05 for light water systems.

5.2.4 Adioint Problems

The mathematical adjoint of a specified problem may be
computed using the above methods, with the following
adjustments:

. The scattering matrix is transposed in energy.

. The coupling matrix is transposed in space and
energy.

. The va cross sections are interchanged with the

X, cross sections. Both are then transposed in

energy.

. The initial guess for the eigenvalue and nodal
fluxes is the solution from the forward
calculation,

. The discontinuity factor ratios are held constant
and equal to the converged values from the forward
calculation.

. The CCSI inner iteration acceleration can be used

and Wielandt outer iteration acceleration can be
used. The eigenvalue shift, however, must be
larger than typical shift values used in forward
problems., Shift values of 0.5 to 1.0 appear to
work well for the problems tested,

. The group structure is flipped, the first group
becomes g=G and the last group becomes g=1. This
is necessary because the dominant scattering
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direction has changed from downscatter to
upscatter.

. The adjoint flux is normalized.

The solution of the adjoint problem will be important
for transient analyses,

5.2.5 ZThermal Hvdraulic Feedbu.ck

The final major component of the solution for static
problems is the adjustment of cross sections to account for
temperature and density. 1In this work , we assume that cross
section sets at different temperatures are available, and
that the reference temperatures bracket the temperatures
computed during the solution. During the solution process,
the most recent nodal fluxes are used in a thermal hydraulic
model to compute fuel-averaged temperatures, coolant-averaged
temperatures and coolant-averaged densities for each node in
the reactor. These temperatures and densities are then used
to interpolate in the reference tables of cross sections to
obtain cross sections which reflect the temperature and
density profiles in the reactor. The thermal hydraulic
feedback, therefore, consists of two parts: the estimation of
the temperatures and densities, and the interpolation of the
cross sections. Due to the general nature of this work, a
very simple thermal hydraulic model was incorporated. The
cross section interpolation procedure which was used assumed
that the cross sections were quadratic functions of fuel and
coolant temperature. If this method is to be applied to a
specific reactor, more sophisticated models may be desired.
The computer code developed as a part of this work has been
set up in such a way that different models may be used in
place of those currently implemented.

The WIGL thermal hydraulic model (V-1]) was used for the
temperature calculations because of its use in many other
studies [S-2,G-1). It is a lumped heat capacity model, and
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is described in Appendix B. The WIGL model provides node-
averaged fuel and coolant temperatures, and can be used for
steady state calculations as well as transient thermal
feedback calculations.

The cross section interpolation procedure is similar to
the one implemented by Byers [B-1], It assumes that the
cross sections are a quadratic function of fuel and coolant
temperature, but not local coolant density. Figure 5.3 shows
the relationship between the cross sections at reference
temperatures and the cross sections at four other points.

The interpolation is two dimensional. As can be seen in the
figure, left of center is a set of cross section at reference
fuel temperature and low coolant temperature. Right of
center is a set at reference fuel temperature and high
coolant temperature, Above and below center are the high and
low fuel temperatures at reference coolant temperature,

respectively.

Cross Section Set 4

HIGH Fuel Temperature
Reference Coolant Temperature

]

Cross Section Sat 3 Cross Section Set | Cross Section Set 2
Reference Fuel Temperature  f@-{ Reference Fuel Temperature Reference Fuel Temperature
LOW Coolant Temperature Reference Coolant Temperatur HIGH Coolant Temperature

3

Cross Section Set §

LOW Puel Temperature
Reference Caolant Temperatur

Figure 5.3. The Cross Section Interpolation Model.

The quadratic interpolation is performed first in the
coolant temperature direction and then in the fuel
temperature direction (the order is arbitrary). The results
from the two independent interpolations are combined to
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obtain a new cross section., Using the symbol X to
represent a cross section, this combination is:

(Tt Teoot) = E(T Topt) + E(T e TH) - E(TR4, TH)  (5.20)

The next section will discuss solution methods for
trangsient problems.

5.3 8olution of the Transient Equations

The transient nodal diffusion equations, described by
eqn. (4.7) and eqn. (4.16), form a set of first order
differential equations in time. Common solution methods for
first order differential equations cannot be used for this
system, however, due to the characteristics of the constants
which appear in the equations. It turns out that the time
constants associated with these equations have widely
differing values because of the fast response of the prompt
neutrons and relatively slow response of delayed neutron
precursors to changes in the reactor. Equations of this type
are “stiff”, and for unconditional stability, an implicit
method is required. It turns out that the fully implicit
form of eqn. (4.7) is the best choice, which means that we
shall use 6=1 for all applications of (4.7).

5.3.1 The Improved Quasi-Static Method

A very common approach to solving the transient
equations is to factor the time dependent neutron flux into a
shape function and an amplitude function. That is:

O(t)=S)T@) (5.22)

where S(1) is a vector containing the shape function and the
scalar T(t) is ~he amplitude. A definition of the amplitude
is given by (H-1]:

T(t)sw'V'®(r) (5.23)

81




where the vector w has been introduced as a weight function.
Using eqna. (5.22) and (5.23), a normalization requirement
for the shape function can be obtained. Substituting eqn.
(5.22) into (5.23) for the flux vector on the right hand side
gives:

T(t)= wVH{S()T()}

el (5.24)
s w VIS =1

Many types of solution methods have been developed using
this flux factorization technique. 1Its success derives from
the fact that £ - many transient problems, the flux shape,
after a quick i: .cial adjustment to composition changes,
changes much more slowly than the amplitude. The shape
function and the amplitude function can be computed
separately, and the nodal flux solution can be constructed at
any time by using (5.22). An equation for the amplitude
function can be derived in a formally exact way by
multiplying eqn. (4.7) and (4.16) by an arbitrary weight
function, substituting (5.22), using (5.23) and (5.24), and
defining the reactivity, the effective delayed fraction, the
prompt neutron lifetime, and the effective delayed neutron
precursor concentration, respectively (H-1]:

wT[M(#) - L()]S(1)

) M) S ()
w'[M, . ()]S(1) re
oy [ lprec o w‘
@nc(t). WT[M(I)]S(I) ﬁ "p’gﬂ iprec
(5.25)
wTV'S(1)
A= T MOS0

T
o wCp..(t)
qPrx(t) = WTV"‘S(I)
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The result is the point kinetics equations:

d $)= pt)=B7()

T(t)+ MZAW CT..(1) (5.26)

ET( - A(t) iprec=1
d ﬁtprec()
a e = 5 T~ A G ) (5.27)

It is important to point out that the point kinetics
parameters, defined in (5.25), were derived in a formally
exact way [H-1], which means that if the correct shape
function is known, the correct point kinetics parameters are
known and the correct amplitude can be computed using (5.26)

and (5.27).

The methodology for obtaining the shape function is the
distinguishing feature of the many flux factorization
approaches. In traditional point kinetics, the shape
function is obtained from a static calculation and held
constant throughout the transient. The attraction of point
kinetics is that once the point kinetics parameters have been
computed, the solution of (5.26) and (5.27) can be very fast.
The result is a solution for the amplitude as a function of
time. However, the use of the static shape neglects
distortions caused by the direct perturbations to the system,
as well as any distortions caused by feedback during the
transient. In general, point kinetics is only valid for
transients in which the shape does not change significantly
during the transient. The adiabatic method improves upon the
point kinetics approach by estimating the shape during the
transient using several static calculations [0O-1]. This has
been done using pre-computed shape functions, which account
for distortions due to composition changes but do not reflect
feedback effects. The adiabatic method has also been
implemented using static calculations during the transient,
which do account for feedback effects. The adiabatic methods
suffer from the fact that static calculations assume that the
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delayed neutron precursors are in equilibrium, which they of
course are not. In addition, the time derivative is
neglected and the static calculations are expensive [0-1].
The quasi-static method estimates the shape function by
substituting (5.22) into the transient equation and
neglecting the time derivative. The resulting shape equation
includes the amplitude function, which comes from the
solution of the point kinetics equations [(5.26) and (5.27)]
over the last time interval. The improved quasi-static
method does not neglect the time derivative, but rather
approximates it using a first order backward difference [0O-1]
(recall that eqn. (4.7) used this approximation for the

derivative) .

Kao [K-1] proposed that the improved quasi-static method
be implemented using the transient nodal equations, (4.7) and
(4.16), for the shape function. The nodal flux solution from
these equations could be used to determine the shape function
by applying eqn. (5.22) and imposing the normalization
requirement [egn. (5.24)]. 1In this way, the amplitude does
not appear in the shape function equation.

The general approach which will be used here is to solve
eqns. (4.7) and (4.16) using a large time step. The solution
of these equations yields the nodal fluxes and precursor
densities at each time step. The amplitude associated with
the nodal fluxes can be obtained using eqn. (5.23) (the

choice of weight function will be discussed shortly). The
shape associated with the nodal fluxes can be obtained using
egn. (5.22). At the end of each large “shape step”, the

shape function is expectad to be accurate while the amplitude
is expected to be poor. The amplitude is therefore re-
computed over the time step using point kinetics. The point
kinetics paraméters (i.e. reactivity, etc.) are obtained
using the definitions in (5.25) by interpolating the shape
function between the beginning of step and end of step.
Because the shape is expected to be accurate, and the point
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kinetics parameters were derived using a formally exact

procedure, the amplitude estimate from point kinetics is

expected to be excellent.

Figure 5.4 shows the time stepping
algorithm.

SHAPE UPDATES:
Time Dependent CMFD Equations Solved with Large Time Steps

Shape Computed at
Beginning of Time
Step and End of

Time Step
\‘ S LI -
\ Te. . Thermal Hydraulic Feedback Steps
\ ~~.. Between Shape Updates :
‘\ ~ o . .
‘\ = o

| “sel . Shape is Interpolated Between
v Seal Beginning and End of Step.
\ Seeel Cross Sections at Temperature

\ ! ~~a are Used to Compute Reactivity

"”--’
.

Very Fine Point Kinetics R . Reactivity Used to
Calculation Between Thermal l I I l | | | *s. | Compute New Amplitude
Hydraulic Feedback Steps Wil *« J for the End of Step

Figure 5.4. The Time Stepping Scheme for Transient
Problems.

In Fig. 5.4,

it can be seen that there are three levels
of time steps.

The top level is the shape update level. The
transient nodal equations are solved using large time steps.
Each time step is then re-computed using point kinetics.

The
second level shows that thermal feedback is modeled during

the point kinetics calculation. At this level, the point

kinetics parameters are computed at each feedback step.
Gehin [G-1] demonstrated that if thermal feedback is not
allowed during the point kinetics calculation,

the amplitude
can be severely over or under estimated.

This is because the
point kinetics parameters ar: computed using the cross

sections, and if the cross sections reflect “old”
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temperatures, the combination of “new” shape and “old” cross
sections can give poor estimations of the reactivity.

The third level of computation is the point kinetics
calculation. The point kinetics parameters used for the
solution of eqns. (5.26) and (5.27) between thermal feedback
steps are found by interpolating between the parameters at
the beginning and the end of the feedback step.

At the end of each (shape) time step, the nodal fluxes
are scaled by the ratio of the point kinetics-computed
amplitude to the shape-computed amplitude.

5.3.2 Solution of The Point Kinetics Equations

The discretization of the point kinetics equations 1is
completely analogous to the discretization of the transient
nodal equations. The theta difference approximation is used
for the prompt equation, and a direct integration procedure
is used for the delayed equations. The prompt equation

becomes:
(T(n+1)__T(n)) P(t,,+) ﬂeﬁ'( +) i nprec
At:k : (n+1) : T( 1)+(pr¢c-1 iprec Iprec(tnﬂ)
(5.28)
Ui
( 6){p(t )A(ﬁ) (t ) n)+ ’iltpm lprec(t )}
iprecml

The At* in (5.28) refers to the time step size used

for the point kinetics solution, which will be different from
the time step size in eqn. (4.7).

The direct integration of the precursor equations
follows directly from Section 4.4.2. The result is:

86




CL _(8,,,) = & Uiprec.a1,)CL, (1)

iprec
eff

i rec(tn) )
+ g, (iprec,ar,) —E<——T'" (5.29)
A’ipracA(tn)

B (1)
+ g, (iprec, Ar ) et Tin+d
A"P’GCA(tnﬂ )

where the functions gi, g2, and g3 are defined by eqn. (4.15).

The best choice for the weight function, which appears
in eqn. (5.23) and in the definitions of (5.25), is the
adjoint flux from the static problem. The adjoint flux can
be shown to be the best choice for minimizing errors in the
point kinetics parameters when the shape function is not
known exactly [H-1l]. The use of the adjoint as a weight
function, however, is less important for the improved quasi-
static method than in the traditional point kinetics method
because the shape function is updated frequently during the
transient. Nevertheless, the adjoint will be used as the
weight function for all transient computations.

5.3.3 Numerical Solution of the Trangient Problem

An equation for the nodal flux at each time step can be
obtained by substituting the equation for the nodal
precursors, eqn. (4.16), into eqn. (4.7). The result is:

-1 rec
(n+1) (n+1) . (n+1) (n+1)
.{Z;__Mp“ +L° —-'PDZ lg;(:prec,Atn)1\'1..',‘:« }‘I’ "

n recs
(5.30)

V-l rec 0
= {-A—;- + gz (iprec. Afpu )Mf;ll?«: }(D(n) + { & gl (ipreC, AI,, )A"Pnccgl’:"}
n iprecs| ipreca}

The matrix on the left hand side of eqn. (5.30) must be
inverted at each time step in order to solve for the nodal
fluxes. This inversion is similar to the inversion of the
loss matrix for the static problem. Motivated by the same
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arguments, the inversion will be accomplished using the
Chebyshev Cyclic Semi-Iterative (CCSI) method.

The transient quadratic equations will be solved using
the non-linear iteration scheme. Thus, the procedure at each
time step is to perform inner and outer iterations. The outer
iterations in the transient case are not used to compute an
eigenvalue, as was the case in the static problem, but they
are used to compute the discontinuity factor ratios. At each
time step, the discontinuity factor ratios from the last time
step are used in the transient CMFD equations [eqn. (5.30)].
The transient CMFD equations are solved by inner iterations,
using the CCSI acceleration procedure. Unlike the static
problem, however, a fixed number of inners is not used.
Rather, the inners are converged to a user-specified
criterion at each time step. The quadratic currents and the
discontinuity factor ratios are re-computed using these nodal
fluxes, and the outer iterations are continued until the
nodal fluxes between iterations have converged to a user-
specified criterion.

The terms on the right hand side of eqn. (5.30) are all
obtained using last time step values. The right hand side is
therefore treated as a source. An adaptive time stepping
scheme was not used for the solution of egn. (5.30).

Instead, the shape at each time step is computed over fixed,
user-defined ‘time domains.’ A time domain is a time span
during which a constant time step size is used to compute the
shape function. Time domains can be defined in such a way
that certain portions of a transient are modeled with
relatively small time steps, and others are modeled with
relatively coarse time steps. The spectral radii of the
inner iteration matrix, which is required by CCSI, are
computed at tha2 beginning of each time domain on the first
time step of the domain. The thermal hydraulic feedback
steps, the second level in the improved quasi-static scheme,
is also user-defined and given as a fixed number of feedback
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steps per shape update. The number of feedback steps per
shape update can be different for each time domain.

The point kinetics calculation for the amplitude, which
is performed between thermal feedback steps, is solved using
adaptive time stepping. The equation for the amplitude can be

obtained by substituting eqn. (5.29) into eqn.(5.28). Before
this is done, however, eqn. (5.28) is put into fully implicit
form by setting 6=1 . The fully implicit form is used for

the same reasons as before. The result is:

Atpk ) nprec .
A( )[p( n+l) ﬂﬁ(tnﬂ)"' 283 tprec A’pk )ﬁiprec +l):| T( !
n+l

iprec=1
pk ec
= At 'ig (‘pr €, A‘y )ﬂxprec(tn)}Tm) (5.31)
A( )tprec-l

rec
k . k
+AP? ﬁg,oprec.m: YA G (1)

iprecm]

The pk superscript on the time step size in (5.31) is
used to distinguish between the time step size in the point
kinetics calculation and the time step size used in the shape
calculation. The right hand side of (5.31) is computed using
the last (point kinetics) time step values and is treated as
a source., The adaptive time stepping rcutine used for the
point kinetics calculations is “step doubling* (P-2,G-1]. In
step doubling, the amplitude for the end of the current time
step is computed twice. The first is computed using one
step, and the second is computed using two steps of half the
size. The truncation error is then estimated using these two
estimations of the amplitude. For @=1 , this error is
given by:

n+t) T(n+
£ = double ~ % single (5.32)

pk n+l)
'T(double
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The current time step is then either rejected or
accepted based upon a user-defined acceptable error,tif

If the step is rejected, the time step is redone with a
smaller step size. If the step is accepted, the next step
size is estimated using [G-1]:
-0.8
AP =0.9A¢ En (5.33)

crit
pk

If the error is much smaller than the acceptable error,
a step of twice the size is used for the next step.

5.4 Summary

In this chapter, the solution methods for static and
transient problems were described. For static problems, the
non-linear iteration procedure was introduced, describing an
efficient method for solving the quadratic equations. A two-
level iteration scheme is used, with acceleration methods
used on both levels. The solution of the adjoint problem was
discussed, as well as thermal hydraulic feedback. For
transient problems, the improved quasi-static method was
introduced. This three-level time stepping method allows
relatively large shape steps to be taken using the transient
nodal equations, with very fine point kinetics calculations
between each shape step to correct the amplitude.

These static and transient solution methods have been
implemented for testing into a computer code with the name
QUARTZ (QUAdratic Reactor code in Triangular-2Z geometry).
QUARTZ has been written in FORTRAN 77 for general (1-D, 2-D
or 3-D) problems in any number of groups, with upscatter.
The computer code has been tested on different systems
successfully (IBM-PC Compatibles, DEC VS3100, IBM RS/6000,
CRAY XMP 416), and should be portable to other systems with
minor changes. Details of the structure and use of QUARTZ
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can be found in the User'’s Manual, which is distributed with
the source code.

The next chapter will present the results of selected
static and transient problems.
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Chapter 6
Testing the Static and Transient Methods

6.1 Introduction

In this chapter, the static and transient methods are
tested. The static methods are tested using simple benchmark
problems, and the nature of the quadratic equations is
explored. The transient methods are tested using two
problems. An analytic solution was available for the first,
which consisted of a simple zero current cell. The second
problem consisted of a large heterogeneous heavy water
reactor. QUARTZ results were compared to published results

for this problem,

6.2 Testing the Statis Method
6.2.1 A _Simple Analvtic Test

An initial test of the gstatic methods in QUARTZ was made
using a simple test problem for which an analytic solution
was known. The first test consisted of an infinite medium
calculation with the cross sections given in Appendix C,
Section 1. The second test was similar to the first except
that an infinite slab of finite thickness was modeled.

The analytic solution for the eigenvalue of an infinite,
two group reactor is given by [H-1):

VI, Z, +VE,, Zzl)

- .T,)

Using this equation with the cross sections given in
Appendix C, the critical eigenvalue is 1.35439. The computed
value using QUARTZ was also 1.35439.
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The analytic solution for the eigenvalue for a two group
infinite slab, where the leakage is modeled using geometric
buckling is given by:

) (VE,Z+VE,2,)
(Z1%3)
I =3 +D,B

k

where B2 ig the geometric buckling. Neglecting any
extrapolation length, the buckling for this problem is given
in terms of the thickness of the slab, H:

2

T 2

B’=(~) (cm?)
H

Using the cross sections given in Appendix C, and

assuming a slab thickness of 250 ¢m, the eigenvalue is

1.20444. The computed value using QUARTZ was 1.20444.

The next sub-section compares QUARTZ solutions to a 2-D,
finite difference nodal code in triangular geometry.

6.2.2 Comparisons to MITHEX

In this sub-section, two problems are used to compare
QUARTZ to a 2-D, finite difference nodal code with the name
MITHEX [G-2], which has the capability to solve problems in
triangular geometry. In these two problems, QUARTZ was run
in finite difference mode, with the quadratic updating of the
discontinuity factor ratiosg turned off. All ‘heterogeneity’
factors were unity. The first problem was a simple two-
group, heterogeneous, 24 node cell model with a zero current
boundary condition. The details of the cell, including cross
sections are given in Appendix C, Section 2. The problem was
solved by MITHEX and QUARTZ using an eigenvalue and flux
convergence criterion of 108, The results are presented in
Table 6.1,
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Table 6.1

Results from the MITHEX Infinite Cell Comparison

W

Eigenvalue 1.61436 1.61436
Node 1* Group 1 Flux 6.268E+00 6.2678E+00
oup 2 Flux 1.619E+01 1.6189E+01
Node 6 Group 1 Flux 6.268E+00 6.2678E+00

‘ r . E+01 , +
Node 7 Group 1 Flux 7.295E+00 7.2955E+00
roup 2 Flux 1.473E+01 1.4732E+01
Node 8 Group 1 Flux 1.044E+01 1.0435E+01
Group 2 Flux 1.015E+01 1.0151E+01

* The node numbers are shown on the figure in Appendix C, Section 2. The model Has 60
degree rotational symmetry, so nodes 1,6,7, and 8 completely describe the results.

In Table 6.1, it can be seen that QUARTZ matches the
MITHEX~calculated eigenvalue exactly. The table also shows
that the flux distribution matches. This is to be expected,
because both QUARTZ and MITHEX solve the same finite
difference equations.

The second comparison problem was a two-group, 96 node,
core-sized heterogeneous problem. Four different material
types were used. The overall core geometry was a hexagon,
with the outer nodes being reflector material. Appendix C,
Section 3 gives the details of the model. The boundary
condition used for this model was zero net returning current
(referred to as “albedo” here). The MITHEX eigenvalue was
computed to be 1.07740. The QUARTZ eigenvalue was also
computed to be 1.07740. The fluxes and relative power
densities for each node were also compared. The MITHEX and
QUARTZ solutions for the group and node-averaged fluxes
matched, as was the case for the cell problem. It turns out
that MITHEX, when computing relative power densities,
averages over all nodes in the reactor, including non-fueled
regions. QUARTZ, on the other hand, averages over rueled
zones only. This difference was accounted for by multiplying
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the MITHEX-computed relative power densities by the ratio of
fueled zones to non-fueled zones. When this adjustment was
made, the relative power densities matched. This problem was
not encountered in the cell problem because all regions were
fueled in that model.

These two MITHEX comparison problems demonstrate that
QUARTZ is capable of properly solving the mesh-centered
finite difference equations for triangular geometry. The
quadratic methods incorporated into QUARTZ may now be tested
and compared with the mesh-~centered finite difference method.
The next sub-section shows that the quadratic eguations
reduce to the Coarse Mesh Finite Difference (CMFD) equations
in the limit of small mesh size.

6.2.3 Reducing the Quadratic Method to the CMFD Method jn
the Limit of Small Mesh Size

It can be shown algebraically [H-3] that the equations
for the quadratic currents (eqns. 3.50,3.74,etc.) can be cast
into a form of first order terms in X¢ (similar to the finite
difference expression for the current) and second order terms
in Xe, It is expected that, in the limit of very small mesh
spacing, the quadratic terms will disappear more quickly than
the first order terms. Thus, the quadratic method should
reduce to the Coarse Mesh Finite Difference (CMFD) method
when very small mesh spacing is used. To test that this is
the case, a simple test problem was used. Appendix C,
Section 4 gives the geometry and cross sections used for the
test problem. The problem consisted of a 6 node hexagon,
with homogeneous material and an albedo (zero net returning
current) boundary condition. This problem was run initially
with a node 3ize of 5 cm (“size” here means the side of the
triangular node). The node size was then reduced, and the
eigenvalue was recorded for the CMFD and Quadratic methods.
Fig. 6.1 shows the relative difference between the quadratic
and finite difference eigenvalues as a function of 8, the
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node side, As the node size shrinks (to the left of the
figure), the quadratic terms in the quadratic¢ method
disappear, and the quadratic eigenvalue reduces exactly to
the finite difference eigenvalue.

It should be noted that some of the eigenvalues produced
by this study were very small and non-physical (-~ 3.E-6 for S
=1.0E-4 cm). The problems were run in double precision and
the eigenvalues were converged to 10-12,
6 Node Hexagon - Homogeneous Material

Relative Difference Between Quadratic and
CMFD Eligenvalues vs. Node Size

0.10

0.08 /

/

0.06 >~

icVFD

Relative Difference in Eigenvalee

0.04
0l02
Qﬁoo v LA v v v
0 1 2 3 4 5
S (cm)

Figure 6.1. Relative Difference Between the Quadratic
and CMFD Eigenvalues vs. Node Size.

It was mentioned in Chapter 5 that the Coarse Mesh
Finite Difference equations, in the limit of very small mesh
size, are guaranteed to converge to the exact solution.
Because the Quadratic method becomes the CMFD method in the
limit of very small mesh size, it too is guaranteed to
converge to the true solution in the limit.
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Another important result of Fig. 6.1 is to add
credibility to the application of continuity of current
through the point of a triangle in Chapter 3. That
approximation was vital to the derivation of the quadratic
equations for both internal nodes and nodes with boundary
conditiocns. This result shows that if the approximations in
Chapter 3 are poor, problems associated with the
approximations disappear in the limit.

6.2.4 Comparing the Quadratic Method to the CMFD Method

The quadratic equations were derived and implemented in
order to improve the spatial approximation. In general, we
expect that for a given node size, the quadratic method will
give a more accurate representation of the node-averaged
fluxes than the finite difference method. If this is the
case, then larger nodes may be used, which will result in
less computational work and faster run times. The penalty
associated with using the quadratic method is the
computational work required to compute discontinuity factor
ratios during the solution. In general, the quadratic method
will be attractive if the computational cost of solving the
quadratic equations (using the non-linear iteration
procedure) is less than the cost of solving the CMFD
equations with a finer mesh (a mesh size which gives
comparable accuracy).

Three sample problems were used to compare the quadratic
method to the CMFD method. The eigenvalues and relative
power densities were used for comparison. The relative power
densities are defined such that the average power density in
the fueled nodes is unity. The problem descriptions are
given in detail in Appendix C, Section 5. In each of the
cases, a 24 node, 2-D problem was used. The tests consisted
of refining the mesh, which in the case of equilateral
triangles, can only be achieved by subdividing each
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equilateral triangle into four sub-triangles. Figure 6.2

shows one subdivision of a triangular node.

AV

A Single Subdivision of a Triangular
Node.

Figure.

Each subdivision increases the number of nodes by a
factor of four. Thus, for a model of 24 nodes, one
subdivision gives 96 nodes, two subdivisions gives 384 nodes,
and so on. In each of the comparisons, the eigenvalue and
the relative power densities were compared to a reference,
6144 node (4 subdivisions of 24 nodes), fine mesh solution.
The percent eigenvalue error is computed by:

a’ - A’re[erence

A

x 100

reference

The absolute, maximum error in the relative power
density over all fueled regions is used for comparison and is

computed by:

max
Sueled nodes,i

The absolute,
density is also presented.

=P ) 100

ref
P]

average error in the relative power

This is given by:

ref
ref i
Vcore i Pl‘
Vcore = Z Va
Sueled nodes, i

98




The first problem, which will be referred to as case I,
was a homogeneous, two-group model with a zero net returning
current boundary condition. The quadratic and CMFD methods
were used to solve the case I problem with 0, 1, 2, and 3
subdivisions. The eigenvalue error as a function of mesh
size is given in Figure 6.3 (figures and tables are located
at the end of this sub-section). In this case, both the
quadratic and CMFD eigenvalue errors decrease linearly with
respect to the mesh spacing squared. Both the quadratic and
CMFD eigenvalue errors approach zero in the limit of small
mesh size, but for larger mesh sizes the quadratic eigenvalue
error is much larger than the CMFD eigenvalue error. The
results for the eigenvalue error comparison are also given in
Table 6.2. In the table, it can be seen (where it is a bit
difficult to see on the graph) that the error for the
quadratic eigenvalue actually changes sign at the fine mesh
of 64 nodes per assembly (3 subdivisions). To minimize the
possibility that the problem was falsely converged, the
eigenvalue was converged to 10-12, 1In order to minimize
roundoff error, the problems were run in double precision on
a CRAY XMP 416. Several other problems have been run with
different cross sections and numbers of nodes. The cases
with albedo boundary conditions consistently show the
eigenvalue error approaching zero from below and crossing
over (changing sign) at small mesh size. It is difficult to
further reduce the mesh size for these problems because the
number of nodes increase by a factor of four each time. 1In
addition, the spectral radii become very close to unity for
the very small mesh, and even the accelerated convergence
rates are very slow.

The results of Section 6.2.3 demonstrated that the
quadratic method does reduce to the CMFD method in the limit
of small mesh size, so it appears that there is a region
between ~1 cm and ~10 cm, within which the quadratic method
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displays inconsistent error reduction with decreasing mesh

size.

The maximum error in the relative power density is given
in Figure 6.4. It can be seen in the figure that the spatial
discretization error for the CMFD method is on the order of
the mesh size squared, and reduces to zero as the mesh
spacing approaches the fine mesh reference. For the
quadratic method, the maximum error is much lower than the
CMFD error at coarse mesh, but as the mesh size decreases to
two subdivisions (mesh size of ~10 cm), the error increases
slightly and then decreases.

For this case, it may be concluded that, with large mesh
size, the quadratic method gives a much better estimate of
the nodal relative power densities, but a poorer eigenvalue.
At fine mesh, the solution is comparable to the CMFD
solution, but displays inconsistent error reduction with

decreasing mesh size.

The second problem, case II, was identical to the first
except that a zero flux boundary condition was used. Tables
6.4 and 6.5 show the results for the eigenvalue error and
relative power density error, respectively. Figures were not
constructed for these data because the results qualitatively
matched Figs. 6.3 and 6.4. However, in Table 6.4, it can be
seen that at the small mesh sizes, the quadratic eigenvalue
error does not change sign, and decreases consistently. In
Table 6.5, it can be seen that the maximum and average
relative power density error decreases consistently in small
mesh sizes also. The difference between case I and case II
is the boundary condition applied to the outer surface.
Recall that the boundary conditions are specified by two
parameters in eqn. (3.18), which is reproduced here for

convenience:

ij) (i) iyt
o T (o) m, = B9, (p) (3.18)
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The albedo boundary condition, used in case I, is
specified by setting ®=2.0 and fB=1.0. The zero flux

boundary condition is obtained by setting &¢=0 and

B=1.0. Recall also the discussion in Section 3.6.2 about
the difficulties associated with identifying the proper
normal to the reactor surface. It is proposed that the
quadratic method’s inconsistent error reduction in the
eigenvalue and relative power for small mesh size is due to
the boundary condition difficulties. The difficulties do not
appear in the zero flux cases because the alpha parameter is
zero, which causes the entire left hand side of eqn. (3.18)

to become zero.

The third problem, case III, was constructed to test the
two methods without the interference of the boundary
condition difficulties. Case III is a 24 node, 2-D,
heterogeneous problem with a zero current boundary condition.
The results from the quadratic and CMFD calculations can be
seen in Figs. 6.5 and 6.6. In these figures, it is apparent
that the quadratic method gives significantly better results
than the CMFD method for both the eigenvalue and the relative
power densities. Tables 6.6 and 6.7 give the numerical
results for this case. In Table 6.7, for example, it can be
seen that in order to achieve a maximum error in the relative
power of less than 1 percent, we can run either a quadratic
calculation with 1 node per assembly (0 subdivisions, or 24
nodes total) or a CMFD calculation with 16 nodes per assembly
(2 subdivisions, or 384 nodes total). The run times for
these two cases, for a VAX 3100 machine (and no numerical
acceleration used) were 1.1 seconds for the quadratic case
and 27 seconds for the CMFD case.

Based upon the eigenvalue results for the zero current
boundary condition case, it appears that the nodes on the
boundary of the reactor may be causing problems with the
eigenvalue calculations at coarse mesh. The reaction rates
and leakages were examined for a node at the corner of the 24
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node hexagon. This node is shown as node 1 in Fig. 6.7.
Table 6.8 shows the percent errors in the group 2 absorption
rate and the group 2 in-scatter rate for the CMFD and the
quadratic methods with 1 node per assembly (0 subdivisions).
It can be seen in the table that both reaction rates are much
better for the quadratic method. This indicates that the
nodal fluxes are better for the quadratic method, and this is
consistent with the low power density errors in Table 6.5.

Table 6.9 shows the percent errors in the leakages for
the three faces of node 1. The leakage for side . is zero
because of symmetry (i.e. the flux in node 1 is-equal to the
flux in node 2). The error in the leakage for side 1 is
lower for the quadratic method, but the error is higher for
side 3. The quadratic calculation of the surface-averaged
current for side 3 is performed using the “case 5" boundary
condition equations (see Chapter 3, Table 3.2, where node 1
is “node (i,j)” ). The boundary condition at the “top” point
(the point opposite side 3) is used in that calculation. It
is proposed that the poor estimation of the leakage at side 3
is influenced by the fact that a boundary condition is
imposed at the opposite point.

A study performed by Gehin [G-1], comparing quadratic,
cubic, and quartic polynomial nodal methods in Cartesian
geometry, has shown that the quadratic nodal method is
capable of producing accurate node-averaged fluxes, but can
give poor estimations of the current at surfaces. This is
because the quadratic polynomial has few degrees of freedom.
The quadratic method is even more rigid in triangular
geometry because of the requirement that the polynomial must
match the value (i.e. flux) and derivative (i.e. current) at
the point to the polynomial in the node beyond the point.
This is done without the benefit of discontinuity factors at

the point.
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The error in the leakage for side 3 may be caused by the
inability of the quadratic polynomial to satisfy the boundary
condition at the point and accurately predict the current at
the face. The difficulty in accurately predicting the
leakages at faces along the boundary is likely to be the
reason for the relatively poor eigenvalue estimates using the
quadratic method at coarse mesh. The accuracy of the
quadratic eigenvalue calculation improves with finer mesh
because the boundary nodes become less and less important
with more nodes, and the errors become averaged with the

better interior nodes.

These results indicate that the quadratic method may
perform poorly in cases where the flux changes drastically,
such as reactor boundaries and material interfaces.
Preliminary tests with reflectors have given mixed results.
A reactor model with a light water reflector was briefly
tested. The quadratic method was found to give poor results
for the eigenvalue (similar to previously presented results
for bare cores), and even led to some numerical instability.
It was suspected that the leakage in the nodes on the
fuel/reflector interface and the reactor boundary adversely
affected the eigenvalue calculation. Instabilities have been
experienced in other geometries with light water reflectors
(G-1,B-1], requiring that the discontinuity factor ratios be
set to unity in the reflector. 1In this brief test, the
discontinuity factor ratios were not unity.

Another preliminary test was run with a heavy water
system with a heavy water reflector. The eigenvalue errors
for the quadratic method were on the same order as the CMFD
method. The reflector may have improved the quadratic method
by decreasing the severity of the flux change at the reactor
boundary. It should be emphasized that these two tests were
very brief, and in order to fully understand the nature of
the quadratic method with material interfaces, further tests
are strongly recommended.
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In conclusion, the quadratic method has been shown in
certain cases to give significant benefit over the CMFD
method. 1In fact, the quadratic method has produced better
node-averaged fluxes at coarse mesh for every case tested.
However, the quadratic method produces relatively poor
estimates of the leakages in nodes along the boundary of the
reactor and at severe material interfaces. These leakage
errors can produce poor estimates of the eigenvalue at coarse
mesh. It was mentioned that the quadratic polynomial may not
have enough flexibility to accurately model the surface-
averaged current at the points and surfaces of the triangular
nodes. Experience in Cartesian geometry (see Ref. [G-1])
supports this argument. Certainly, more research is needed
in this area. ‘
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CASE I: Homogeneous Reactor

Albedo Boundary Condition
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Figure 6.3. Comparison of the Quadratic and CMFD

Eigenvalue Errors in Case I.

Case I: Homogeneous Reactor
Albedo Boundary Condition

8.00
9 /
| /
5 o Quadratic

mmgposeee  CMFD

.} 2.00 %

0-00 v | v v v v

10 20 30 40
Mesh Size (cm)

Figure 6.4. Comparison of the Quadratic and CMFD

Absolute Relative Power Errors in Case I.
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CASE I11: Heterogeneous Reactor
Zero Current Boundary Condition
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Figure 6.5. Comparison of the Quadratic and CMFD
Eigenvalue Errors in Case III.
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Figure 6.6, Comparison of the Quadratic and CMFD
Absolute Relative Power Errors in Case

III.
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Table 6.2

Eigenvalue Errors for the Homogeneous Model with an Albedo
Boundary Condition

CASE I: EIGENVALUE COMPARISONS
CMED |

'Nodes Per uadratic uadratic
“Assembly” Eigenvalue Eégenvaq%le Eigenvalue Eégenvg’lgxe
rror rror
T T.01432 !"HS% 1.04314 Jm‘%—
! 1.03331 0.48 % 1.04032 +0.13 %
16 1.03842 -0.0d % 1.03920 +0.04 % |
64 1.03928 +0.03 % 1.03889 00l % |
"REFERENCE El . 256 Nodes Per Assembly = 1.03879
Table 6.3

Absolute Maximum and Average Relative Power Errors for the
Homogeneous Model with a Albedo Boundary Condition

CASE I: POWER COMPARISONS

Nodes Per uadratic uadratic
“Assembly” Rglative}"gvsvfr Rglative:é)g)er RglativeAl"gvSver Rglative :Boxswer
rror rTor rroré ) rror% )
1 1. . . .
3 0.33 % 0.260 % 1.24% 0.38 %
¢ —0.60% 0.20 % 0.36 % —0.26 %
64 0.861 % 0.25% 0.33 % 0.7 % |
"REFERENCE CASE: 238 Nodes Per Assembly

Table 6.4

Eigenvalue Errors for the Homogeneous Model with a Zero Flux
Boundary Condition

CASE II. EIGENVALUE COMPARISONS
“CMFD |

Nodes Per uadratic uadratic
“Assembly"” Eigenvalue Eigenvalue Eigenvalue Eigenvalue
Error (%) Error (%
T ~0.99033 -2, T.03200 J%S%L‘
3 —1,02026 -0.65% T.02879 0.18%
16 1,02336 0.15% 1,02743 +0.05 %
o4 “1.02655 | _-0.04% 1,02707 +0.01
'REFERENCE EIGENVALUE: 256 Nodes Per Assembly = 1.02604
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Table 6.5

Absolute Maximum and Average Relative Power Errors for the
Homogeneous Model with a Zero Flux Boundary Condition

CASE II: POWER COMPARISONS

odes Per | Quadrauc MAX ] Quadratic .
“Assembly” [ Relative Power | Relative Power | Relative Power | Relative Power

Error (ABS) Error (ABS) Error (ABS Error (ABS

3 0.3 % 0.27 % T1.37 % 0.63 %
16 0.53 % 0.26% | 034% 0.25 %
4 0.31 % 0.16% ~0.32 % 0.16% |
REFERENCE CASE: 236 Nodes Per Assembly
Table 6.6

Eigenvalue Errors for the Heterogeneous Model with a Zero
Current Boundary Condition

CASE III: EIGENVALUE COMPARISONS
—CMID |

Nodes Per Quadratic Quadratic
“Assembly” Eigenvalue Eégenvaql;)e Eigenvalue Eégenvaé:ne
rror rror

I 1.23930 JUZS‘%' T1.25123 +rm§%2. e

K 1.23880 +0.00 % * | 1.24247 “+0.20 %

16 1.23882 +0.01 % ~1.23081 +0.07 %

64 1.23884 00 % * | 1.23010 | +002% |

REFERENCE EICENVALUE: 256 Nodes Per Assembly = 1.23889
* Not Exactly Zero: Less Than 0.004 %

Table 6.7

Absolute Maximum and Average Relative Power Errors for the
Heterogeneous Model with a Zero Current Boundary Condition

CASE III: POWER COMPARISONS

Nodes Per | Quadratic MAX | Quadratic .
“Assembly” | Relative Power | Relative Fower | Relative Power | Relative Power

Error (ABS) Error (ABS) Error (ABS Error (ABS

3 0.18 % 0.8 % T36% | 1L.DO% |

16 609 % 0.04 % 0.92 % 0.34% |

[} 0.03 % 0.21 % 0.08% |
REFERENCE CASE: 533 Noaes Per Assembly
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Side 2
1

Side 1

Side 3

Figure 6.7. Relative Position of Node 1 for the
Homogeneous Quadratic Tests.

‘Table 6.8

Node 1, Group 2 Reaction Rate Errors for the Homogeneous
Model with a Zero Flux Boundary Condition

CMFD (% Error) Quadratic (% Error)
Absorption Ratz -8.5% +0.24 %
In-Scatter Rate -8.7 % +15%
Table 6.9

Node 1, Group 2 Leakage Rate Errors for the Homogeneous Model

with a Zero Flux Boundary Condition

CMEFD (% Error) Quadratic (% Error)
Side 1 -8.5 % +3.1%
Side 2 0.0 % 0.0 %
Side 3 +10.3 % +22.2%
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6.2.5 Numerical Instability of the Quadratic Method

In the results presented in the previous sub-section,
all the cases converged. However, it was discovered that
certain computations, performed at small mesh sizes, can lead
to a numerical instability when the quadratic equations are
employed. A rough mapping of the unstable cases showed a
relationship between the number of nodes in the model and the
size of the nodes used. Figure 6.8 shows this mapping for a
homogeneous problem with a zero flux boundary condition. The
stability line for same problem with an albedo boundary
condition is a straight line at 0.01 cm.

Instability Line for the Quadratic Method

2 Group, 2-D, Bare Homogeneous Problem
Zero Flux Boundary Condition

1003
] E\ﬁ Nodes
= 101 N
§
1 24 Nodes
]
3 1
g
é Numerical 96 Nodes
o Instability
- B
7} E \
384 Nodes
01 y—r—r—rrrry r—r—rrrTr Y ———rrrY
1 10 100 1000
Number of Nodes

Figure 6.8. A Rough Mapping of the Numerical
Stability of the Quadratic Method for 5

QOuters per Update and a Zero Flux
Boundary Condition.

In each of the cases run for Fig. 6.8, and in the cases

where an albedo boundary condition was used, the
discontinuity factor ratios were updated every 5 outer
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iterations. This number was used because previous experience
with problems of small mesh size proved that 5 outers per
update worked efficiently. Further study into the
characteristics of the unstable region showed that the number
of outers per update had a large effect on whether or not the
problem converged. Surprisingly, the 6 node case was found
to converge for all mesh sizes tested (as low as 1E-3 cm) if
either 2 or 1 outers per update were used.

In order to further understand the nature of the
instability, the 24 node case was tested using an albedo
boundary condition. In these tests, the computer code was
modified to test for diagonal dominance of the iteration
matrix. Recall that a necessary condition for convergence is
diagonal dominance, and if this is lost, the method is not
guaranteed to converge. Because the discontinuity factor
ratios are not constrained in value, and these discontinuity
factor ratios are computed during the solution by the
quadratic equations, it was thought that the value of these
ratios may be disrupting diagonal dominance.

A summary of the results is presented in Table 6.10. It
was previously mentioned that for an albedo boundary
condition and 5 outer iterations per update, the instability
was encountered at mesh sizes below ~0.01 cm. This can be
seen in the second column of the table. It is difficult to
explain the apparent trend (in the lower section of the
table) of convergence with even numbers of outers per update
and non-convergence with odd numbers of outers per update.
This trend appears when diagonal dominance is lost for all
outers after the first update.

Details from a few select cases of this brief study will
be presented in figures showing eigenvalue convergence as a
function of iteration. The eigenvalue convergence is defined
as the relative difference between the current eigenvalue
estimate and the estimate from the last iteration. For
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reference, the first figure presents a case which converges
well. Figure 6.9 shows the eigenvalue convergence as a
function of iteration for a 5 cm case, where the
discontinuity factor ratios were updated every 3 outer
iterations. The first update is performed after a specified
convergence criterion is met. This can be seen in the figure
between iteration 5 and 9, where the convergence is close to
zero (it is not as close to zero as it looks). The spike at
iteration 9 represents the first update of the discontinuity
factor ratios. The update “changes the problem” by
correcting the Coarse Mesh Finite Difference (CMFD) equations
to match the Quadratic solution. The convergence drops in
the subsequent 3 iterations because the problem is converging
to the solution which is consistent with the most recent
values of the discontinuity factor ratios. The second spike
at approximately iteration 12 represents the second update,
and this continues until the spikes “dampen out” and
discontinuity factor ratios approach a constant value.

The next case tested was for a node side of 1 cm. Two
outer iterations per update was used in this solution.
Figure 6.10 shows that the spike is much larger than the one
previously seen in Fig. 6.9. The diagonal dominance was lost
on iterations 15 and 16, but restored for subsequent
iterations. One possible explanation for this behavior is
that the first estimate of the discontinuity factor ratios
for some or all of the nodes were such that they disrupted
diagonal dominance, but the converged (or asymptotic) wvalues
of the ratios were not. The problem converged despite the
problems with diagonal dominance.

The next case demonstrates the effect that the number of
outers per update can have on the convergence. The node size
was chosen to be 0.1 cm. Figure 6.11 shows the results for
the case of 5 outers per update. Note that the problem
converges more slowly in the first few iterations (before the
first update) than in previous cases because the spectral
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radii of the iteration matrix approach unity as smaller mesh
sizes are used. The usual spikes are apparent in the figure
(although it is interesting that the first spike is not the
largest in this case), and the problem is seen to converge.
Diagonal dominance was lost from iteration 65 until
approximately iteration 95. Figure 6.12 shows the results
when 1 outer iteration per update is used. 1In this case, the
problem did not converge. The eigenvalue and eigenvalue
convergence oscillated until the case was terminated at
approximately 1080 iterations. It is interesting to note
that the problem appeared to be converging well between
iteration 100 and 200, but then began to oscillate. The
diagonal dominance was lost on every outer iteration after
the first update.

The last cases to be presented are for a node size of
0.001 cm. These cases also show dependence on the number of
outer iterations per update. For each of these cases, the
diagonal dominance was lost for all outers after the first
discontinuity factor ratio update. Figure 6.13 shows the
results for 5 outer iterations per update. The results show
milder spikes than in previous problems, which continue for
approximately 50 iterations, then dampen out. The problem
appears to be converging when “ripples” begin. The error
then begins to oscillate with increasing magnitude and the
solution fails. Figure 6.14 presents the results for 4 outer
iterations per update. The initial behavior is almost
identical to Figure 6.13. 1In this case, however, the
*ripples” never occur, and the problem converges. Figure
6.15 shows the results when 3 outer iterations per update are
used. The initial behavior is again very similar to Fig.
6.13, but when “ripples” begin here, they lead to
oscillations. The oscillations were followed until
approximately 1000 iterations, and then the problem was
terminated. The case of 2 outer iterations per update gave
results almost identical to Fig. 6.14. The case of 1 outer
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iteration per update is presented in Fig. 6.16. The initial
behavior is similar to the previous cases, but the solution
immediately afterward leads to failure.

In conclusion, the numerical instabilities were only
found to occur for the quadratic method at small mesh size.
These difficulties should not be a problem for typical
reactor applications. Nevertheless, an in-depth study is
badly needed to better understand the nature of the non-
linear iteration scheme and its use with the quadratic

equations.
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STT

Table 6.10

A Summary of the Instability Tests for a 24 Node, Homogeneous
Model with an Albedo Boundary.

Number of Outers Per Updaie
5 4 ] 3 ] 2 1 Converged
Eigenvalue
in Coaverged in Converged in Converged i Coavergedin |4 31761E-1)
170 Outers 145 Outers 149 Outers 121 Outers 51 Outers
in in Converged in Converged in Convergedin | 7.70863E-2
160 Outers 81 Outers 118 Outers 98 Outers 58 Outers
Dom. Lost on | Diag. Dom. Lost on | Diag. Dom. Lost on | Diag. Dom. Lost on | Diag. Dom. Lost on
Outer # 20-25 Outer # 18-22 Outer # 16-18 Outer # 15-16 Outer #12
in in Converged in Converged in Converged in 3.66196E-2
176 Outers 168 Outers 127 Outers 106 Outers 66 Outers
Diag. Dom. Lost on | Diag. Dom. Lost on | Diag. Dom. Lost on | Diag. Dom. Lost on } Diag. Dom. Lost on
Outer # 27-31 #25-28 Outer # 23-25 Outer # 21-22 Outer # 19-2
in Conmverged in Converged in Coaverged in Oscillation: 7.00668E-3
280 Outers 249 QOuters 215 Outers 165 Outers No Convergence
Dom. Lost on | Diag. Dom. Lost on | Diag. Dom. Lost on | Diag. Dom. Lost on | Diag. Dom. Lost on
Outer # 65-95 Outer # 73-124 Outer # 72-119 Outer # 70-97 all Outers after # 69
Oscillation: in Oscillation: Converged in Oscillation: 6.93602E4
No Convergence 821 Outers No Convergence 401 Outers No Convergence
iag. Dom. Lost on Dom. Lost on | Diag. Dom. Lost on } Diag. Dom. Lost on | Diag. Dom. Lost on
afier first | all afier first | all Outers after first | all Quters afier first | all Outers after first
updaie update updaie update update
Instability in Oscillation: Converged in Instability 6.92898E-5
3433 Outers No Cos 3432 Outers
Dom. Lost on | Diag. Dom. Lost on | Diag. Dom. Lost on | Diag. Dom. Lost on | Diag. Dom. Losf on
after first | all Outers after first | all Outers after first | all Outers after first | all OQuters after first
update update update




Eigenvalue Convergence vs. Iteration Number
24 Node Homogeneous Test Problem

Node Side = Scm

3 Outer Iterations Between d.f.r. Updates
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Figure 6.9. Eigenvalue Convergence for Node Size of S
cm and 3 Outers per Update.
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Eigenvalue Convergence

Eigenvalue Convergence vs. Iteration Number
24 Node Homogeneous Test Problem

Node Side = Icm
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Figure 6.10 Eigenvalue Convergence for Node Size of

1 cm and 2 Outers per Update.
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Eigenvalue Convergence vs. Iteration Number

24 Node Homogeneous Test Problem
Node Side = 0.1cm
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Figure 6.11. Eigenvalue Convergence for Node Size of
0.1 cm and 5 Outers per Update.
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Eigenvalue Convergence

Eigenvalue Convergence vs. Iteration Number
24 Node Homogeneous Test Problem

Node Side = 0.1cm
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Figure 6.12. Eigenvalue Convergence for Node Size of

0.1 cm and 1 Outers per Update.
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Eigenvalue Convergence vs. Iteration Number
24 Node Homogeneous Test Problem

Node Side = .001cm
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Figure 6.13. Eigenvalue Convergence for Node Size of
0.001 cm and 5 Outers per Update.
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Eigenvalue Convergence vs. [teration Number
24 Node Homogeneous Test Problem

Node Side = .001cm
4 Outer Iterations Between d.f.r. Updates
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Figure 6.14. Eigenvalue Convergence for Node Size of
0.001 cm and 4 Outers per Update.
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Eigenvalue Convergence vs. Iteration Number
24 Node Homogeneous Test Problem

Node Side = .001cm
3 Outer [terations Between d.f.r. Updates
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Figure 6.15. Eigenvalue Convergence for Node Size of
0.001 cm and 3 Outers per Update.
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Eigenvalue Convergence

Eigenvalue Convergence vs. Iteration Number
24 Node Homogeneous Test Problem
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Eigenvalue Convergence for Node Size of
0.001 cm and 1 Outers per Update.
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6.3 Testing the Transient Method

In order to test the transient solution methods, two
benchmark problems were run. The first was a simple model
with a zero current boundary condition involving a uniform
step change at time zero. The analytic solution to this
problem was available from Ref. [B-1]. The second benchmark
problem consisted of a non-uniform step change transient in a
large, heterogeneous heavy water reactor. This problem was
originally used in the verification of the computer code
TRIMHX [B-2], a three-dimensional diffusion theory code for
hexagonal-z geometry which was developed at Savannah River
Laboratory. Results obtained from QUARTZ are compared to the
TRIMHX results given by Ref. (B-2].

Because of the difficulty in obtaining other benchmark
problems for triangular-z geometry, the remaining studies
were used as simple ‘consistency checks’, to verify that the
transient methods in QUARTZ give physically acceptable
results to selected transients.

6.3.1 Transient Analvtic Test Problem

The analytic test problem, constructed by Byers [B-1]
(from the work of Dias ([D-1]), was used to test the transient
solution methods in the computer code ZAQ. It is a simple
model, independent of spatial mesh because of the zero
current boundary condition on the outer surfaces. Appendix
C, Section 6 presents the cross sections and constants used
for the model. The analytic solution of the reactor power as
a function of time is given as [B-1]:

p(t)=ae™ +a,e”™ + a,e™ (6.1)

where the constants are given in Table 6.11. The eigenvalue
for this problem is exactly 1.00.
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Table 6.11

Constants for the Analytic Solution

a, 1.5069321349E+00 o, 4.0582083930E-02
a -5.0756822664E-01 @, |-1.7804156798E+02
a, 6.3909171724E-04 o, -1.1072207901E+05

A static calculation of the perturbed system gave a
reactivity estimate of 2.5236E-3 (the eigenvalue was
1.00253). The transient problem was solved by the quasi-
static method and the point kinetics method using the
computer code QUARTZ. The transient was initiated by a step
decrease in the sigma cross section in group 2 at time zero.
The quasi-static solution is shown in Fig. 6.17. As can be
seen in the figure, the QUARTZ solution matches the analytic
solution very well. It should be noted that the neutron
speeds for the reference solution were not given, so typical
speeds were used (see Appendix C). The fact that the prompt
jump occurs sooner for the quasi-static method in Fig. 6.17
indicates that the assumed speeds were higher than the speeds
used in the reference problem.

The asymptotic reactivity computed during the solution
was 2.5253E-3.

The point kinetics solution is shown in Fig. 6.18. 1In
the figure, it can be seen that the point kinetics solution
is acceptable, but does not quite match the reference
solution.
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QUARTZ Quasi Static Method vs. Analytic Solution
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Figure 6.17. QUARTZ Quasi Static Solution to the
Analytic Benchmark Problem.

QUARTZ Point Kinetics vs. Analytic Solution
Unperturbed Flux Shape and Adjoln;
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Figure 6.18. Point Kinetics Solution to the Analytic
Problem Using Static Flux and Adjoint.
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The point kinetics solution uses the unperturbed flux
and unperturbed adjoint to compute the point kinetics
parameters. Point kinetics usually gives poor results when
the flux shape during the transient differs significantly
from the static flux shape (i.e. the shape that was used to
compute the point kinetics parameters). In the analytic
benchmark problem, the perturbation is spatially uniform,
meaning that the spatial shape does not change during the
transient. However, because the perturbation is made to the
group 2 cross section only, the fast-to-slow flux ratio (the
ratio of the group 1 flux to the group 2 flux) changes, and
thus the point kinetics parameters used during the transient
reflect the incorrect, static energy shape. To test this, a
static calculation was run using the perturbed cross
sections. The forward and adjoint fluxes were edited and
then used to compute point kinetics parameters. The
transient was then run exactly as before, except that the
improved point kinetics parameters were used. The result is
shown in Fig. 6.19. It can be seen that the solution now
matches the reference very well.

QUARTZ Point Kinetics vs. Analytic Solution
Perturbed Flux Shape and Adjoint

1.6

1.5

1.4

1.3

| Analyug
—=o=! Point Kjnetics

Power (Joules/S)

1.2

Step Dgcrease in Sigma GrTup 2 at Time 0.0

1.0 L..Y. S B

00 O 0.2 03 0.4 05 06

Time in Seconds

Figure 6.19. Point Kinetics Solution to the Analytic
Problem Using Perturbed Flux and Adjoint.
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6.3.2 Buckner-Stewart Heterogeneous Test Problem

The Buckner-Stewart benchmark problem was obtained from
Ref. [B-2), and consists of a non-uniform step change in the
central region of a large, heterogeneous heavy water reactor.
The details of the model are given in Appendix C, Section 7.
It was originally used to test the finite difference,
hexagonal diffusion theory code TRIMHX (B-2]. The core
consists of hexagonal assemblies arranged in a pattern with
60 degree rotational symmetry. The model has five unique
axial planes, and is symmetric about the center plane. The
perturbation consisted of an axially uniform 15% decrease in
the thermal capture cross section in the central patch of
assemblies at time zero. Thermal hydraulic feedback is not

modeled.

The 1/6, full height core was modeled using QUARTZ. The
total number of nodes, using six triangles per hexagon was
4468. The quasi-static method was used with two time
domains. The first time domain, from 0 to 1 second, used a
time step size of 5 msec. The second time domain, from 1
second to 5 seconds, used a time step size of 50 msec. The
spatial model was the CMFD method. The total calculation
time for this problem was 77 minutes on a VAX 3100 computer.

The reactivity as a function of time is given in Fig.
6.20. The asymptotic reactivity was computed to be 5.8738E-
3, or 90.37 cents (beta is .0065 for the single delayed
neutron precursor group). The reactivity computed by TRIMHX,
and reported in Ref. [B-2] was 87.15 cents. In this
transient, the shape of the neutron flux changes dramatically
over the first second. Figure 6.21 shows the radial
distribution of the thermal neutron flux at midplane as a
function of time, where radial position 0 is at the center of
the reactor, and position 12 is at the outer surface. All
four of the thermal flux profiles are normalized in this
figure such that the flux in the central node (radial
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position 0) 1is unity. The reactivity reaches its asymptotic
value when the flux reaches its asymptotic shape. The flux
shape at 1 second in Fig. 6,21 qualitatively matches the
asymptotic flux shape reported in Ref. [B-2].

The normalized central node thermal flux as a function
of time is shown in Fig. 6.22. Because the reactivity is
close to prompt critical, the three to four percent
difference between the QUARTZ and TRIMHX reactivity has a
relatively large effect on the power as a function of time.
The QUARTZ solution for the power is consistent with the
larger estimate of the reactivity.

One major difference between the TRIMHX model and the
QUARTZ model is the spatial mesh. The QUARTZ model uses six
nodes per hexagon, and the TRIMHX model uses one node per
hexagon. This difference may account for the difference in
the reactivity estimate.

This benchmark problem was also solved by the quadratic
hexagonal code DIF3D [T-1]. Ref. [T-1) did not specifically
state the spatial model used in the calculation. However, it
is implied that the quadratic nodal method (in hexagonal
geometry) was used. The published asymptotic reactivity was
given to be 84 cents.

It is difficult to draw strong conclusions about the
transient methods based upon the results of this benchmark
problem. The reactivity calculation, using the quasi-static
method, predicted the correct value within 4% of reference,
but because the reactivity was close to prompt critical, the
power was significantly overpredicted. It appears that the
solution is sensitive to the spatial model used. The
reference calculation used 1 node per hexagon in CMFD. The
QUARTZ model used 6 nodes per hexagon, in CMFD. The DIF3D
model used 1 node per hexagon with a quadratic method. All
three gave different estimates of the reactivity.
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The next logical step would have been to use the
quadratic method in the QUARTZ model. Unfortunately, the
quadratic method in QUARTZ can only be used for problems with
uniforn boundary conditions on the outer periphery of the
reactor. The benchmark problem is a 1/6 core, with zero
current boundary condition on two sides. A full core model
could have been used, but the size of the problem would have
been prohibitively large.

The requirement of a uniform outer boundary condition is
not imposed by limitations in the method, but rather by the
limitations of the computer code. The difficulties are
caused by the inability to properly locate the points of the
triangles on the reactor surface. The fact that a point lies
on the surface can be ascertained by the fact that the node
beyond the point does not exist. However, sufficient
information is not available to specifically locate the point
on one side of the reactor or another. This problem chiefly
arises at the corners of the reactor, where two surfaces meet
with different outer boundary conditions.

In short, it is disappointing that the quadratic method
could not be used for this problem. In the future, these
difficulties may be circumvented by customizing the
triangular quadratic method to the specific reactor type of
interest, In that way, a systematic way of identifying
points on the reactor surface would be tractable. In an
effort to keep the computer code QUARTZ very general, a
systematic way of identifying points on the surface became
too difficult to overcome.
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Reactivity vs. Time
Buckner-Stewart Benchmark (TEST III)
Step Decrease in Thermal Capture XS
in Region 1 (Center) at Time = 0.0
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Figure 6.20. Reactivity as a Function of Time for the
Buckner-Stewart Benchmark Problem,
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Normalized Flux

Thermal Flux Shape vs. Time
Buckner-Stewart Benchmark Problem
(Position 0 = Reactor Center)
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Figure 6.21. Thermal Flux Shape as a Function of Time
for the Buckner-Stewart Benchmark
Problem,.
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Normalized Cenxtral Node Thermal Flux
Buckner-Stewart Benchmark TEST II1
deltat = Smsecfor 0 <t < 1 sec
deltat = S0 msec for t > 1 sec
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Figure 6.22. Central Node Thermal Flux as a Function
of Time for the Buckner-Stewart Benchmark

Problem,
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6.3.3 Qther Consistency Studies

In order to further test the transient methods, three
generic problems were created to check the power response of
the method to common transients. 1In each of the three tests,
a 3-D, two-group, homogeneous model was used.

The first test consisted of a uniform step decrease in
the thermal absorption cross section at t=5 seconds. The
problem was run with and without thermal feedback. Figure
6.23 shows the power response as a function of time for the
feedback case (dotted line) and the no feedback case (solid
line). The case without feedback immediately jumps to a
positive and constant value of reactivity. The power
increases without bound, as expected. The case with feedback
is shown as the dotted line in the figure. The power
initially increases because of the decrease in the absorption
cross section, but as the temperatures rise, the cross
section feedback eliminates the positive reactivity and the
power goes to a constant value at a higher level.

The second test consisted of a step decrease in the
inlet flow rate to 80% of the initial value from t=5 seconds
until t=30 seconds, when the flow rate was restored to 100%,
Inlet coolant temperature was assumed constant throughout the
transient. Figure 6.24 shows the total reactor power
response to the transient. In this figure, the solid line
represents the power response, and the dotted line represents
the steady state power level. The decrease in the flow rate
causes the temperatures in the reactor to rise, The cross
section feedback gives a negative reactivity, and the power
decreases. At 30 seconds, the flow rate is restored. The
temperatures drop, the reactivity becomes positive, and the
power level goes to its initial, steady state level.
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The third test consisted of a step increase in the inlet
coolant temperature at t=10 seconds, and restoration of the
initial temperature at t=30 seconds. The coolant flow rate
was assumed to be conscant throughout the transient. Figure
6.25 shows the results for the test. The solid line is the
power response and the dotted line is the initial power
level. The power decreases at t=10 seconds due to the
increase in temperature, and returns to its steady state
level a short time after the inlet temperature is restored.

In conclusion, the transient thermal feedback models
have been shown to give expected results to three types of
transients. This further indicates that the transient
methods have been implemented correctly.
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Reactor Response to Step Decrease in the
Group 2 Sigma Cross Section at § seconds
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Figure. 6.23. The Reactor Power as a Function of Time
for the First Consistency Check.
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Figure. 6.24.
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6.4 Summary

In this chapter, the static and transient solution
methods have been tested. The static method was initially
shown to match very simple infinite cell and infinite slab
analytic solutions. The static method was also compared to
results from a 2-D, finite difference triangular code MITHEX.
These comparisons demonstrated that the Coarse Mesh Finite
Difference (CMFD) equations were correctly implemented and
solved. The quadratic equations were then shown to reduce to
the CMFD equations in the limit of small mesh size. This was
a very important result because the CMFD equations, in the
limit of small mesh size, are guaranteed to converge to the
true solution of the nodal diffusion equations.

The efficiency and accuracy of the quadratic method was
then compared to the CMFD method. The results from a
homogeneous test problem were presented first. The quadratic
method was shown to give a more accurate estimate of the
nodal fluxes at coarse mesh for both zero flux and zero net
returning current boundary conditions. However, the
eigenvalue estimates were less accurate. Also, for the zero
net returning current boundary condition case, the quadratic
method exhibited inconsistent error reduction with mesh size
when small mesh sizes were used. This problem was not seen
in the zero flux boundary condition case, and is attributed
to the boundary condition approximations mentioned in Chapter
3 and discussed in Appendix A. A heterogeneous, zero current
case was run to test the two methods without the influence of
the boundary conditions. The quadratic method produced very
accurate estimates of the eigenvalue and fluxes at coarse
mesh. It was proposed that the poor estimations of the
eigenvalue by the quadratic method was caused by the
inability of the quadratic polynomial to accurately predict
the current at the points and surfaces of the triangular
nodes. Previous work by Gehin [G-1] in Cartesian geometry
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has shown that quadratic polynomials can accurately predict
node-averaged fluxes, but can have difficulty predicting the
current at the surfaces of the node.

The quadratic method was found to be numerically
unstable when very small mesh sizes were used. This
instability was investigated for a 24 node, 2-D problem, and
the results were presented. It was mentioned that these
problems should not be encountered in typical reactor

applications.

The transient solution methods were tested using a
simple analytic problem, and the Buckner-Stewart benchmark
problem. A few consistency test cases were also run. The
simple analytic problem demonstrated that the fundamental
transient equations worked properly, although the problem did
not include leakage. The results from the Buckner-Stewart
problem were difficult to interpret. The shape distortion
due to the initiating perturbation was presented, and it was
mentioned that the results “qualitatively” matched the
published results (quantitative numbers were not published).
The reactivity was computed to be 3-4% higher than the
published, reference value. It was also mentioned that
results from this problem were published by a third,
independent researcher, using DIF3D. The DIF3D calculation
under predicted (with respect to the reference) the
reactivity by 3-4%. Thus it appears that this benchmark
problem is difficult to solve, and three different computer
codes have given three different estimates of the reactivity.
It was proposed that the different estimations of the
reactivity were caused by the differences in the spatial
models. The QUARTZ model used the CMFD method with 6 nodes
per hexagon. The TRIMHX model used the CMFD method with 1
node per hexagon, and the DIF3D model used a quadratic method
with 1 node per hexagon. The triangular quadratic method
could not be run for this problem because of limitations in
the computer code, QUARTZ. QUARTZ, when running in quadratic
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mode, models one boundary condition for the periphery of the
reactor per axial plane.

The remaining problems, which were run as general
cons!stency checks, demonstrated that the thermal hydraulic
feedback model was capable of giving physically expected
results.
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Chapter 7
Conclugsions and Recommendations for Future Work

7.1 Summary of Results

A quadratic nodal method has been developed in
triangular-z geometry for static and transient problems.
Solution methods have been presented, and several test
problems have been used to demonstrate the nature of the
quadratic method. A summary of the test results is given as

follows:

. The quadratic equations were shown to reduce to the
Coarse Mesh Finite Difference (CMFD) equations in the limit
of small mesh size. Thus, if the assumptions made in the
derivation are poor, the problems disappear in the limit of

small mesh size.

. Comparing the node-averaged fluxes for the quadratic and
the CMFD methods to reference solutions showed that the
quadratic method produced much better results at coarse mesh
for all models tested. At smaller mesh size, however, the
quadratic method exhibited inconsistent error reduction with
shrinking mesh size when an albedo boundary condition was
used. This behavior was not seen when either a zero flux or
zero current boundary condition was used. It is suspected
that the problem is caused by incorrectly treated boundary
condition parameters, which only appear in albedo boundary

conditions.

. Comparing the eigenvalue for both methods to reference
solutions showed that the quadratic method gave poor results
at large mesh size when either an albedo or zero flux
boundary condition was used. When a zero current,
heterogeneous model was used, the quadratic method gave
excellent results. It is suspected that the problem is
caused by incorrect leakages in nodes on the boundary of the

142



reactor. It was mentioned that the quadratic representation
of the transverse-averaged flux may be too rigid to model
accurately the current at the points and surfaces of the
triangular nodes. Previous work in Cartesian geometry [G-1]
showed that quadratic polynomials were capable of accurately
predicting node-averaged fluxes, but sometimes incapable of
accurately predicting the currents at the surfaces. The
problem is more severe for the triangular quadratic method
because the polynomials are forced to match valuve and
derivative to other polynomials at the points of the
triangular nodes. It was mentioned that this rigidity may
lead to problems at any location where the flux changes

drastically.

. A numerical instability was encountered for extreme
(very small mesh) cases. The cause of the instability was
found to be the loss of diagonal dominance due to the values
of the discontinuity factor ratios.

. The transient solution to a simple, zero current test
problem using the quasi-static method was shown to match the

analytic solution.

. A large, heterogeneous, heavy water benchmark problem
was used to test the space-time transient methods. The
reactivity computed using the quasi-static method was shown
to be within 3-4% of published results. Because the amount
of reactivity was very high (i.e. close to prompt critical),
the 3-4% difference led to large differences in power as a
function of time. It was mentioned that the shape distortion
caused by the non-homogeneous perturbation qualitatively
matched published results. It was proposed that the
difference between the QUARTZ, TRIMHX, and DIF3D estimates of
the reactivity could be attributed to the different spatial
models used.
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. Three thermal hydraulic test problems were used to
demonstrate the adequacy of the thermal feedback model.

These tests showed that transients could be initiated by
changing the inlet thermal hydraulic conditions, and that the
thermal feedback to other types of transients behaved as
expected.

7.2 Conclusions

In conclusion, the quadratic nodal method in triangular
geometry has been shown to give much better estimations of
the nodal fluxes than the CMFD method at the same mesh size.
The eigenvalue estimations, however, were shown to be poorer
than the CMFD values in certain cases. It is suspected chat
the cause of these eigenvalue difficulties is the quadratic
representation of the transverse-averaged flux. The results
consistently show that the quadratic method can accurately
predict the node-averaged fluxes, but can have difficulty
predicting the surface-averaged currents. The quadratic
polynomial simply does not have enough flexibility to match
the surface-averaged current at the face and at the point.
The triangular quadratic method is more ‘rigid’ than the
Cartesian quadratic method because the polynomial is forced
to match the value and derivative at the point of the
triangle to the polynomial in the node beyond without the
benefit of discontinuity factors. The triangular quadratic
method may therefore give poor leakage estimations for nodes
at material interfaces or reactor boundaries. These leakage
errors may then adversely affect the eigenvalue.

One topic which has not been discussed in detail is the
effect of the *heterogeneity factors.” Recall that these are
the discontinuity factors which appear in the quadratic
current equations, and correct for heterogeneity, Fick’'s law,
and the spatial approximation. If the “reference”
calculation to get the hetercgeneity factors was performed
using a patch of nodes (which is likely because reference
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calculations typically model assemblies, and there will
always be two or more triangles per assembly), then the
heterogeneity factors should somewhat correct for the leakage
difficulties. If this is the case, then the quadratic method
would give accurate node-average fluxes and the heterogeneity
factors would improve the eigenvalue solution.

In select cases, the quadratic method has been shown to
give significant benefit over the CMFD method. The essential
question of whether or not the quadratic method is useful
must be answered for each specific reactor type. It appears
that the method has its greatest difficulty near reactor
boundaries, and it is conjectured that it also suffers at
interfaces across which there are severe material
discontinuities. To the extent that these severe conditions
exist, the quadratic method may or may not be very useful,

In the current implementation, numerical instabilities
were encountered when very small mesh sizes were used. 1In
typical reactor applications, the mesh sizes will be much
larger, and therefore the instabilities should not be of
major concern.,

The transient methods were tested using a simple
analytic problem, three problems with thermal feedback, and a
detailed heterogeneous problem, The results from these tests
showed, in a preliminary way, that the transient methods were
developed and implemented correctly. However, there was a
difficulty in obtaining good benchmark problems for
triangular geometry. Further testing is recommended with a
wider variety of problems.

7.3 Recommendations for Future Research

During the course of this work, the nature of the
quadratic nodal equations for triangular geometry was
investigated. Many questions remain, however. It is
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recommended, for future research, that the following areas be
investigated:

. It has been mentioned several times that the quadratic
polynomial may not have enough flexibility to accurately
predict the currents at both the points of the triangular
nodes and the faces. It is recommended that higher order
polynomials be investigated. Methods as high as fourth order
have been developed successfully in Cartesian geometry (G-1].
The development of higher order methods, however, might pose
a considerable challenge because of the unusual geometry.

. It is strongly recommended that the quadratic method be
tested thoroughly for other reactor systems. Results have
indicated that the gquadratic method can give significant
benefit over the CMFD method for certain reactor
configurations. It is necessary to develop a knowledge and
understanding of which reactor systems the method is suited

for, and why.

. An in-depth investigation of the numerical stability of
the quadratic method is recommended. The instabilities were
only found for extreme cases, but a full understanding of the
causes and remedies is needed. An important question is
whether or not the triangular nodal method is particularly
susceptible to numerical instability, or if this type of
instability is generic to all nodal methods.

. The non-linear iteration scheme currently uses surface-
averaged currents from the last iteration on the right hand
side of eqn. (3.50)., Previous implementations of the non-
linear iteration scheme (in other geometries) have found that
attempting to solve these equations simultaneously for the
currents is unstable. In the triangular nodal method,
however, the extended coupling may allow the stable,
simultaneous solution of the currents. Additionally,
extended coupling might be considered for the axial
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dimension. Extended coupling is not required for Cartesian
geometry, but it might allow the currents to be solved for
simultaneously. The overall goal is to reduce the run time
by converging the quadratic currents as quickly as possible,
which might be accomplished by simultaneous solution.

. A very simple thermal hydraulic feedback model was
incorporated to test the general feedback response of the
static and transient methods. A more detailed, elaborate
model could be employed for application to a specific reactor
system,
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Appendix A

Special Boundary Condition Considerations

In Chapter 3, a difficulty was encountered when a
boundary condition was applied to the point of a triangular
node. It was mentioned that the boundary condition
parameters which appear in eqn. (3.55) are not necessarily
equal to the ‘traditional’ boundary condition parameters in
egqn. (3.18). The computer code QUARTZ currently assumes that
the boundary condition parameters which appear in eqgn. (3.55)
are equal to the parameters input by the user. This appendix
will discuss the relationship between the two sets of
boundary condition parameters, and evaluate the assumptions
made in the implementation.

A general, albedo boundary condition will be assumed for
the work in this section, so that both alpha and beta are
non-zero. Traditionally, the parameters ‘alpha’ and ‘beta’
are input by the user to describe the condition at the outer
surface of the reactor. This relationship is given by:

7.
E_-____ ﬂ_r-eaclor (A.l)

o ¢

where n,,.,, 1s an outward-directed normal to the reactor

surface. In Chapter 3, an equation for the boundary
condition at a point of a triangular node (which lies on the
boundary of the reactor) was introduced as egn. (3.55). This
equation is similar in form to egn. (A.l), but although both
are applied at the outer surface of the reactor, eqn. (3.55)
uses the component of the net current density which is normal

to a small *€ surface” (see Chapter 3). Dropping the group
and node notation, egn. (3.55) is rewritten as:
Jn
(-‘B—) = S e (A.2)
x point ¢
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For a particular node, if HN,.mpn. does not point in the

same direction as MN,..r . then:

(%me#g— (A.3)

The goal is to allow the user to specify one alpha and
one beta (for the whole reactor, or for a whole side of the
reactor) which describes the boundary condition according to
eqn. (A.l1). The appropriate boundary condition parameters at
any given triangular point can be determined by:

&) e

o a

where ¥ 1is a constant which is determined for each

triangular point which lies on the reactor surface. For a
regular pattern of triangular nodes, there are few unique
values of ¥. In general, the ¥ constant depends on the
orientation of the node to the reactor surface, and the
nature of the adjacent nodes. A systematic way of obtaining
this constant is currently not available. Under many
conditions, however, this constant is unity. In order to
evaluate the approximation that this constant is unity for
all points on the reactor surface, it is useful to examine
specific cases. Figure A.l1l shows the point “A* on the
reactor surface.
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Figure A.1 Two Triangular Nodes Which Share the Same
Point on the Reactor Surface.

We shall examine the point “A” for node II. Figure A.2
shows the tip of node II. The small area of interest is
bounded by the *“€ surface” below, and the two sides of the
triangle near the tip. 1In the figure, the surface currents
are shown on each of the three surfaces (the subscripts do
not carry any special meaning). As the € surface
approaches point A, the reaction rates within this small area
become negligible, and the balance of neutrons is then
largely determined by the leakage in or out of each face.

The net current into this area should equal the net current

out. That 1is:

Jy=J,+/J, (A.5)

As the € surfaces for both node I and node II approach
point A, the leakage between these two iegions becomes small.
In the limit, J;=0. The current at the € surface is then
equal to the current on the reactor surface. Assuming that
the boundary condition parameters at the point of the
triangle (i.e. € surface) are equal to the boundary
condition parameters at the surface is equivalent to assuming
that the current at the € surface is equal to the current

at the surface. Thus, the boundary condition approximation
is valid insofar as J,=0.
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el i,

Reactor
Surface

2

€ surface

NODE II

Figure A.2. Surface-Averaged Currents at the Tip of
Node II.

Another situation which must be considered is when the
point of a triangular node is at the corner of the reactor.
Figure A.3 shows this situation for node III. The point of
interest is labeled ’‘B.’

Reactor

Surf
Ngim:cl:e L

Reactor
Surface
Normal

.‘.:.: NODE lll S

Figure A.3 A Point on the Reactor Surface which
Occurs at the Corner of the Reactor.

For node III of Fig. A.3, the tip of the triangle is
shown in Fig. A.4.
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Figure A.4. Surface-Averaged Currents at the Tip of
Node III,

The same arguments made in the previous case hold here.

The current at the € surface will equal the current at the
reactor surface if J;=0.

A very unusual case is the point of a single triangular
node. This situation is shown in Fig. A.5. 1In this case,
the current at the € surface is equal to the sum of the
other two currents. If the external boundary condition is
the same for both sides of the tip, the Y constant is equal

to 2.0.

Reactor
Surface

W

Figure A.5. A View of the Tip of a Single Triangular
Node.

b

€ surface

Reactor
Surface

155



Appendix B

The WIGL Model

The WIGL thermal hydraulics model ([V-1] is a lumped heat
capacity model which gives node-averaged fuel and coolant
temperatures for static and transient applications. The WIGL
model assumes that no boiling occurs within the nodes. The
transient form of the WIGL equation for the node-averaged

=0k ,
fuel temperature in node (i,7j,k), T?j) , is:
=(i,/.k)
o dT(l.j. o ‘
(. ok) f —— (“-"k) ( v rk)
PV G, dr (1=r)(g” )" Vi

-1 (B.1)

0.8
1 1 1 W (NN 4 (i ik
~v¢wx) + ( ] T}%)-—Tﬁd')

=(i,j.k)
and for the node-averaged coolant temperature, Tﬂj :

V“L”(ékkhﬁ)deJ*)=
‘ oT. ) dr

-1

0.8
b L, LW (T‘}"'”«“ﬁ"""’) (B.2)
AU AR\W

s l. N — " "k “ " .
+2Wf""k)Cc(T,§"'“- <cu ))+r(qm)('1k)v}l.j.k)

where the coolant inlet temperature for node (i,j,k) is Tf%”

( b is for 'bottom’), and for any k greater than 1, is given
in terms of the node-averaged coolant temperature and the
inlet coolant temperature of node (i,3j,k-1):

Tym)=27gm4)_7?¢bn k>1 (B.3)

The notation in (B.1l), (B.2), and (B.3) is used in order
to match previous implementations [S-2,B-1,G-1]. The
quantities used in the WIGL model are defined as:

156



COMPUTED QUANTITIES:

"7'-'.(;.},1)

node-averaged fuel temperature for node (i, j,k)
K)

7‘,(&'.}.*)
¢

"~ H

node-averaged coolant temperature for node
(i,9,k) (K)

i,j.k)
7;1

= node coolant inlet temperature for node (i,7j,k)
{ if k > 1) (K)

USER_INPUT QUANTITIES:

core inlet coolant temperature at time t (K)

T, =
= fuel density (g/cm?)
Py
C> = specific heat of the fuel (erg/g K)
(; = gspecific heat of the coolant (erg/g K)
r = fraction of fission power deposited directly
into the coolant
V?J*’ = volume of fuel in node (i, j,k) (cm3)
y@ib 1= volume of coolant in node (i,3j k) (cm?)
= tota eat transfer area coolant volume in
A, t lh £ / 1 1 i
node (i,j, k) (cm-!)
@, = convective heat transfer coefficient at the
initial core flow rate (erg/s cm? K)
= conductivity/conduction lengths of the fuel,
U d ivity/ d i 1 h f the fuel
gap, and cladding
W, = initial core (i.e. total) mass flow rate (g/s)
= core mass flow rate at time t (g/s)
Weiio = mass flow rate in node (i,j,k) at time t (g/s)
,
%011 = the energy required to raise the temperature of
-5§;- a unit volume of coolant one degree K (erg/cm3
c K)

SOLUTION-GENERATED QUANTITIES:

(qm)(f-iuk)

= volumetric energy generation rate in node
(i,i,k) at time t (erg/cm3)

The volumetric energy generation rate in each node is
computed using the nodal power densities at each time step.
If a composition change in the reactor initiates a transient,
the nodal power densities change as a function of time, and
new temperatures are computed using the WIGL equations. The
temperatures affect the solution by adjusting the cross

sections.
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Two other mechanisms for initiating a transient have
been implemented. The core inlet temperature can be adjusted
as a function of time, and the core flow rate.

The thermal hydraulic equations are solved using a fully
implicit integration over time, identical to the
implementation by Gehin [G-1].

The static WIGL equations are used to compute the steady
state temperature distributions during static problems. The
static WIGL equations can be obtained from (B.l) and (B.2) by
setting the time derivatives to zero, and using the steady
state values of the inlet coolant temperature and core mass
flow rate,
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Appendix C
Model Descriptions
In this appendix, the descriptions of several models
which were used to verify the code QUARTZ are given.

C.1 8static Analytic Test Problem

The first of the analytic tests was a zero current
problem with the following 2 group cross sections (taken from

Byers [B-1]):
D Chi Fission Nu Fission Sigma
[ TT3689E+D 0.0 233888E-3 | S.BOJ20E-3 | 3. 3]
Scattering
Z,,, =237634E-3
22_,, = 0.0

The second of the static analytic tests involved a bare,
homogeneous slab (the computer code QUARTZ has the option of
solving problems in 1-D Cartesian geometry). The thickness
of the slab was taken to be 250 cm. This gives a buckling

of:

2 2
B? z(.ﬁ’.‘.) - (555%;? =1.57914E-4 (cm?)
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C.2 MITHEX Infinite Cell Comparison Problem

The first problem used to compare QUARTZ to MITHEX was a
heterogeneous, 24 node cell with a zero current boundary
condition. The geometrical layout of the model is given as:

where the cross sections for materials 1 and 2 were
taken from Ref., [G-2] (note that the cross sections differ
slightly from published values in [(G-2)):

MATERIAL 1
D Chi Fission Nu Fission Sigma
 8.83000E-1 0.0 0.0 0.0 . -
Scattering
zl‘_’z = 8.(XXXX)E'3
., =00
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MATERIAL 2

D Chi Fission Nu Fission ~ Sigma
K TO0OOE+0 T 1673103 T R3310E-3 . <.
F% -1 0.0 T2I00E-2 | 3. 0308E-2 | :% -
Scattering
2'.1_,2 = 6.44203E-3
23,_,, =4.39126E-5
Other Data:
LENGTH OF NODE SIDE : 10.2650 cm

BOUNDARY CONDITION: Zero Current
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C.3 MITHEX Core-8ized Comparison Problem

The second problem used to compare QUARTZ to MITHEX was
a 96 node, heterogeneocus, 2 group problem. The geometry is
given as follows, where only the top half of the symmetric
layout is shown:

Material 4

N
N
§
\
N

§ \\\\\\\“ \ S8
S

4\\\%\
NN
N

\\\\s

f‘\ ,

The cross sections are defined as follows:

MATERIAL 1

D Chi Fission Nu Fission Sigma
me T TOO00E+0 ] L16131E-3 ] 2.83310E-3 "'""S'B'Gﬁ. B3 |
. -1

__Scattering
Z, ., = 6.44203E-3

T, =4.39126E-S
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MATERIAL 2

D Chi Fission Nu Fission Slgma
[ p— U‘a U»G U.U [ / -
| E.g;;;g%‘; 6.6 m O¢6 N - ]

Scattering
I ., =1.16912E-2

T, =3.44567E-5

MATERIAL 3

D Chi Fission ~ Nu Fission Sigma

Scattering

T, =3.57473E-5

MATERIAL 4

D Chi Fission Nu Fission Sigma
 8.83000E-1 0.0 —0.0 0.0 . -

Scattering
Z, _, = 8,00000E-3

Other Data:
LENGTH OF NODE SIDE : 17.7805 cm
BOUNDARY CONDITION: Albedo (No Net Returning Current)
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C.4 Reduction of Quadratic to CMFD Limit Problem

This model was used to test the quadratic equations at
very small mesh sizes, to see if the quadratic equations
reduced to the CMFD equations in the limit. The model is a
2-D, 6 node homogeneous problem arranged in an overall
hexagonal pattern:

The cross sections are given by:

D Chi Fission Nu Fission Sigma
g%-l =00 TI0000E-2 | 8.00000E-2 mﬂ :

Scattering

T, = 1.00000E-2

Z,,,=00
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Other Data:
LENGTH OF NODE SIDE
Tests:

coococor U -

cm
cm
cm
cm
cm
cm
cm

BOUNDARY CONDITION: Albedo
CONVERGENCE: 10-12 on eigenvalue, double precision
1 Outer Iteration Between d.f.r. Updates

THERMAL FEEDBACK: None
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.05 cm
.01 cm
.005 cm
.00l cm
.0E-4 cm
.0E-4 cm
.0E-5 cm
.0E-5 cm

RPUPRPUNNTOOOO

(No Net Returning Current)



C.5 Quadratic Test Problems

Two models were used for the quadratic tests. The first
was a 2-D, homogeneous model with 24 nodes. The second was a
heterogeneous version of the same model. Case I and Case II
used the homogeneous model with albedo and zero flux boundary
conditions, respectively. Case III used the heterogeneous
model. The heterogeneous model is represented by:

Material 1

Material 2

The homogeneous model used type 1 cross sections
everywhere. The heterogeneous model used both type 1 and
type 2, in the patterns shown in the figure. The two-group
cross sections are:
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MATERIAL 1

D Chi Fission Nu Fission Sigma
T.40750E+0 . ) 1.38510E-4 3.46207E-4 3.531‘%5 1E-3
1.13680E+0 0.0 2.35888E-3 | 3. 3 | 3.37634E-3 |
Scattering

21_,2 =2.37634E-3
Z,,, =00
MATERIAL 2
D Chi Fission Nu Fission Sigma
T 1.27288E+0 ]| 1.00000E+0 1.24667E-4 3.1166/E-4 4.15'5225-3
0.83360E-1 0.0 . - . - 4.22043E-3
Scatteriﬁ
21_,2 = 2.47634E-3
Zz_,l =0.0
Other Data:
LENGTH OF NODE SIDE :
1 Node /Assembly 67.7805 cm
4 Nodes/Assembly 33.8903 ¢cm
16 Nodes/Assembly 16.9451 cm
64 Nodes/Assembly 8.4726 cm

BOUNDARY CONDITION:

CASE I Albedo

CASE II Zero Flux
CASE III Zero Current

CONVERGENCE :;
Eigenvalue:
Static Power:

10-6
10-4
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C.6 Transient Analytic Test Problem

The transient analytic test problem consists of a single
node with a zero current boundary condition on all sides.
The details were obtained from Ref. [B-1], although the
neutron speeds were not given, and typical values were
assumed. The problem is two group, with one delayed neutron

group.

The cross sections are given as:

D Chi Fission Nu Fission Sigma
T.42301E+0 | L.OOOOOE+0 | L6OOOOE-2 | 4.00000E-2 | g%g% I
3.56310E-1 0.0 3.20000E-2 | 8.00000E-2 . 2]

Scattering
X, = 1.00000E-2
X,, =00

Other Data:
LENGTH OF NODE SIDE : 1.35561E+2 cm
BOUNDARY CONDITION: Zero Current
CONVERGENCE :
Eigenvalue: 10-6
Static Power: 10-4
Flux at Every Time Step: 10-7

METHOD: CMFD
THERMAL FEEDBACK: None

Trangsient Data:
Precursor Gru '

Delayed Neutron Fraction

0.08 0.0075

Enerﬂ Groug Delazed SEectrum Neutron Sgeed

1 1.0000E+0 1.2500E+7
2 0.0 2.5000E+5
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Time Step Size: 0.0 <t < 0.2 sec deltat = 5E-5 sec
0.2 <t < 0.9 sec deltat = 5E-4 sec
Cross Section Adjustments:
@ TIME = 0.0 seconds
TYPE = Absolute Change in Cross Section
D Chi Fission Nu Fission Sigma
0.0 0.0 0.0 0.0 5‘6""_
0.0 0.0 0.0 0.0 -1.00000E-3 |
Scattering
zl—vZ =O'0
2:2-«»1 =0.0
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C.7 Buckner-Stewart Benchmark Problem

The data for this benchmark problem was obtained from
Ref. [B-2]. The problem is a 3-D, heterogeneous, heavy water
reactor. The 60 degree sector is given as follows:

Hex pitch = 17,78 em
Hex area = 27.38 cm?

}011 2 3-—'—-4-‘—5-—-

i 10 " 12 13

i 6 7 8 9

L1 2 3 4 8

+ [} 7 8 9
az= \} 10 " 12 13
80 cm

The cross sections are given as:

D Chi Fission Nu Fission Sigma
— 8.40000E-1 0.0 6.12490E-3 [.48833E-2 L

Scattering
z:-»z = 1.00000E-2
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** The group 2 sigma differed for each region:

SIGMA SIGMA
Region 1 1.355E-2 Region 8 1.325E-2
Region 2 1.355E-2 Region 9 1.320E-2
Region 3 1.350E-2 , Region 10 1.315E-2
Region 4 1.345E-2 Region 11 1.310E-2
Region 8§ 1.340E-2 Region 12 1.305E-2
Region 6 1.335E-2 Region 13 1.300E-2
Region 7 1.330E-2
Other Data:

LENGTH OF NODE SIDE : 17.78 cm
BOUNDARY CONDITION: Zero Flux

CONVERGENCE:
Eigenvalue: 10-6
Static Power: 10-4

Flux at Every Time Step: 1076
Point Kinetics Amplitude:10-6

METHOD: CMFD
THERMAL FEEDBACK: None

Transient Data:
Precursor Grou Precursor Half Life Delayed Neutron Fraction

1 0.1 0.0065

Enerﬂ Groug Delaxed Sgectrum Neutron Sgeed

1 1.0000E+0 1.000E+30

0.0 ‘ 5.0000E+6
Time Step Size: 0 <t <1 sec deltat = 5 msec
l <t <6 sec deltat = 50 msec
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Cross Section Adjustments:
@ TIME = 0.0 seconds
TYPE = Absolute Change in Cross Section

LOCATION = Region 1

D Chi Fission Nu Fission Sigma
0.0 0.0 0.0 0.0 517"‘"' |
0.0 0.0 0.0 0.0 -T.IT3TTE-3
Scattering
21__,2 = 0.0
zz-n =0.0
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C.8 Transient Thermal Hydraulic Test Problems

Three transient thermal hydraulic tests were performed
on a 3-D, homogeneous, 2-group model. The first test
consisted of a composition change, which was run with and
without thermal feedback. The second test consisted of a
step decrease in the inlet flow rate, and the third was a
step decrease in the inlet temperature.

The model consists of four homogeneous axial planes,
each with the 2-D pattern:

The cross sections are given at three fuel tempseratures:
reference, high, and low. The cross sections were obtained
from Appendix B.2 of Reference (G-1]. The data is for the
LMW LWR Transient Problem* (see [G-1]) for details). The
reference gives cross sections at the reference fuel
temperature and cross section derivatives at 533 K. 1In order
to use these data in QUARTZ, which does not accept cross
section derivatives (recall that a quadratic interpolation
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model is used for feedback), the derivatives were used to
obtain cross sections at 583 K and 483 K, These are:

AT REFERENCE FUEL TEMPERATURE: 533 K

D Chi Fission Nu Fission Sigma
0BT | 00 ISWIES | TITE I .
Scattering
X ., =1.75555E-2
22_91 ‘0.0

AT HIGH FUEL TEMPERATURE: 583 K

D Chi Fission ~ Nu Fission Stgma

8 00 TIRIET | TIITHE T T 56T e ]

Scattering
Z,,; = 1.74805E-2

z,, =00

AT LOW FUEL TEMPERATURE: 483 K

D Chi Fission Nu Fission Sigma
T 21383+ T.OOOO0E <0 2.50108E-3 6.4 003 !.73&535—5 |
 3.48231E-1 0.0 4 53081E-2 T.T3731E-1 B.848T2E-2 |

Scattering
Z, -2 = 1.76305E-2

Z,_,, =0.0

Other Data:
LENGTH OF NODE SIDE : 1.35561lE+2 cm
BOUNDARY CONDITION: Albedo (No Net Returning Current)

CONVERGENCE:
Eigenvalue: 10-6
Static Power: 10-4

Flux at Every Time Step: 10-6
Point Kinetics Amplitude:10-6

METHOD: CMFD
THERMAL FEEDBACK: WIGL Model
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i Data:

Precursor Grou Precursor Half Life Delayed Neutron Fraction
1 0.0127 0.000247
2 0.0317 0.0013845
3 0.1150 0,001222
4 0,3110 0.0026455
5 1,40 0.000832
6 3.87 0,000169
Energy Grou Delayed Spectrum Neutron Speed
1 1,0000E+0 1,2500E+7
2 0.0 2.5000E+5

Time Step S8ize: deltat = 0.1 sec

WIGL DATA (see Appendix B for Definitions):
Tg 533 K
p! 10.3 g/cm3
C, 2.46E+6 (erg/g K)
Cc 5.43E+7 (erg/g K)
r 0.0
viv.+v,) |05
Ay 2.59 (cm-1)
U 2.2E+6 ergs/ cmé s
K
h, 2.71E+7 (erg/s cm?
K)
Wo =2.2E+6 (g/s)
(ag H) 1.60E+7 (erg/cm? K)
oT.
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TEST 1

Cross Section Adjustments:
TIME = perturbed at 10 2econds, reset at 30 seconds

TYPE = Absolute Change in Cross Section
LOCATION = All Regions

D Chi Fission Nu Fission Sigma
0.0 0.0 0.0 0.0 "'ﬁ'ﬁ"‘""
0.0 0.0 0.0 0.0 -2.50000E-4
Scattering
}:I 0 = 0.0
%, =00
TEST 11

Inlet flow rate reduced to 80% of original value at time
= 10 seconds, returned to original value at 30 seconds.

TEST Il

Inlet temperature increased from original value of 533 K
to 538.07 K at time = 10 seconds, returned to original value

at time = 30 seconds.
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