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Abstract 

The vector fields of the quantum Lie algebra are described for the 
quantum groups GL,(N), SL,(N) and SO,(N) as pseudodifferential 
operators on the linear quantum spaces covariant under the corre- 
sponding quantum group. Their expressions are simple and compact. 
It is pointed out that these vector fields satisfy certain characteris- 
tic polynomial identities. The real forms S U , ( N )  and SO,(N, R)  are 
discussed in detail. 
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1 Vector Fields for Quantum Groups 

A quantum group can be described[l] in terms of matrices A with noncom- 
muting elements satisfying the equation 

with the matrix appropriate to the particular quantum group. The matrix 
elements generate the algebra of functions on the group. Here we have used 
a well known standard notation: for instance, Eq.(1) written explicitly, takes 
the form 

(2) 
PjAk A1 - Ai k AjRk' 1 mn' 

Ll m n -  

The vector fields on the quantum group can be described [2, 3, 4, 51 by the 
matrix elements of a matrix Y satisfying the commutation relation 

R12E!& .2E! = E! R12y2Ri12, (3) 

which corresponds to the Lie algebra relations in the classical case. The 
action of the vector fields on the group is then given by the commutation 
relation 

KA2 = A2R12KR12. (4) 

The quantum group matrices can coact on a quantum space, for instance 
by right multiplication. A point of coordinates xoi will be transformed into 
xi = X,~A: or, more compactly, 

x = xOA. (5) 

Keeping the original point xo k e d ,  the action of a vector field on the quantum 
group induces an action on the quantum space 

i.e. 



We shall consider the case when a differential calculus covariant with 
respect to the coaction of the quantum group exists on the quantum space. 
In this case it is natural to ask whether it is possible to realize the vector 
fields Y as pseudodifferential operators satisfying Eqs.(3) and (6). We shall 
show that this can be done for the quantum groups GL,(N),  SL,(N) and 
SO,(N). Their real forms are also considered. 

2 GLq(N),  SL,(N) and SUq(N) 
The calculus for the quantum plane covariant under GL,(N) is well known[6]. 
The coordinates x;  in the plane satisfy the commutation relations 

and the derivatives di satisfy 

All indices run from 1 to N and l? is the GL,(N) matrix, which satisfies the 
characteristic equation 

Using Eq.(ll) and the above commutation relations, it is easy to verify that 
the differential operator 

satisfies Eq.(6), which we repeat here, 
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as well as 
d 2 ~  = R12y2R12a2. (14) 

Combining these two, one finds that the matrix Y satisfies also Eq.(3). 

For the quantum matrices one uses the standard quantum determinant det,A 
and defines a new matrix 

The quantum subgroup SL,(N) can be obtained from GL,(N) as follows[4]. 

T = (det,A)-l/NA 

having quantum determinant equal to one. For the vector fields, one defines 
an appropriate determinant DetY and defines a new matrix of vector fields[4, 

53 
z = (DetY)-l/NY (16) 

having determinant one. The number of independent elements of the matrix 
2 is N 2  - 1, as in the classical case. For the particular representation Eq.(12) 
of the Y matrix, it is possible to show that 

DetY = p, 

where ,u is the rescaling operator in the plane 

p = 1 + q)tx;di, 

which satisfies 

Thus here 
2 = p - l / N y  (20) 

realizes the SL,(N) vector fields as pseudodifferential operators in the quan- 
tum plane. Note that p commutes with the elements of Y. 

It is very easy to verify that the matrix given by Eq.(12) satisfies the 
identity 

(Y - p ) ( Y  - q-2)  = 0, (21) 
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where matrix multiplication is implied. This is a special example of polyno- 
mial characteristic equations satisfied by quantum vector fields[7]. In general 
these equations are of higher order but for the realization Eq.(12) we see that 
the polynomial is quadratic in Y .  We intend to come back to a general treat- 
ment of these characteristic equations in a forthcoming publication. 

The invariant quantum trace of the k-th power of the matrix Y is defined 
as 

t k  = TrD-lYk, (22) 

where D is the diagonal matrix (1, q2, ..., q 2 ( N - 1 ) ) .  The t k  commute with 
the matrix elements of Y .  In general only the first r ( I C  = 1,2, ..., r )  are 
independent, where r is the rank of the group[l], a fact which is related 
to the existence of the characteristic polynomial equations for Y mentioned 
above. For Y given by Eq.(12) dl t k  are simply functions of p. For instance, 

tl = [N] - 1 + p = q - 2 t o  - q - 2 N  + p, 
t 2  = q-2tl - pq-2N + p 2 ,  

t 3  = q - 2 t 2  - p 2 q - 2 N  + p3,  

(23) 

etc., where 

(26) - 2 ( N - 1 )  [N] = 1 + q-2 + 4 - 4  + ... + q 

If 1q1 = 1 the calculus given by Eqs.(8-10) for the quantum plane can be 
given a reality structure[6, 81 by requiring x; to be real 

- x; = 2; 

and by defining conjugate derivatives as 

2;' i - 
3 = - q  a ,  

where we have introduced the notation 

i ' = N + I - i ,  i = 1 , 2  ,..., N. 
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Here we consider instead the case when q is real and the complex conjugates 
of x; and of di are new independent variables. It will be convenient to give 
them new names, i.e. we set 

2; = 2% (30) 
- 

The commutation relations of these new variables can be obtained imme- 
diately from Eqs.(&lO) by complex conjugation (remember that this is an 
involution which inverts the order of factors in a product). Using the sym- . 

Eq.(34) can be written in a form more analogous to Eq.(9) if one introduces 
the matrix 

Q$ = (a- 1 ) s j q  ri  2 ( j - r )  - - (R- A 1 ) s j q  ri 2 ( i - s )  2 (36) 

which satisfies 
* k j  . k j  ^ i r  Rli Q$ = Qli Rjs = 6th; 

and 

where i' is given by Eq.(29). 
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To complete the algebra of the complex calculus, we must now give com- 
mutation relations between the variables x ; ,  d i  and their conjugate ii, 8;. A 
consistent set is given by 

and 

Consistency can be checked by verifying that all these relations braid cor- 
rectly with each other. 

Having the complex calculus we can now ask how the vector field real- 
ization of Eq.(12) acts on the conjugate variables. It is not hard to verify 
that 

5 2 l 5  = R&R& (45) 

and 

l 5 8 2  = 8 2 R 1 2 Y 2 R ; ; .  (46) 

On the other hand, by complex conjugation, Eqs.(6),(14), (45) and (46) give 

and 
t - R-lytjj 8 2 K  - 12 2 1 2 8 2 ,  

where Yt is the hermitian conjugate of the matrix Y 
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which satisfies the equation conjugate of Eq.(3) 

as well as the commutation relation with Y 

Until now, we have considered two GL,(N) groups complex conjugate of 
each other, i.e. a truly complex GL,(N)[9, 10, 111. The quantum group can 
be restricted to U,(N) by imposing on its matrices the unitarity condition 

and to SU,(N) by further normalizing the matrices as in Eq.(15) so that 
they have quantum determinant equal to one. 

The vector fields of the U,(N) subgroup can be defined as the elements 
of the Hermitian matrix 

u = YYt. (55) 

Indeed, it is very easy to check that U commutes with the Hermitian length 

(Y and Yt separately do not), i.e. the U vector fields leave L invariant. U 
is a perfectly good matrix of vector fields and satisfies equations similar to 
Eq.(3) and Eq.(6) 

R 1 2 u 2 R 1 2 u 2  = u 2 R 1 2 u 2 R 1 2 ,  (57) 

u 1 x 2  = x 2 R 1 2 u 2 R 1 2  (58) 

and 
2 2 u 1  = R 1 2 u 2 R 1 2 2 2 ,  

as a consequence of equations for Y and Yt given above. Notice that 

(59) 
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which will be useful to us later. 
Finally we observe that, if we want to reduce the vector fields to  the 

number appropriate to SU,(N), we must normalize U ,  Le., take the matrix 

ZZt = U / ( p p ) T  (61) 

In addition to commuting with y', the rescaling operator p in Eq.(18) com- 
mutes with ii,& and therefore with (Yt); and 

A .  

p = 1 - qxa;i*. 

-2 * i - d - -  - 2 - *  pi; = q x p, - q pa;. 

(62) 

(63) 

On the other hand ,ii commutes with (Yt);, x;, 8, y36 and satisfies 

Clearly pji commutes with L, therefore so does ZZt. 
equations analogous to Eq.(3),(52),(53). Using this fact one can show that 

Z and Zt satisfy 

DetZZt = (DetZ)(DetZt)  = 1. (64) 

Notice that the vector field matrix ZZt is Hermitian, which is the natural 
reality condition for SU,(N). 

3 SOq(N)  and SO,(N,R) 
We shall call T the quantum matrices of SO,(N), instead of A. In addition 
to 

R12TlT2 = TlT2R12, (65) 

TtgT = g ,  Tg-lTt = g - l ,  (66) 

they satisfies the orthogonality relations[l] 

.. 
where the numerical quantum metric matrices g = g;j and 9-l = gt3 can be 
chosen to be equal g;j = gaJ .  The SO,(N) fi matrix satisfies also orthogo- 
nality conditions 

.. 

(67) 
(k-'); = gimiijmkgn[ = gkmRln mi 9 nj , 
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as well as the usual symmetry relations 

@j = A;. 

The SO,(N) vector field matrix, which we shall call 2, satisfies 

as well as an orthogona 

R 1 2 2 2 R 1 2 2 2  = 2 2 R 1 2 2 2 R 1 2 ,  

2 1  T 2  = T 2 R 1 2  2 2 R 1 2 ,  

ty constraint in one of the two equivalen forms[3,5] 

(72) 
i j  kl - 1-N ij 

( 2 2 k 1 2 2 2 ) k [ g  - q g 

Eq.(71) or (72) reduces the number of independent vector fields from N 2  to 
N ( N  - 1)/2 as in the classical case. 

The projector decomposition of the matrix for SO,(N) is 

Here P+ is the traceless part of the symmetriser, P -  is the antisymmetriser 
and Po is the trace operator. It is related to the metric by 

The coordinates xi  of the quantum Euclidean space satisfy the commutation 
relations 

or equivalently 

1 a =  
1 + q N - 2 ’  
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As a consequence the length 

commutes with all the coordinates, Lx; = x;L. 

derivatives 3 which satisfy 
A calculus on quantum Euclidean space can be obtained by introducing 

and 
(P-);;l,d'dk = 0 .  

The Laplacian 
A = ag;jdj$ 

commutes with all derivatives, A d i  = diA.  One can define a rescaling oper- 
ator 

A = 1 + q h ; $  + qNX2LA, 

AX; = q 2 x;A,  @A = q2Adi. 

(82) 

(83) 

which satisfies 

A useful relation is 
diL = q2L$ + q 2 - N z i .  (84) 

The action of the vector fields 2 on SO,(N) induces in the standard way 
an action on Euclidean space analogous to (6) 

For q real, the quantum Euclidean space can be endowed with a reality 
structure as follows. For the coordinates one imposes the reality condition 
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Let us now define derivatives 8i in terms of the conjugate derivatives by 

The complex conjugate of Eq.(79) can be transformed to the form 

The relation between the derivatives di and their complex conjugates or the 
8i can be written[l2] in the nonlinear form 

which can be shown to satisfy Eq.(88). Using Eq.(89), one can show that 

We wish to find a realization for the vector fields Z of SO,(N, R)  as pseu- 
dodifferential operators on Euclidean space. One way to  find the appropriate 
expression is to proceed in analogy with Eq.(60) by writing similar terms but 
adjusting the coefficients so that all relations required of 2 are satisfied. It 
turns out that the correct formula is 

Using the relations given above for the calculus on Euclidean space, one can 
verify that 2; satisfies Eq.(85) as well as 

and 
$zj k - - R j i  lm Zm&In2. n kr  (93) 

Combining Eqs.(85), (92) and (93), one finds that 2 satisfies also Eq.(69). 
It is remarkable that Z, as given by Eq.(91) satisfies even the orthogonality 
relations Eqs.(7l) and (72), without need for any further normalization as was 
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necessary in Eqs.(20) and (61). This can be verified by direct computation 
and is due, apparently, to the fact that the SO,(N) matrix already satisfies 
orthogonality relations. 

Finally we may ask whether 2, as given by Eq.(91) satisfies the natural 
reality condition for SO,(N, R)  which is 

Z+ = 2. (94) 

It is very easy to see that this is indeed the case if one observes that Eq.(91) 
can be written in the more symmetric form 

using Eq. (84). 
On the other hand, if one does not impose Eq.(86) and doesn’t identify 

a;, as given in Eq.(89), with the complex conjugate derivative by Eq.(87), 
then (94) will not be true. However, Eq.(91) would still give a realization of 
vector fields for the complex quantum group SO,(N) on Euclidean space. 

In the differential calculus on a quantum space, one naturally introduces 
the differentials of the coordinates 

5; = dxj.  

For quantum Euclidean space, they satisfy the commutation relations 

J k J Z ( P  + ) ; j  kl = 0, t k t Z ( P o ) E  = 0, 

(98) 

(99) 

A kl 
X i t j  = Q t k X I R j j ,  

3.t. 3 - - q - ‘(k’)?&$. 
According to Eq.(86) it is natural to introduce variables related to 5 by 

- . . A  A. e. - s”t. - t‘* 
2 -  3 -  

(97) 
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The complex conjugate of Eq.(98) can be written as 

It was shown[l2] that the can be related to ti by a (nonlinear) transforma- 
tion which was given explicitly there. It turns out that that transformation 
can be written very compactly as 

where A is given by Eq.(82). In this form one can easily verify that [ sat- 
isfies all desired relations. For instance Eq.(101) follows immediately from 
Eqs.(83), (85) and (98). The requirement that complex conjugation be an 
involution restricts (T to be a phase, 101 = 1. Vice versa, if one knows the 
correct expression for &, one can infer from it the formula for 2. .  

4 Conclusion 

All above equations are ”covariant”. This means thay they go into themselves 
by coaction transformations. For instance, for all equations for GL,(N) from 
Eq.(l) to (14), it is easy to see that the transformation 

A j A B ,  x -+xB ,  d +  B-ld, 

leaves them invariant. Here the matrix elements of B are taken to commute 
with everything (which is the reason for using the word coaction) but B is 
itself a quantum matrix, satisfying the analogue of Eq.(l). It holds similarly 
for the complex conjugate sector of GL,(N), 
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(the relation (Bt)-' = (B-')t is used). Analogous transformation laws leave 
invariant the SL,(N),  SO,(N) equations as well as their respective real forms. 

The realization of vector fields for GL,(N) and SL,(N) given in section 
2 is equivalent to that given earlier[l3]. The formulas given here are simpler 
because of a more convenient choice of notations and definitions. For in- 
stances, we use a right' coaction and a corresponding more convenient lower 
index for the coordinates x; and upper index for the derivatives ai. The same 
applies to a comparsion between the formulas written above for SO,(N) and 
earlier ones[l2]. The reader should have no difficulty in establishing the 
correspondence between the conventions of these different references. 

A realization of vector fields for the orthogonal group in terms of pseudod- 
ifferential operators on quantum Euclidean space has been given by Gaetano 
Fiore[l4]. He uses the explicit description of the quantum Lie algebra by 
Drinfeld and Jimbo, instead of Eqs.(69), (71) and (72) and gives explicit re- 
alizations for the vector fields in that basis. Ours is an alternative solution of 
the same problem which has perhaps the advantage of being more symmetric 
and also covariant, as explained above. 
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