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INTRODUCTION OSTI

Some of the most important and challenging problems in two-phase flow today have to do with the
understanding and prediction of multidimensional phenomena, in particular, lateral phase distribution in both
simple and complex geometry conduits. A prior review paper [1] summarized the state-of-the-art in the
understanding of phase distribution phenomena, and the ability to perform mechanistic multidimensional
predictions. The purpose of this paper is to update that review, with particular emphasis on complex geometry
conduit predictive capabilities.

Previous experimental studies have shown that pronounced lateral phase distribution may occur.
Serizawa et al [2] and Michiyoshi et al [3] have measured pronounced wall peaking of the local void fraction for
turbulent bubbly air/water two-phase upflow in a pipe. Similar results were found by Valukina et al [4] for
laminar bubbly air/water two-phase upflow in a pipe. These results were later confirmed in a study by Wang et
al [5], and were extended to show that, in contrast to the bubbly upflow results; void coring (ie, void
concentration near the pipe's centerline) occurred for turbulent bubbly two-phase air/water downflow in a pipe.

Recently, the development of these lateral phase distribution profiles has been studied by Class et al [6]
and Liu [7], where it was found that bubble size effects are important. This may explain why wall peaking in
vertical cocurrent upflow is not always observed.

The importance of bubble size on lateral void phase distribution has also been recognized by other
investigators, including Sekoguchi et al [8] and Zun [9]. Moreover, Monji et al [10] have found that for bubbly
air/water upflows that small bubbles (Dy, < 0.5 mm) tend to be uniformly distributed across the conduits, while
large bubbles (Dp > 6 mm) tend o core, and it is only the intermediate size bubbles that concentrate near the
wall of the conduit.

Interestingly, similar lateral phase distribution phenomena have also been observed in complex
geometry conduits. Sadatomi et al [11] have found pronounced wall peaking for turbulent bubbly air/water two-
phase upflow in vertical triangular and rectangular conduits. Moreover, they found that for slug flow, void

coring occurred. Similar void coring has been observed by Sim et al [12] for bubbly/slug air/water upflows in a
vertical triangular duct.

Okhawa et al {13] made measurements of bubbly air/water two-phase upflow in an eccentric annular
test section. They observed significant lateral phase distribution, with the void fracton being larger in the more
open region of the flow area. Similar results were found by Shiralkar et al [14] using boiling Freon-114.

It is clear that there are strong lateral forces on the dispersed (ie, vapor) phase which lead to the
observed phase distributions. Thus let us next consider what is known about the physics of these lateral forces.

Drew & Lahey have demonstrated the unique relationship between the turbulence field of the liquid
phase and the void distribution for pipes [15] and for complex geometry conduits [16]. Similar results have also
been found by Kataoka et al [17]. Wang et al [5] have extended these analyses to include other lateral forces
such as the so-called lift term, the analytical form of which has been derived by Drew & Lahey [18], [19].

Several distinctly different analytical approaches have been pursued for the prediction of lateral void

distribution. A Lagrangian simulation has been proposed by Zun et al [20], and this approach shows promise.
Another approach, which is in accordance with what has been widely adopted for nuclear reactor safety analysis,
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is based on the gcomputational fluid dynamic (CFD) numerical evaluation of a properly formulated
multidimensional two-fluid model. This is the approach which will be stressed in this paper.

In a pioneering study Lee et al [21] demonstrated that closed-loop predictions of lateral phase
distribution for bubbly upflow in a pipe can be made using a multidimensional two-fluid model and a k-
turbulence model. Unfortunately, in this study the degree of turbulence non-isotropy and several important
boundary conditions had to be specified in order to close the system of equations.

In a subsequent study, Lopez de Bertodano et al [22] performed a mechanistic CFD prediction of lateral
phase distribution in pipes using a multidimensional two-fluid model and a Reynolds stress (ie, t-€) turbulence
model. As noted in a previous review paper [1], this study represeats a significant breakthrough since it shows
that detailed closed-loop mechanistic predictions of complicated two-phase flow is possible if we have a properly
formulated two-fluid model.

Recent research has been completed by Lopez de Bertodano [23] in which lateral phase distribution in
complex geometry conduits was studied. In particular, experiments and CFD analysis were performed for a
vertical isosceles triangular test section. Let us first consider the data taken in this study.

DISCUSSION - EXPERIMENTAL STUDY

The air/water test loop in which the data were taken is shown schematically in Fig. 1. The test section
was an isosceles triangle having 50 mm base and 100 mm height. The duct was 2840 mm long (ie, L/D = 73).
The mixing tee, shown schematically in Fig. 2, was used in all tests. This device allowed the control of bubble
size. In particular, S mm diameter bubbles existed for all sets of data. These air/water data were found to agree
with the previous void fraction data of Sadatomi et al [11], and extended this prior study since the turbulent
structure of the continuous phase was also measured.

Liquid phase velocity, turbulence and void fraction measurements were inade using various TSI hot-
film probes. Both a single sensor boundary layer probe and an X-wire Reynolds stress probe were used. The
single sensor cylindrical boundary layer probe had a TSI 10 AW element (0.025 mm x 0.25 mm) and the X-wire
probe had TSI 10 W elements (0.025 mm x 0.50 mm) which were 0.34 mm apart. The boundary layer probe
could be positioned to within 0.10 mm from the conduit wall, which was closer than for the X-wire probe.

The data acquisition system consisted of three TSI 1050 anemometer modules that kept the hot films at
a constant temperature. The analog outputs were digitized with a custom-made CAMAC A/D converter board,
having three 13-bit A/D converters, that was connected to a VAX-750 computer. The A/D converters were
triggered simultaneously by a Kinetic Systems CAMAC 3655 Timing Pulse Generator. Kolmogorov [24]
scaling indicated that a 10 kHz sampling rate was sufficient to capture all significant scales of turbulence, and
this sampling rate was used for all data.

A schematic of the probe's traversing mechanism is shown in Fig. 3. It consisted of a rotating drum
housing aid a rotating ball on the side that the probe penetrated through. The probe was moved in and out
vsing a micrometer having 0.025 mm. graduations. The probe had a 90° bend and an extension piece so that the
sensors were located within the test section approximately 3 L/D from the exit. This anangement gave three
degrees of freedom so that the probe could be located at any position and orientation in the cross section. The
ability to freely orient the probe was important since one must set the boundary layer probe with its
measurement wire parallel to the wall, and position the X-wire probe in the appropriate direction to measure the
various Reynolds stresses.

CALIBRATION

The single sensor one mil diameter boundary layer probe was calibrated for void fraction using a
gamma-ray densitometer having a 10 Ci Cs-137 source and a Nal scintillating detector connected to a
multichannel analyzer. Probe calibration was done following the technique of Sim & Lahey (25], and the
results of this calibration are shown in Fig. 4 together with previous results by Lee et al [27.
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After performing a careful error analys.s it was determined that the error in the gamma ray measurement
of void fraction was negligible compared to the error in the hot film measurement so the error bars shown in
Fig. 4 correspond to the hot film data. Since the gamma-ray measurement was taken across the test-section's
width many hot film measurements had to be taken and averaged along the gamma-ray path when comparisons
were made. In addition, by taking two measurements at each point it was possible to obtain the standard
derivation of the chordal-averaged void fraction. We note that the deviation (g) for the boundary layer probe is
fairly low and remains approximately constant around a value of + 6% of point.

The velocity calibration of t* hot film probes was performed using a calibration nozzle assembly. A
6.35 mm (1/4 in.) diameter nozzle was used. The pressure drop across the nozzle was measured using a
Validyne pressure transducer. The velocity at the nozzle exit was calculated directly using the Bernoulli
equation. This is valid everywhere except in the thin boundary layer around the nozzle wall. The water
temperature in the nozzle assembly was measured using a mercury thermometer having 0.1°C temperature
graduations. Because of probe signal drift it was also necessary to perform periodic on-line recalibrations with a
pitot tube.

IEST PROCEDURE )

Hot film anemometry has proven very valuable in liquid/vapor flows since the hot film simultaneously
measures the phase indicator function and the instantaneous liquid veiocity. The signals can be time-averaged to
obtain the local void fraction, average velocity and turbulence quantities. Figure 5 shows a typical signal, the
corresponding vapor phase indicator function and the velocity of the liquid phase. Followmg the work of Lee
et al [26] and Wang [27] the penetration of a bubble by the probe was determined using both a signal level and a
slope mresholdmg criteria. When a bubble approaches the probe, surface tension causes it to deform. Thus, as
can be seen in Fig. 5, immediate penetration of the interface does not occur. The gamma-ray densitometer
calibration experiments discussed prevmusly were carried out to account for this effect. The hquxd velocity was
computed from the probe output voltage using King's Law:

Nu= A +BRe"
where the correlation parameters A, B and n were obtained from the calibration nozzle measurements.

The X-wire probe was used to measure the instantaneous velocity components lying in the plane of the
wires. If the X-probe lies in the x-y plane then the mean liquid velocity components, u and v, and the
Reynolds stress components, u' u', v'v' and U’ v, are measured. By rotating the probe 90° about the vertical
axis the remaining velocity component w and the Reynolds stress components w'w' and W' W' are obtained.

Only the shear stress in the horizontal plane, v VW = WV, was not measured, however in duct flows this shear
stress is about two orders of magnitude smaller than the other components and was thus negligible.

The effective velocity (ueff) measured by a sensor "i" is:

2 2,..22 212 o

U=y + kyvx +kz

where kx and ky are geometric cooling factors and, as can be seen in Fig. 6, uj, vj and wj are the velocity

components with respect to the sensor's coordinate system (x',y'z). To convert from the sensor's coordinate
system to a reference coord’ -ate system (x,y,z) the following transformation was used:

uj - cos 0f sin yi - sin 0 sin yi cos Yi u
vi |= cos Bj cos yi sin 9j cos yj sin yi v V)]

wi - sin 0; cos 0j 0 W



For the case of the X-wire probe, setting 91 = 62 = 0 and -y1 = y2 = n/4 yields:

L u+w u U+ w
v |=Viz|u-w , v2 [=Vi2[ u+w ©)
w1 V2 v w2 *5 v
Combining these equations yields, after some algebra:
2 2 2 2
a+ ky) 2 +w?) + 2l:zv2 = Uegr, * et (4a)
2 2
21 - k:} UW = g ~Uogr, (4b)

For duct flow u >> v & w so these equations imply:
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Thus the instantaneous values of u and w can be obtained from the measured g, hence u, W, U0, WW
and UW can be computed.

The so-called yaw factor, ky, has been measured by Jorgensen [28] for a variety of wire geometries.
For a DISA 55F26 sensor at any angle of 45° to the flow, ky = 0.4. This sensor had the same aspect ratio as
the sensors used in the X-wire probe and thus this value of ky was used in all data reduction.

THE DATA

The single wire boundary layer probe was used to measure the local void fraction and the axial liquid
velocity. The X-sensor probe was used to also measure the local void fraction and axial liquid velocity, and the
lateral velocities and the Reynolds stresses were measured.

Flow symmetry tests were performed with the single sensor probe. Some typical measurements (for
two different distances from the base of the isosceles triangle) are shown in Figs.-7 and 8. It can be seen that
the two-phase flow was symmetric.

Figures 9-13 are graphical representations of typical data. Notice that for the jg = 0.05 m/s case the
void fraction peaks near the conduit walls and in the corners, as was previously observed by Sadatomi et al [11].
Also the two-phase velocity profile is flatter than for single-phase flows because of the void peaks near the
walls. Interestingly, at jg = 0.4 m/s the void peaks are less pronounced than for jg =0.05 m/s, and
consequently the velocity profile becomes less flat.



A comparison of the single-phase velocity measurements of the boundary layer probe and the X-sensor
probe along the apex bisector is given in Fig.-14. Good agreement can be noted, which supports probe
calibration and data reduction procedures.

Figures 15-18 are graphical representations of the Reynolds stresses measured. It can be noted that the
shear stress, -p,u v', in Fig. 17 is in general agreement with the corresponding velocity distribution in Fig.

10. That is, it is approximately zero in the region where the velocity profile is flat, is positive near the base of
the triangle where the velocity gradient is positive and negative near the vertex.

DISCUSSION - ANALYSIS

Let us next consider a general three-dimensional two-fluid model for air/water bubbly flows. In this

paper an ensemble [29] and cell-averaging [30] apprcach was used to obtain the phasic continuity and
momentum equation as [31]:
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Let us now consider the closure laws and parameters used in these phasic momentum equations. In
particular, those for adiabatic (ie, air/water) bubbly two-phase flow. The total Reynolds stress for the
continuous liquid phase is given by,

Re _Re Re
2¢ =Z@1 *I4(sD) ©

where, the bubble-induced shear stress is [32],

sj&n =pog [, 1rve + boyr * ) L] (10)

and, for noninteracting spherical bubbles, the bubble-induced turbulence parameters are [33],

1 3
a‘=-§6 , and, bl='§6

The shear-induced Reynolds stress, ;I:(esr). may come from a k-€ model and an algebraic stress law [34], or a
Reynolds stress (ie, T-€) model [22].

An adequate turbulence model for bubbly flow appears to be (23],

TR v a,(VeD +P-€) (1)
D 1

(a first order relaxation model)
D,t

0ty = @(V*De + Pe - €¢) (13)

where, D, P, De, P and ¢ are parameters defined in classical single-phase k-€ models [34], and,

Tb = Dp/yy! (14

k = Cp el 2 (15)
(B, = g% Cp ud

k, =kysn * kyar (16)
t K

v, = Cu P Cub Rpaglyrd an

where [34], C); = 0.09, and [35], Cyp = 1.2, and SI implies shear-induced and BI bubble-induced turbulence,
respectively.



It should be noted that the asymptotic bubble-induced turbulent kinetic energy of the liquid, kba' comes

from an inviscid analysis of the relative motion between the dispersed phase and the continuocus (liquid) phase.
The last term in Eq. (17) is the bubble-induced viscosity enhancement model of Sato et al [35].

The virtual mass acceleration is given by [18]:
avm = gI+LE°V)xg-(-aa—t+x," V)xt (18)

The parameter Cp) is an appropriate interfacial drag coefficient for bubbly flow, and ﬁb is the mean radius of the
bubble. An inviscid, incompressible calculation for noninteracting spheres gives [31]: Cym =CL = -;—,

C:m=0,cm[=Z.C1='4" C2 =- 2—0’ ag = -E'bs=_z—)—'

The effect of surface tension can be modeled for small bubbles by assuming that the interface is a shell
made up of nearly rigid elastic material. The role of the resultant surface type stress field is to hold the bubbles
in a spherical shape. Its effect is to transfer momentum in much the same way that the stress tensor transfers
stress. If we average the elastic stress equation, we have, .

Myi=-My+V e [og (& + (pgi-Psi) 1)]

or, partitioning into drag (d) and nondrag (nd) components:

M =-MGD - MY + V¢ (0509 + Viagg) - agVoy (9)

where, the surface stress tensor is [31]:

A CR IR NCIRPRYY 20)
and, for a sphere:

as = - 9/20, bs = 3/20

An inviscid calculation shows [36],

Py, Py = Cpp vyl @1)

where for a rising sphere, Cp = 0.25. In contrast, for an oblate spheroid [37],0.6 S Cp < 1.7.

In addition to the closure laws derived for a free field bubbly two-phase flow, there are volumetric forces
associated with turbulent dispersion MEJP), wall shear (Mkw), 2 wall-induced lateral force (M::v)' and, a wall-

induced axial drag force on the dispersed bubbles (Mng). The turbulent dispersion force is given in Appendix-I
as,

™ _ 7D
M, =-My =Crppk, Va ()
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where, k, is the total turbulent kinetic energy of the liquid phase.

A wall lift force, due to Antal et al [38], has been added to the phasic momentum equations for nodes
adjacent to the walls. This force is of the form,

w

M 2

o]
gw ="My =[Cw1 + Cw2 Roly . 23)

Finally, volumetric wall forces having to do with the wall shear (Mxw), are not used explicitly since the single-
phase "law of the wall” is employed instead [39]. Finally, the additional axial drag on bubbles close to the wall
(ie, those that are in the turbulent buffer zone) is given in Appendix-II as,

D _ . YgOg
Mgw Cwb8 I—)-b (24)

where, 3 is the distance normal to the wall at which y* = § (ie, 8 = 100 °I/<¥t>)'

If needed, the mixture momentum equation can be found by adding Egs. (8) to obtain:
d
3 (@e Py Y+ 0gpgyg) +V ° [“z Py, + 0gPgygyg - (3, + 3g)0gp, vy,
a 2 R
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We note the last two terms in the spatial acceleration term account for the bubble-induced and shear-induced
momentum exchanges. Interestingly, the mixture momentum equation, Eq. (25), is exactly the same as one
proposed by Wallis [40].

DATA COMPARISONS

A reduced form of the three-dimensional two-fluid model has been evaluated and compared'with some
phase distribution upflow data for bubbly air/water flow in a pipe. For these evaluations the following values
of the closure parameters were assumed [23]:

* A ~
C1=C2=Cvm=cvm=cl'o(=as=as=bs= bs=a‘=bl=0.0, Cp = 1.0, CTD =0.1, Cwl =-0.1,

Cwa =012, Cwb =10, CL = 0.1, Cy = 0.09 and C"lb = 1.2

2
The interfacial drag coefficient was given by [41],
Cp = 6.3Re0 83 26)

where, Rep = Bb f¥r/v, and, Bb = 3 mm (the measured bubble diameter).

The results of these evaluations are shown in Figs.-19 for Serizawa's air/water bubbly upflow data [2]
in a pipe, and in Figs.-20 for Wang's air/water bubbly downflow data [5] in a pipe. Agreement for these values



of the closure parameters is seen to be very good. This confirms that a two-fluid model using a k-¢ turbulence
model and an algebraic stress law can predict lateral phase distribution in a pipe. Significantly, as can be seen in
Fig.-21, exactly the same two-fluid model and closure relations can be used to predict the air/water bubbly
upflow data of Lopez de Bertodano [23] in an isosceles triangle, Moreover, Fig.-22 shows that using virtually
the same two-fluid model [38] laminar bubbly flow data can also be predicted.

These results are very exciting since they indicate that a properly formulated multidimensiona? two-
fluid model has the inherent ability to predict lateral phase distribution phenomena in simple and complex
geometry conduits for bubbles in the size range, 1 mm < Dy < 6 mm.

Moreover, since the closure conditions which have been used in these predictions are physically-based,
there does not seem to be any fundamental reason why the CFD approach for the analysis of multidimensional
two-phase flows cannot be extended to other flow regimes and to diabatic conditions. Indeed, such extensions
will only require the development of new closure conditions which are appropriate for the particular multiphase
situations being studied.

SUMMARY AND CONCLUSIONS

It has been shown that pronounced lateral phase distribution may occur in simple complex geometry
conduits. Significantly, a multidimensional two-fluid model, and its associated closure conditions, were
numerically evaluated using the PHOENICS code, and gave results that agreed with the bubbly flow phase
distribution data taken in both simple and complex geometry conduits. Moreover, it appears that this approach
may be extended to flow regimes other than just bubbly flows, and should also be able to accommodate phase
change effects.

It seems that we may be on the threshold of a major revolution in the way multiphase flows are
analyzed. Indeed, it appears that the CFD evaluations of multidimensional two-fluid models have the inherent
capability to replace many of the empirically-based analyses in ase today. It is hoped that this paper will help

stimulate multiphase researchers to actively participate in this scientific revolution so that reliable mechanistic
multiphase flow CFD evaluations for all flow regimes of inte'est will be possible in the foreseeable future.
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APPENDIX-I: TURBULENT DISPERSION FORCE

The motivation to develop a turbulent dispersion force comes from the fact that the averaged two-phase
continuity equations do not allow for a phasic diffusion term. That is, since the volume fraction of phase-k,
ay, is defined as an average, terms such as a.é do not exist. In contrast, a dispersion force in the momentumn

equations may occur.

The averaged continuity equation of phase-k, assuming no phase source, is:

‘aa'gik*'v';(E*o @

where Xk is the phase indicator function and yk is the instantaneous phasic velocity. Notice that this is a
natural way to average because both these quantities are what a hot film anemometer actually measures. Then
by defining;

ap = Xg a2)

and,

Yi = %'!"' a3
k

the continuity equation becomes:

-aa-tuk +Veag yx =0 (4

Other investigators have started from this equation and averaged once more to obtain:
i& +Veapyp + Ve @, vy, =0 1.5

where the last term on the left hand side of Eq. (I.5) allowed them to have a turbulent diffusion term in the
continuity equation. Unfortunately, as discussed above, this is not rigorous. However, we may have a
turbulent diffusion force in the momentum equations.

In order to derive a turbulent dispersion force an analogy is made with the thermal diffusion of air
molecules in the atmosphere. If it were not for the thermal kinetic energy of the air molecules the atmosphere
wouid be very thin indeed since all the air molecules would be held against the ground by gravity. The thermal
motion that keeps the molecules away from the ground may be thought of as a thermal diffusion force that acts
against gravity. A Gedanken (ie, thought) experiment can then be made for a bounded turbulent bubbly mixture
whose dispersion is similar to that of air molecules, except that the motion of the bubbles is produced by the
turbulent energy of the liquid phase instead of the thermal energy of the air molecules.

Let us begin by analyzing the earth's atmosphere. The momentum equation applied to a stagnant
atmosphere is:

S=-pe 8

For isothermal conditions:
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p_o
o™ 0o a€n

so the solution to the momentum equation becomes:

2 _oof.00

oo exv( Po & Y) (.8)
Applying the perfect gas law:

2 A

2 - exp ( B a9

Since the number density of air molecules (n™) is proportional to the mass density:

mem (- B) =em (- @.10)

“where ¢ is the gravitational potential (gy) and RT is the thermal kinetic energy of the air molecules. Thus,

nm
=-RTh=; 11
¢ n g (L11)
and the gravitational force is:
Fg=-V¢=RTVinn"=-g 1.12)

Then the dispersion force, Fp, is such that,

Fg+Fp=0 13)
Hence,
Fp=-RT V{nn" 1.14)

By analogy the turbulent dispersion force per unit mass on the bubbles becomes,

Frp=-CtpkVina 115)
where CTD is a proportionality factor.

An equivalent force on the liquid phase is:

Frp=-CtDk,Vin(1- ) L16)

Thus the volumetric turbulent void dispersion force is:

D TD
M, =-M, =-CTDp,(1-0)k,V tn (1-a)=CTp pyk,V @ @17
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APPENDIX-II: AXIAL WALL FORCE ON BUBBLES

As observed by Marié et.al. [39], because of the finite size of the bubbles and the steep velocity
gradient near the wall, there is an axial wall force on the bubbles near the wall. It is proposed that there is a
region of close contact between the bubble and the wall and beneath the bubble the liquid film thickness is of
the order of the laminar sublayer thickness. Hence the wall shear force on the bubble is:

E)

dy
I ..

where A is the shear area beneath the bubble, y is the laminar sublayer thickness and yg is the local mean
bubble velocity. This may be converted to a force per unit volume:

D o _ o A

M8W=EEW x=3 - My %753 @2)
—Db —Db
6 6

Finally, letting the shear area, A, be a function of the bubble cross sectional arv.‘,a.4E D:. yields:

D L a
Mgy, =- Cwb K3 B @.3)
The laminar sublayer thickness is defined as:

Sv
§t=—=5 @.4)
Ve
and since’
=0.05 ]<1,>| @.s)
then the thickness of the laminar sublayer is:
§= 100 —&— @.6)
|<x|

Inserting Eq. (11.6) into Eq. (I1.3) yields:
MO, = - Cwb &= o <z, @n

gwW 100Dy | '
tv,= ‘\f TP, = \lca’2<y,£>

where, c¢¢ = 0.005
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