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DITHERING TRANSITIONS IN RESISTIVE PRESSURE-GRADIENT-DRIVEN 
TURBULENCE 

ABSTRACT. A self-consistent model of the L to H transition has been derived from coupled 
nonlinear envelope equations for the fluctuation level, and radial electric field shear, E:. This 
model is based on general properties of the coupling between turbulence and averaged sheared 
flows. To extract these generic properties several turbulence models have been investigated. 
Here. some of the results obtained with the resistive pressure-gradient-driven turbulence are 
presented with special emphasis on the structure of the Reynolds stress and the existence of limit 
cycle solutions. 

1. INTRODUCTION 
Recently, a phase transition model [ I ]  has been proposed to explain the transition from the 

low confinement mode (L-mode) to the high confinement mode (H-mode) [2] in toroidal 
devices. The model describes the simultaneous evolution of the fluctuation spectrum and the 
mean flow shear. In this model, the L to H transition appears as a second-order phase transition 
for which the order parameter is the radial electric field shear, E:. This model is based on 
general properties of the coupling between turbulence and averaged sheared flows. To extract 
these generic properties several turbulence models have been investigated in detail. In particular, 
the parallel ion flow graaent driven instability that was discussed in reference 3 and the resistive 
pressure-gradient-driven turbulence. Some of the results obtained with the latter are presented in 
this paper. 

Previous results [4] of resistive pressure-gradient-driven turbulence coupled with averaged 
shear flow evolution shown that self-consistent sheared flow ( V i  # 0 and V{= 0 at the 
resonance surface) does not suppress turbulence in the nonlinear regime. However, curvature 
flows ( V i  = 0 and b’’* 0 at the resonance surface) are effective in turbulence suppression. 
These results were obtained with a fixed pressure gradient leading to large fluctuation levels 
( ii/no 2 0.1). Fluctuation suppression by an externally applied sheared flow [5 ]  requires sheared 
flow levels an order of magnitude larger than what was expected from the sheared flow 
suppression theory of Biglari et al. [6]. In this paper, a different regime with low fluctuation 
levels ( h/n0 I 0.03) is investigated. This regime has been achieved by letting the averaged 
pressure gradient to evolve in time. In this regime, there are second order phase transitions of the 
type described by the model in reference 1. Close to marginal stability, the Reynolds stress can 
be calculated. It consists of the so called 01 term as in the case of AKA instabilities [7] and an 
amplitude dependent turbulent viscosity term. At high fluctuation level, these two terms cancel 
each other. This cancellation explains the lack of second order transitions in high fluctuation level 
regime. 



The detailed dependence of the Reynolds stress and the shear suppression terms on the 
fluctuation amplitude are critical in explaining a dithering behavior of the transition for very low 
(very high) viscosity (power). 

2. RESISTIVE PRESSURE-GRADIENT-DRIVEN TURBULENCE EQUATIONS 
From the renormalized set of equations [8] and by averaging over the radius, assuming 

Gaussian dependence for the eigenfunctions, a two-equation system can be derived for the 
evolution of the fluctuation envelope. To these equation, we must add the poloidal shear flow 
and averaged presure evolution equations. A detailed derivation of these equations will be given 
elsewhere. The four equations are 

2(2D + E) 
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where, E = ke(&l/(y0W) and P = lj31/(-Wpiq) are the normalized velocity stream function and 
pressure fluctuation envelopes, Qs 1 b(Vey W/yo is the normalized shearing rate [6] ,  and 
N =  pi, is the normalized averaged pressure gradient. Here, yo the linear instability 
growth rate in the absence of collisional dissipation and sheared flow effects, Wand WO are the 
mode width with and without dissipation respectively, ke the poloidal component of the 
wavenumber vector, piq is the equilibrium pressure gradient, and h 2 k , / { k i }  . Here, the 
curly brackets, { } , indicate spectral average and the angular brackets, ( ), spatial average over 
the poloidal and toroidal angles. The normalized collisional dissipation coefficients are 

F = p0/(2y0W2) and is the flow damping coefficient due to 
magnetic pumping and the prime indicate radial derivative. The function g is 
g [3F + 5 + 0.5(3h + l)E]/ (jI + AE/3)*(E +0.5E)Z]. 

model [ 13 equations are a simplified version of this model. The fixed points of this system of 
equations are essentially the same as for the equations in reference 1. In this case, it is not 
possible to obtain compact analytical expressions. There are two types of stable fixed points, a 
fixed point with a, = 0, the L-mode type solution, and one with Q, f 0, the H-mode solution. 
The first fixed point is independent of fi  but the second depends on fi. The fluctuation 
amplitude E is a continuous function of fi with non-continuous derivative at the critical point. 
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= D0/(2y0W2). In Eq. (3), 

These four equations, d qs. (1)-(4), are the basic model equations. The phase transition 
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This behavior is characteristic of a second order phase transition. The critical point is 

where the subindex L indicates that the L-mode value for E and N should be used in evaluating 
Eq. (5) .  

Numerical calculations using the full system of equations in reference 8 with coupled 
evoiution of the averaged poloidal flow and averaged pressure show same characteristic 
behavior. In Fig. 1, we show the level of fluctuations E at saturation as a function of fi for the 
same equilibrium parameters as in Ref. 7, with po = 0.2a217~, Do = 0 . 0 5 a 2 k ~ ,  and Pd2~2 = 
0.0075. The critical transition point is = 2.0/7~. 

In deriving Eq. (3), we found that the Reynolds stress has two terms. One is proportional 
to the poloidal flow velocity and the second one proportional to its second derivative 

Here, a and /3 are positive coefficients. The a-term leads to a dynamo instability and the 
generation of flow. The p-term is an effective turbulent vjscosity that damps poloidal flow. 
When an external sheared flow, Ve = x V: is applied, the second term is zero and sheared flow 
is generated. However, since the generated flow has no longer the linear x dependence, the p- 
term becomes increasingly important and it cannot be neglected in the self-consistent flow 
evolution. For large fluctuations, E >>1, the two terms in Eq. (6) cancel each other and there is 
no flow generation. In this regime the resistive interchange instability remains always in the L- 
mode state, as it was found in reference 4. For lower values of E, the cancellation is only partial. 
In general, the a-term dominates and there is a potential increase in the sheared flow. The 
balance of the Reynolds stress with the velocity damping term gives the critical transition point. 
However, since both the a- and p-terms are large and of similar magnitude it is difficult to make 
an accurate prediction of the critical point based on ths  approximate model. 

In calculating the correlation between the fluctuating radial velocity and the fluctuating 
vorticity, the a-term comes from the instability drive in the fluctuation evolution equation while 
the p-term is due to the Kelvin-Helmholtz term. The association of the p-term with the Kelvin- 
Helmholtz term allows us to test the structure of the Reynolds stress. To do so, we calculate the 
critical transition point with and without the Kelvin-Helmholtz using the full equations. In the 
first case, the transition is given by the two terms in Eq. (6) while in the second case is only 
given by the a-term. The numerical results for a and a- p/W: calculated in this way are given 
in Fig. 2. Here, W, is the characteristic width of the velocity profile. 
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3. DITHERING SOLUTIONS 
For H-mode type solutions and when $ decreases, one reaches a new regime characterized 

by the oscillatory behavior of the solutions. This happens for both the full equations solution 
(Fig. 3), and for the model in Section 2. By careful analysis of the model, it is possible to 
identify the oscillatory behavior with the nonlinear modification of the shearing term in the <p- 
fluctuation equation. We can understand that by using a further simplified model. 

This model is a modification of the one given in reference 1 by adding the nonlinear 
weakening of the shearing effect in Eq. (7). This system of equations has the usual three fixed 
points: 1) E = Q, = 0 the trivial equilibrium solution, 2) R, = 0 and E = 1, the L-mode solution, 
and 3) E = b/a and i2: = (6 + b/a)(l - bja), the H-mode solutions. The basic properties of the 
first two fixed points are discussed in reference 1. For the H-mode fixed point, this system of 
equations verifies the conditions of the Kolmogorov theorem. Therefore, the H-mode solution is 
either a stable fixed point or a stable limit cycle. Linearizing Eqs. (7) and (S), we test the local 
stability properties of the H-mode fixed point. For 6 > 1 - 2b/a,  the H-mode fixed point is 
locally stable. Therefore, when 6 e 1 - 2b/u,  the stable solution is a limit cycle. The numerical 
solution of Eqs. (7) and (8) confirms these results. The numerical calculations clearly show the 
existence of such solutions and the bifurcation threshold, $,c, from stable fixed point to a limit 
cycle is compatible with the relationship derived with the two equation model 
$!c = fiCrit(l - Do/yoW2)/2. To reach this threshold, a growth rate (power) more than a factor of 
two larger than its critical value at the L to H transition is needed. Close to the bifurcation point 
to a limit cycle, the oscillation frequency can be estimate by a two scale expansion of the Eqs. (7) 
and (8). This gives: 

(9) 

Near the bifurcation point, o = . Since 'yo increases with power and $ decreases with 
increasing edge temperature, it is not possible to ascertain the frequency scaling with power 
without a detailed transport model. The amplitude of the oscillations is such that at most the 
fluctuation level goes back to L-mode level. Figure 4 shows the comparison between the 
numerical results for o and the analytical expression (9) as a function of fi . From the numerical 
solution of Eqs. (7) and (8), it is obtained that the number of cycles depends on the rate of 
increase of power. This type of behavior is similar to the dithering observed at the L to H 
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transition [ 101. 

4. CONCLUSIONS 
In this paper, we have investigated a self-consisted model of the L to H transition by using 

primitive equations for the resistive interchange turbulence coupled with averaged shear flow 
evolution. 

For low fluctuation levels, there are second order phase transitions between L-mode and 
H-mode type solutions. For large fluctuations, there is no flow generation. These results are 
consistent with the structure of the Reynolds stress. 

A dithering behavior of the transition appears for very low viscosity (or high power). This 
behavior is due to the nonlinear modification of the shearing term in the fluctuation equations. 
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Fig. 3. Time evolution of the level of fluctuations 
E (solid line) and the normalized shearing rate 
(broken line) for P&E~ = 0.01 and b = ~ i ' .  
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