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Abstract 

This document describes the work on Message Passing Interface (MPI) standard implementation of 
the parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program 
PHOENICS. The Intel Paragon NX and MPI versions of the program have been developed and 
tested on massively parallel (MP) supercomputers Intel Paragon XP/S 5 ,  XP/S 35, and Kendall 
Square Research (KSR) supercomputers at Oak Ridge National Laboratory (ORNL). The prelimi- 
nary testing results of the developed program have shown scalable performance for reasonably sized 
corn i) 11 tat  ion a1 domains. 

The submitted manuscript has been authored 
by a contractor of the U.S. Government under 
contract No. DE-AC05-840R21400. 
Accordingly, the U.S. Government retains a 
nonexclusive, royalty-free license to publish or 
reproduoe the published form of this 
contribution, or allow others to do so, f o r  
US. Government purposes. 



1 Introchetion - 

PHOENICS is a suite of computational analysis programs that are used for simulation of fluid 
flow, heat transfer, and dynamical reaction processes [l]. The program consists of three main 
modules, pre-processor (SATELLITE), solver (EARTH), and post-processor (PHOTON). The 
computational requirements of the solution module are the most demanding part of an analysis 
process and it has been redesigned by the CHAM development group for parallel implementation [2] 
on the PARSYTEC transputer [3] based architecture. PARSYTEC computers are built from 
interconnected INMOS T800 series transputers. New generation of the PARSYTEC computers, 
GigaCube GC-2, will incorporate T9000 transputer and C104 router chip. The transputer-router 
system was not available at the time of code development causing the resulting software to  be more 
dependent on the underlying hardware design. The details of the PARSYTEC architecture may be 
found in, for example, Reference 4. 

Message Passing Interface (MPI) standard has been recently established [5] in order to  provide 
a stable environment for parallel program and operating system development. The variety of 
hardware designs and communication protocols make porting of parallel computer programs to  
different computer architectures a considerable effort that does not significantly increase value of 
the software. Writing a parallel program using standard conventions for communication alleviates 
the programing task and moves the design of communication to the domain of the operating system 
designer. 

Implementation of MPI version of PHOENICS makes the computational tool portable t o  wide 
range of parallel machines and enables the use of high performance computing for large scale 
corriput ational simulations. MPI libraries are available on several parallel architectures making the 
program usable across different architectures as well as on heterogeneous computer networks. 

2 PARSYTEC Implementation of PHOENICS Module EARTH 

As a principal met hod for exploiting concurrent processing, the domain decomposition technique 
has breri employed for PHOENICS module EARTH. The program uses one dimensional domain 
decor1il)ositiori in 2 direction. decomposing the computational domain into slabs of approximately 
equal size. Each slab is assigned to a processor that has its identification number (id) equal 
to tlic slab ordinal number with respect to slab position along z axis, the first slab having the 
ordirial r i u i r i h t r  0. lmplemeted soulution algorithm requires a processor to  communicate with 
the processors that are assigned to the adjacent slabs, and with all the processors in the active 
topology i r i  order to perform global operations. Such a computational domain assignment and 
corrirriiiriicatiori pattern makes a line processor topology suitable for efficient processing. A ring 
topology could increase performance of global operations but because the PARSYTEC transputer 
macliirit. allows communication between neighboring transputers only, the ring topology was not 
in1 pltriierittd. 

( ' liaractcristic of the domain decomposition approach is that for a given problem size there is 

1 



a limit of t h e m m b e r  of processors that  can be effectively used. After the computational effort, 
which is proportional to  sub-domain size, becomes comparable to  communication, the program 
execution time can not be further reduced by the increasing number of processors. Therefore, 
the communication phase of a program must be efficiently designed in order to delay as much as 
possible the occurence of the utilization horizon. The PARSYTEC operating system called PARIX 
provides limited communication capabilities that  consists of primitives for synchronous message 
passing and organization of virtual transputer topologies. The cut-through routing message mode, 
although envisioned in current PARSYTEC design, was not yet available because of the lack of a 
routing processor [4]. This fact forces all the communication except with adjacent transputers to 
be done in software, effectively implementing store-and-forward message routing which was shown 
to be inferior to the cut-through approach. The new PARSYTEC computers that are planned 
to  employ transputers-routers design should allow for general message passing and more complex 
transputer topologies. 

The central part of EARTH solver is a linear equation solver. The solution algorithm imple- 
mented in the serial version was not suitable for parallelization and was replaced by conjugate 
residual accelerator [SI combined with Jacobi iteration method. The communication required by 
the solver includes communication with adjacent processors in a line topology, global summation 
of inner products and determination of maximum and minimum value across all processors. The 
nearest neighbor communication is not considerably influenced by a line topology of processors but 
the global operations are inevitably slower because of the store-and-forward routing. 

3 NX Implementation 

A s  i i r i  i r i i t  ial approach. a translator library was developed that transformed PARIX communication 
fiirict i o n  riills to Intel N X  calls without intervention in the program. Essential message identifiers 
in l’.\llIS w f w  mapped to  their NX counterparts. The implications of such an implementation 
v,vrv ;iriitl\ztld arid program consistency and performance were evaluated. 

? ‘ I I ( ~  i r i i t  iiil version of NX implementation was obtained by translating communication primitives 
t o  SS c i i l l h  tvit h o u t  unique message type specification. In this document, only the communication 
fi inct 1 0 1 1  c w ~ i i t  ial for program implementation are provided. The more complete library translating 
I’X RIS t o  S S  functions are available from authors. The procedure for building line processor 
t o p o l o q .  makepipe. in  PXRIX has been translated as: 

integer function makepipe (reqid, size ,xmin ,xmax , p i n ,  p a x  ,unin, zmax , id ,link) 
integer reqid,size,xmin,xmax,pin,ymax,zminymax,id,link(2) 

external mynode 

integer mynode 

id=mynode (1 
link(1 )=id-l 

link(2)=id+l 
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if (id.eT-bize-l))t*en - 

link(2)=-l 

endif 
makep ip e=reqid 

return 

end 

Function makepipe creates the communication structure with size processors. The processor 
partition will be mapped as described by xmin, xmax, p i n ,  p a x ,  m i n ,  and zmax. In order t o  
distinguish links while establishing several topologies simultaneously, reqid is used. The PARIX 
functions send and recv were translated to corresponding NX call as: 

integer function send(topid,loglinkid,data,size) 

integer topid,loglinkid,data(*),size 
call csend(topid, data, size, loglinkid, 0) 

send = size 
return 

end 

integer function recv(topid,loglinkid,data,size) 
integer topid, loglinkid, data (*) , size 
call crecv (t opid , data, size) 
recv = size 
return 

end 

Variable topid is an identifier of the active topology and it is same for all nodes; loglinkid 
denotes a link to communication channel over which message is to be delivered; data and size 
are message buffer and its size in bytes, respectively. In NX implementation, topid was initialized 
to 0. arid loglinkid was defined in send and recv as an identification number of a processor 
which rewives or sends the message, respectively. This version of the program was causing the 
Intel Paragor1 to hang at  random number of iterations, which was especially frequent for runs on 
larger nuiiiber of processors (for the example problem provided in this document, > 16). The cause 
of this problcni lays in the fact that PARIX implemetation of the program does not provide for 
definition of riressage types. Such communication design is feasible in transputer based computers 
whew rr~c~ssages are pipelined into specific channels, longlinkid, and the order of communication 
is niairitaintd. Channels are unidirectional and message passing is unbuffered so that the sending 
process nius t  wait until the receiver is ready and vice versa. However, for the Intel Paragon the 
nressagc’ typr is the identificator of a message and it has to  be unique. If the message type is 
neglecttd. the resiilting communication may be incoherent. To illustrate such behavior assume 
that a procrssor receives two messages from its neighboring processors that  have the same message 
type>. i r i  o u r  case 0. The iKX function crecv can not distinguish the origins of the  received messages 
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and althoughmongh messages arein the receiving buffer, the final destination of data in a program 
will depend on the message arrival time and as such will be highly unreliable. 

The initial experience with the program indicated that more stringent management of message 
passing may solve the problem of message origin-destination ambiguity. Two versions of the mes- 

' sage passing control were impleinented. It the first version NX call crecvx was used to  specify the 
message source with no unique message type. The second approach used crecv calls and message 
types were set t o  node ids. Both versions of the program gave consistent results for test runs. The 
communication primitives for these two versions are: 

I -  t 

I 

1. integer function send (topid, loglinkid, data, size) 

integer topid,loglinkid,data(*),size 

call csend(topid,data, size, loglinkid,O) 

send = size 
return 

end 

integer function recv(topid,loglinkid,data,size) 

integer topid,loglinkid,data(*),size,info(8) 
call crecvx(topid,data, size ,loglinkid,O, inf 0) 

recv = size 
return 

end 

2. integer function send(topid, loglinkid, data, size) 

integer topid,loglinkid,data(*),size 
common/parix/iam 

call csend(iam,data,size,loglinkid,O) 
send = size 
return 

end 

integer function recv (topid, loglinkid, data, size) 

integer topid, loglinkid, data(*), size 

call crecv(loglinkid,data, size) 

recv = size 
return 

end 

where iam denotes processors' identification number in the communication group which has to  be 
previously initialized. The authors preference was on the second version because it required less 
complex SX call and as such should be faster. Although resolving problems with communication 
inc-ohcrcnrt in EARTH program, such approaches may not be valid on some message passing 
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oriented param-  machines. -A situation can be envisioned when even the use of source specific 
addressing would result in communication incoherence because the processors may be physically 
distant and messages do not have t o  arrive in the order that  they were sent. However, this may 
happen only on the archi.tectures that allow for dynamic message routing which was not the case 
with the current target machines. 

4 I/O Operations 

During the process of NX implementation of program EARTH certain 1/0 deficiencies of the PARIX 
version were manifested. The parallel implementation of the program allocates first processor in 
a line topology for 1/0 operations. The 1/0 processor broadcasts the input data to all processors 
in active topology. The broadcast function that were used for the input data distribution synchro- 
nized the program, thereby constantly controUing the amount of data present in the communication 
network. The output phase, however, could not be consistently used as originally designed since 
the size and dynamics of communication exceeded the message buffer resources of the XP/S. The 
message buffer size overflow was the result of the adopted output strategy where each processor 
formats its data for the final output and sends it in character form t o  the adjacent lower num- 
bered processor. In addition, a processor also routes the messages received from higher numbered 
processors to its lower neighbor. Although elegant, this approach increases the amount of data 
that needs to be transferred. A floating point number that needs four bytes of memory space is 
now converted to a string of characters each of a size of one byte. If the number of significant 
digits is large enough, the data size is multiplied without adding any information. Additionally, the 
pipeline mode in which data is sent to 1 /0  processor is causing heavy traffic in the lower numbered 
processors close to  1/0 processor. The synchronizing character of the send operation in transputer 
based niachirres is keeping this traffic constant. The flow of output messages using PARIX system 
is coritrollable since the machine is synchronized by both send and receive calls, and a programmer 
cari tw sure that the flow of messages is consistent. The send call in PARIX is synchronous, the 
trarisy)ntcr waits until the message is delivered to its destination whereas in NX csend waits only 
u n t i l  t l i c  niessage is delivered to the network. This may result in too many messages sent to a 
certain processor whose buffer can not handle such a traffic. 

Ih~ai lsc .  o f  the above deficiencies, the output phase of the program has been modified. Each 
processor directly sends its data to the 1/0 processor. When using Intel mesh topology messages 
may a r r i w  at different times and the data in the output pipeline may become unordered. In 
o r d t ~  t o  riiairitain the consistency of data flow, the processors send data in the increasing order of 
t l i r i r  processor ids. The output schedule is maintained by synchronous message passing of control 
nicssa~:c.s t)ct ween processors. When a processor completes sending its output data to 1 / 0  processor 
i t  swtis  ;I control message to the processor with the immediately higher numbered id, triggering 
its o n t p u t  phase. 



5 MPI ktplernentation 

The overall objective of this project was t o  produce a parallel implemetation of a CFD program that 
may work on as general parallel machine as possible. Having this goal in mind, the direct translator 
approach with its potential shortcomings was abandoned in favor of unique message typesetting. 
An MPI implementation was developed on the basis and experiences with communication patterns 
investigated in NX implementations. The communication driven by specification of the message 
source used in the final NX version has been replaced by the message type based control. The 
source and destination were determined for every communication and unique message types were 
assigned to  send-receive pairs. Such an implementation allows for a more flexible communication 
design and asynchronous message passing which will be more advantageous for analysis of large 
computational grids using large number of processors. Global operations that were developed in 
EARTH module for PARIX implementation were replaced with MPI global function calls. The 
developed program was tested and have produced the same results as NX version. 

Basic synchronous communication using MPISEND and MPIBECV were used to  replace 
csend and recv NX calls. There were no requirements for dynamic group formations so only the 
basic group consisting of all the processors in the active processor topology was used. Asynchronous 
message passing using MPIJSEND and MPIJRECV has also been implemented in conjugate resid- 
ual solver to alleviate the most intensive communication operations. The global operation calls 
were iniplemented using MPIALLREDUCE since the information from global operations had to  
be available to every processor. Function MPIBCAST was used for one-to-all communication 
in t t i ( >  input phase of the program, and the processors were synchronized using MPIBARRIER 
funrr ior i .  Ttw details of the MPI library implementation are encapsulated in C functions that are 
intrrf;rrrd w i t h  FORTRAN source with function calls only. MPI library for NX environment is 
availahltb frorn authors. 

6 Example 

A siiiiplv ("FD model. simulating flow of air around a group of buildings was used to assess the 
validity ; t i i d  t t i c  performance of the MPI implementation of the program. The computational 
grid o f  t h r b  ttnst problem consists of 15, 10 a n d  192 cells in 5, y and t directions, respectively. 
Thc. rorliputatioris were performed on massively parallel computers at Center for Computational 
Sc imrw at OHSL. The Intel Paragon [4] XP/S 5 ,  XP/S 35, and Kendall Square Research 1 [4] 
timirig:. f o r  o i i c  iteration of the program solution phase are given in Figure 1. Only the results for the 
MI']  vc'r.sioii o f  the program are presented since the NX version gives essentially the same results. 
I k c i r i i w  o f  t tit. l i n t  processor topology, predominantly nearest neighbor communication and the 
srnall ; i n i o r i n t  o f  data used in global operations, the communication deficiencies of the NX version 
w r v  r ~ o t  ab appiircnt as  they would be for a multi-directional domain decomposition approach 
wtieti plotml rorrirriuriications become much more complex. The input files were decomposed for 
3 .  h.  I t ' .  16. 3 2 .  64, and 96 processors. Speedup information using 4 processors as the baseline 
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timing was s h  in Figure-2. It- can be seen that the increase in speedup is negligible after 32 
processors. The small computational domain makes the communication a predominant operation 
and the further increase in number of processors may even result in an increased computation time. 
For example, in the given CFD problem using 96 processors, the computational domain is reduced 
to  2 z intervals and data from 4 intervals have to  be interchanged with the adjacent processors. 

7 Conclusions 

The Intel Paragon NX and the general MPI implementation of the parallel solver for CFD program 
PHOENICS has been successfully completed. The MPI implementation is developed for general 
message passing environment. The communication part of the program was rewritten in order t o  
produce a consistent communication. The 1 /0  phase has been modified in order to  avoid network 
congestion and data incoherence. The timing results on ORNL supercomputers illustrate the 
potential of the developed program for the analysis of large scale CFD problems. 
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