
MPI Implementation of CFD Program PHOENICS

Srdan SimunoviC and Thomas Zacharia
Material Process Modeling Group, Metals and Ceramics Division

Oak Ridge National Laboratory
P.O. Box 2008, Oak Ridge, T N 37831-6140

October 26, 1994

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

'Ttrt. rtwarch was sponsored by the Division of Material Sciences, U.S. Department of Energy, under
corrt ract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.

MSTRISUTION OF THIS DOCUMENT IS UNLIMITED

DiSCLAiMER

Portions of this document may be iiiegibie
in electronic image products. Images are
produced from the best avaiiabie original
document.

Abstract

This document describes the work on Message Passing Interface (MPI) standard implementation of
the parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program
PHOENICS. The Intel Paragon NX and MPI versions of the program have been developed and
tested on massively parallel (MP) supercomputers Intel Paragon XP/S 5 , XP/S 35, and Kendall
Square Research (KSR) supercomputers at Oak Ridge National Laboratory (ORNL). The prelimi-
nary testing results of the developed program have shown scalable performance for reasonably sized
corn i) 11 tat ion a1 domains.

The submitted manuscript has been authored
by a contractor of the U.S. Government under
contract No. DE-AC05-840R21400.
Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or
reproduoe the published form of this
contribution, or allow others to do so, f o r
US. Government purposes.

1 Introchetion -

PHOENICS is a suite of computational analysis programs that are used for simulation of fluid
flow, heat transfer, and dynamical reaction processes [l]. The program consists of three main
modules, pre-processor (SATELLITE), solver (EARTH), and post-processor (PHOTON). The
computational requirements of the solution module are the most demanding part of an analysis
process and it has been redesigned by the CHAM development group for parallel implementation [2]
on the PARSYTEC transputer [3] based architecture. PARSYTEC computers are built from
interconnected INMOS T800 series transputers. New generation of the PARSYTEC computers,
GigaCube GC-2, will incorporate T9000 transputer and C104 router chip. The transputer-router
system was not available at the time of code development causing the resulting software to be more
dependent on the underlying hardware design. The details of the PARSYTEC architecture may be
found in, for example, Reference 4.

Message Passing Interface (MPI) standard has been recently established [5] in order to provide
a stable environment for parallel program and operating system development. The variety of
hardware designs and communication protocols make porting of parallel computer programs to
different computer architectures a considerable effort that does not significantly increase value of
the software. Writing a parallel program using standard conventions for communication alleviates
the programing task and moves the design of communication to the domain of the operating system
designer.

Implementation of MPI version of PHOENICS makes the computational tool portable t o wide
range of parallel machines and enables the use of high performance computing for large scale
corriput ational simulations. MPI libraries are available on several parallel architectures making the
program usable across different architectures as well as on heterogeneous computer networks.

2 PARSYTEC Implementation of PHOENICS Module EARTH

As a principal met hod for exploiting concurrent processing, the domain decomposition technique
has breri employed for PHOENICS module EARTH. The program uses one dimensional domain
decor1il)ositiori in 2 direction. decomposing the computational domain into slabs of approximately
equal size. Each slab is assigned to a processor that has its identification number (id) equal
to tlic slab ordinal number with respect to slab position along z axis, the first slab having the
ordirial r i u i r i h t r 0. lmplemeted soulution algorithm requires a processor to communicate with
the processors that are assigned to the adjacent slabs, and with all the processors in the active
topology i r i order to perform global operations. Such a computational domain assignment and
corrirriiiriicatiori pattern makes a line processor topology suitable for efficient processing. A ring
topology could increase performance of global operations but because the PARSYTEC transputer
macliirit. allows communication between neighboring transputers only, the ring topology was not
in1 pltriierittd.

(' liaractcristic of the domain decomposition approach is that for a given problem size there is

1

a limit of t h e m m b e r of processors that can be effectively used. After the computational effort,
which is proportional to sub-domain size, becomes comparable to communication, the program
execution time can not be further reduced by the increasing number of processors. Therefore,
the communication phase of a program must be efficiently designed in order to delay as much as
possible the occurence of the utilization horizon. The PARSYTEC operating system called PARIX
provides limited communication capabilities that consists of primitives for synchronous message
passing and organization of virtual transputer topologies. The cut-through routing message mode,
although envisioned in current PARSYTEC design, was not yet available because of the lack of a
routing processor [4]. This fact forces all the communication except with adjacent transputers to
be done in software, effectively implementing store-and-forward message routing which was shown
to be inferior to the cut-through approach. The new PARSYTEC computers that are planned
to employ transputers-routers design should allow for general message passing and more complex
transputer topologies.

The central part of EARTH solver is a linear equation solver. The solution algorithm imple-
mented in the serial version was not suitable for parallelization and was replaced by conjugate
residual accelerator [SI combined with Jacobi iteration method. The communication required by
the solver includes communication with adjacent processors in a line topology, global summation
of inner products and determination of maximum and minimum value across all processors. The
nearest neighbor communication is not considerably influenced by a line topology of processors but
the global operations are inevitably slower because of the store-and-forward routing.

3 NX Implementation

A s i i r i i r i i t ial approach. a translator library was developed that transformed PARIX communication
fiirict i o n riills to Intel N X calls without intervention in the program. Essential message identifiers
in l’.\llIS w f w mapped to their NX counterparts. The implications of such an implementation
v,vrv ;iriitl\ztld arid program consistency and performance were evaluated.

? ‘ I I (~ i r i i t iiil version of NX implementation was obtained by translating communication primitives
t o SS c i i l l h tvit h o u t unique message type specification. In this document, only the communication
fi inct 1 0 1 1 c w ~ i i t ial for program implementation are provided. The more complete library translating
I’X RIS t o S S functions are available from authors. The procedure for building line processor
t o p o l o q . makepipe. in PXRIX has been translated as:

integer function makepipe (reqid, size ,xmin ,xmax , p i n , p a x ,unin, zmax , id ,link)
integer reqid,size,xmin,xmax,pin,ymax,zminymax,id,link(2)

external mynode

integer mynode

id=mynode (1
link(1)=id-l

link(2)=id+l

2

if (id.eT-bize-l))t*en -

link(2)=-l

endif
makep ip e=reqid

return

end

Function makepipe creates the communication structure with size processors. The processor
partition will be mapped as described by xmin, xmax, p i n , p a x , m i n , and zmax. In order t o
distinguish links while establishing several topologies simultaneously, reqid is used. The PARIX
functions send and recv were translated to corresponding NX call as:

integer function send(topid,loglinkid,data,size)

integer topid,loglinkid,data(*),size
call csend(topid, data, size, loglinkid, 0)

send = size
return

end

integer function recv(topid,loglinkid,data,size)
integer topid, loglinkid, data (*) , size
call crecv (t opid , data, size)
recv = size
return

end

Variable topid is an identifier of the active topology and it is same for all nodes; loglinkid
denotes a link to communication channel over which message is to be delivered; data and size
are message buffer and its size in bytes, respectively. In NX implementation, topid was initialized
to 0. arid loglinkid was defined in send and recv as an identification number of a processor
which rewives or sends the message, respectively. This version of the program was causing the
Intel Paragor1 to hang at random number of iterations, which was especially frequent for runs on
larger nuiiiber of processors (for the example problem provided in this document, > 16). The cause
of this problcni lays in the fact that PARIX implemetation of the program does not provide for
definition of riressage types. Such communication design is feasible in transputer based computers
whew rr~c~ssages are pipelined into specific channels, longlinkid, and the order of communication
is niairitaintd. Channels are unidirectional and message passing is unbuffered so that the sending
process nius t wait until the receiver is ready and vice versa. However, for the Intel Paragon the
nressagc’ typr is the identificator of a message and it has to be unique. If the message type is
neglecttd. the resiilting communication may be incoherent. To illustrate such behavior assume
that a procrssor receives two messages from its neighboring processors that have the same message
type>. i r i o u r case 0. The iKX function crecv can not distinguish the origins of the received messages

3

and althoughmongh messages arein the receiving buffer, the final destination of data in a program
will depend on the message arrival time and as such will be highly unreliable.

The initial experience with the program indicated that more stringent management of message
passing may solve the problem of message origin-destination ambiguity. Two versions of the mes-

' sage passing control were impleinented. It the first version NX call crecvx was used to specify the
message source with no unique message type. The second approach used crecv calls and message
types were set t o node ids. Both versions of the program gave consistent results for test runs. The
communication primitives for these two versions are:

I - t

I

1. integer function send (topid, loglinkid, data, size)

integer topid,loglinkid,data(*),size

call csend(topid,data, size, loglinkid,O)

send = size
return

end

integer function recv(topid,loglinkid,data,size)

integer topid,loglinkid,data(*),size,info(8)
call crecvx(topid,data, size ,loglinkid,O, inf 0)

recv = size
return

end

2. integer function send(topid, loglinkid, data, size)

integer topid,loglinkid,data(*),size
common/parix/iam

call csend(iam,data,size,loglinkid,O)
send = size
return

end

integer function recv (topid, loglinkid, data, size)

integer topid, loglinkid, data(*), size

call crecv(loglinkid,data, size)

recv = size
return

end

where iam denotes processors' identification number in the communication group which has to be
previously initialized. The authors preference was on the second version because it required less
complex SX call and as such should be faster. Although resolving problems with communication
inc-ohcrcnrt in EARTH program, such approaches may not be valid on some message passing

4

oriented param- machines. -A situation can be envisioned when even the use of source specific
addressing would result in communication incoherence because the processors may be physically
distant and messages do not have t o arrive in the order that they were sent. However, this may
happen only on the archi.tectures that allow for dynamic message routing which was not the case
with the current target machines.

4 I/O Operations

During the process of NX implementation of program EARTH certain 1/0 deficiencies of the PARIX
version were manifested. The parallel implementation of the program allocates first processor in
a line topology for 1/0 operations. The 1/0 processor broadcasts the input data to all processors
in active topology. The broadcast function that were used for the input data distribution synchro-
nized the program, thereby constantly controUing the amount of data present in the communication
network. The output phase, however, could not be consistently used as originally designed since
the size and dynamics of communication exceeded the message buffer resources of the XP/S. The
message buffer size overflow was the result of the adopted output strategy where each processor
formats its data for the final output and sends it in character form t o the adjacent lower num-
bered processor. In addition, a processor also routes the messages received from higher numbered
processors to its lower neighbor. Although elegant, this approach increases the amount of data
that needs to be transferred. A floating point number that needs four bytes of memory space is
now converted to a string of characters each of a size of one byte. If the number of significant
digits is large enough, the data size is multiplied without adding any information. Additionally, the
pipeline mode in which data is sent to 1 /0 processor is causing heavy traffic in the lower numbered
processors close to 1/0 processor. The synchronizing character of the send operation in transputer
based niachirres is keeping this traffic constant. The flow of output messages using PARIX system
is coritrollable since the machine is synchronized by both send and receive calls, and a programmer
cari tw sure that the flow of messages is consistent. The send call in PARIX is synchronous, the
trarisy)ntcr waits until the message is delivered to its destination whereas in NX csend waits only
u n t i l t l i c niessage is delivered to the network. This may result in too many messages sent to a
certain processor whose buffer can not handle such a traffic.

Ih~ai lsc . o f the above deficiencies, the output phase of the program has been modified. Each
processor directly sends its data to the 1/0 processor. When using Intel mesh topology messages
may a r r i w at different times and the data in the output pipeline may become unordered. In
o r d t ~ t o riiairitain the consistency of data flow, the processors send data in the increasing order of
t l i r i r processor ids. The output schedule is maintained by synchronous message passing of control
nicssa~:c.s t)ct ween processors. When a processor completes sending its output data to 1 / 0 processor
i t swtis ;I control message to the processor with the immediately higher numbered id, triggering
its o n t p u t phase.

5 MPI ktplernentation

The overall objective of this project was t o produce a parallel implemetation of a CFD program that
may work on as general parallel machine as possible. Having this goal in mind, the direct translator
approach with its potential shortcomings was abandoned in favor of unique message typesetting.
An MPI implementation was developed on the basis and experiences with communication patterns
investigated in NX implementations. The communication driven by specification of the message
source used in the final NX version has been replaced by the message type based control. The
source and destination were determined for every communication and unique message types were
assigned to send-receive pairs. Such an implementation allows for a more flexible communication
design and asynchronous message passing which will be more advantageous for analysis of large
computational grids using large number of processors. Global operations that were developed in
EARTH module for PARIX implementation were replaced with MPI global function calls. The
developed program was tested and have produced the same results as NX version.

Basic synchronous communication using MPISEND and MPIBECV were used to replace
csend and recv NX calls. There were no requirements for dynamic group formations so only the
basic group consisting of all the processors in the active processor topology was used. Asynchronous
message passing using MPIJSEND and MPIJRECV has also been implemented in conjugate resid-
ual solver to alleviate the most intensive communication operations. The global operation calls
were iniplemented using MPIALLREDUCE since the information from global operations had to
be available to every processor. Function MPIBCAST was used for one-to-all communication
in t t i (> input phase of the program, and the processors were synchronized using MPIBARRIER
funrr ior i . Ttw details of the MPI library implementation are encapsulated in C functions that are
intrrf;rrrd w i t h FORTRAN source with function calls only. MPI library for NX environment is
availahltb frorn authors.

6 Example

A siiiiplv ("FD model. simulating flow of air around a group of buildings was used to assess the
validity ; t i i d t t i c performance of the MPI implementation of the program. The computational
grid o f t h r b ttnst problem consists of 15, 10 a n d 192 cells in 5, y and t directions, respectively.
Thc. rorliputatioris were performed on massively parallel computers at Center for Computational
Sc imrw at OHSL. The Intel Paragon [4] XP/S 5 , XP/S 35, and Kendall Square Research 1 [4]
timirig:. f o r o i i c iteration of the program solution phase are given in Figure 1. Only the results for the
MI'] vc'r.sioii o f the program are presented since the NX version gives essentially the same results.
I k c i r i i w o f t tit. l i n t processor topology, predominantly nearest neighbor communication and the
srnall ; i n i o r i n t o f data used in global operations, the communication deficiencies of the NX version
w r v r ~ o t ab appiircnt as they would be for a multi-directional domain decomposition approach
wtieti plotml rorrirriuriications become much more complex. The input files were decomposed for
3 . h. I t ' . 16. 3 2 . 64, and 96 processors. Speedup information using 4 processors as the baseline

6

timing was s h in Figure-2. It- can be seen that the increase in speedup is negligible after 32
processors. The small computational domain makes the communication a predominant operation
and the further increase in number of processors may even result in an increased computation time.
For example, in the given CFD problem using 96 processors, the computational domain is reduced
to 2 z intervals and data from 4 intervals have to be interchanged with the adjacent processors.

7 Conclusions

The Intel Paragon NX and the general MPI implementation of the parallel solver for CFD program
PHOENICS has been successfully completed. The MPI implementation is developed for general
message passing environment. The communication part of the program was rewritten in order t o
produce a consistent communication. The 1 /0 phase has been modified in order to avoid network
congestion and data incoherence. The timing results on ORNL supercomputers illustrate the
potential of the developed program for the analysis of large scale CFD problems.

8 Acknowledgements

This research has been supported by the Division of Material Sciences, U.S. Department of Energy,
under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.

7

References - -

[11 D. B. Spalding. Mathematical modeling of fluid-mechanics, heat-transfer and chemical-reaction
processes. Technical Report CFDU Report HTS/809/1, Imperial College, 1980.

[2] N. D. Baltas and D. B. Spalding. MIMD PHOENICS: Porting a computational fluid dynamics
application to a distributed memory MIMD computer. In International Conference on Massively
Parallel Processing, TU Delft, Netherlands, 1994.

[3] M. D. May, P. W. Thompson, and P. H . Welch. Networks, Routers and Transputers: Function,
Performance and Applications. INMOS Limited, 1993.

[4] K . E. Gates and W. P. Petersen. A techincal description of some parallel computers. Technical
report, Swiss Federal Institute of Technology (ETH), 1993.

[5] Message Passing Interface Forum. MPI: A message-passing-interface standard. Technical re-
port, University of Tennessee, 1994.

[6] P. J . O’Rourke and A. A. Amsden. Implementation of a conjugate residual iteration in the
KIVA computer program. Technical Report LA-I0849-Ms, Los Alamos National Laboratory,
1986.

8

List of Figures -

1
2

Timing Results for EARTH Solver . 10
Scalling of EARTH Solver . 11

9

- 32.00
0

%
Y

28.00 -'
I

- '
I
I

I
I

5 I
24.00

20.00 - '
16.00 - b8

\
\
112
4 12.00 -

+ XP/S
-0- KSR1

16
[J

9
0 20 40 60 80 100

NODES

Figure 1: Timing Results for EARTH Solver

10

-. -

24

i
+" 21
\

18

15

12

9

6

3

. .

.
96 .

- XP/S
- e - KSR1
* LINEAR

I I I I I
0

0 20 40 60 80 100
NODES, n

Figure 2: Scalling of EARTH Solver

11

	Timing Results for EARTH Solver
	Scalling of EARTH Solver

