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ABSTRACT

Signal validatiou attd ptaut subsystem trackiug iu power and process iudu..,trit's tetlllile tile

prediction of one or more state variables. Both heteroassociative and attotassociative uettral tier-
works were applied for characterizing relationships among sets of signals. A ululti-layer neural
network paradigm was applied for sensor and process mouitoring iu a Pressurized Water lteact_Jr

( PWR}. This nonlinear interpolation technique was found to be very effective for these al_plicatious.

INTRODUCTION

In recent years, the neural uetwork approach has emerged as a powerful tool for achievlug hi:.z,h=

computational effectiveness iu mal_piugone set of information to another. The hybrid techuicltte

of digital signal processing and parallel distributed processing has been shown to ovorcome I_rol_-
lems related to physical or empirical tuodeling. Other applications include paratueter estituatiou.
chemometric data analysis, speech recognitio,, pattern classification, aud process cotttro[. OI'It'lLil

is necessary, to pre-process uetwork input information in order to achieve the greatest s,:tt.,,itivit.v
in the relationship between the input and the desired output. Digital signal processing techuiqucs

such as spectral-domain estimation, signal smoothing, and other data-dependeut tt'atLsformatiou
are routinely applied.

Signal validation and plaut-wide mouitoriug are two of the industrial applications of multi-la.ver
neural network techniques. Sigual validation can improve the effectiveness of control aud l)l'olt:C-

tion systems. "Signal validation is used to check the consistency of redu,daut lueasuretueuls of

selected process variables, estimate their expected values from measurements, and detect, isolate
and characterize the type of anomaly in the instrument channel outputs [1]." The rot:title valida-

tion of critical signals in a reactor system, especially in a nuclear power plant, plays a vital role iu
monitoring incipient changes in sensor behavior ['2] [3]. In plant-wide monitoring, several signals
from different parts of a plant are simultaneously tracked and deviations of one or more signals
from their expected values are monitored. If any deviation is detected by the nmuitoring system.
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. it will be easier for the operator to identify an incipient problem.

Traditionally model-based techniques are used for estimating process variables in validation
techniques. Model-based techniques assume a fixed structure for characterizing steady-state or
transient relationships among process variables. The accuracy of the model depends highly on
.ae assumed structure (or the degree of the polynomial relationship). Neural network (distributed
parcel processing) paradigms offer a number of advantages when compared to model-based tech.
niques. Most importantly it is not necessary to define a functional form relating a set of process
variables. The functional form as defined by an Artificial Neural System (ANS) is implicitly non-
linear. Neural networks do not require the detailed system specifications. Finally, neural network
models are more fault-tolerant in the presence of noise and with an incomplete information than
the traditional techn,ques [2].

An adaptive backpropagation network (BPN) [4] was used to create models for estimating one
or more signals. The algorithm was developed and implemented on a VAX workstation. Several
significant improvements were made to the basic algorithm and had resulted in accelerated training
and improved accuracy. Normally neural network parameters which appear in the weight updat-
ing and thresholding equations are kept constant during the learning period. Studies have shown
that changing these parameters during the learning phase accelerates convergence and improves
accuracy. We have concluded that progressively adjusting the threshold shaping parameter (thus
leadi,_g to the terminology adaptive backpropagation neural network) is the most important part
of accelerating the convergence and improving the accuracy. Another important parameter in the
BPN, the so called mornentun7 term, was also employed in this stud)'. An important point dur-

ing network training is that increasing the learning coefficient may trap the error function at a
local minimum. The momentum term can be used to overcome this problem [5]. The momentum
term coefficient provides a form of rate-of-change in weight space that effectively filters out high-

frequency variations of the weights [2].

The most important part of a multi-layer neural network topology is the hidden layer(s). These
layers are introduced to handle the nonlinear relationship in the data. These layers do not have
direct connections to the outside world, and they make it possible to improve the nonlinear inter-

po]ation of input-output relationships. Recent studies have shown that one hidden laver is el, ough
to solve most of the nonlinear problems [6]. One of the most important issues is the size of the
hidden layer. An empirical formula was developed based on Shannon's information theory [7]. This

formula was derived from the following observations:

1. A three-layer neural network is sufficient to solve estimation problems.

2. The minimum number of required hidden units is log2N ([5] Chapter 8) where N is the
number of training patterns.

Depending on these facts, the empirical formula for estimating the optimum hidden layer size,

especially for signal validation and plant-wide monitoring applications, is given by

H = I x log2N 4-I (1)

where I is the size of the input vector and N is the number of training patterns [2].

456

AI91 FRONTIERS IN INNOVATIVE COMPUTING Jackson, Wyoming
FOR THE NUCLEAR INDUSTRY September 15-18, 1991

]1 ' ' ' '



NEURAL NETWORKS APPLICATIONS IN THE NUCLEAR
INDUSTRY

Neural networks are intrinsically parallel and non-algorithmic methods; these features of neural
networks make real-time processing of data and information feasible. Some of the applications
of neural networks include nuclear fuel management, multi-sensor information fusion, sensor vali-
dation, control problems, plant-wide monitoring, and pattern recognition for diagnostics of plant

malfunctions [8].

Neural networks have been traditionally used for pattern classification and similar problems.
Such networks perform reliably even when used with noisy and incomplete data [8] [9]. Neural

networks may also be used to adaptively control a system by optimizing control parameters. An-
other useful feature of neural networks is the ability to respond in real-time to changing system
states whose descriptions are provided by the process sensors. For complex systems involving man)"
sensors and possible fault types, estimating real-time response is a clhallenging problem in nuclear

industry [2]. OI,ce the networks are trained they can be implemented for fast recall. Unlike most
other computer programs, neural networks can give high performance even when there is a failure

in the network structure, such as a missing processing element.

SUMMARY OF SIGNIFICANT RESULTS

The feasibility of using neural networks for signal validation and plant-wide monitoring prob-
lems was studied. Neural networks or parallel distributed processing was found to be highly suitable

for the developmen_ of relationships among various parameters. Signal validation and plant-wide
monitoring applications were completed using startup and steady-state data from operating Pres-
surized Water Reactors (PWRs). A dyr_amic network approach was developed for signal validation

problems. The objective of this approach was to take into account an)' delay between the responses
of the input and output variables used in training the networks. The inclusion of several previous

samples and using them as inputs to the network improves the accuracy of network models [3]. The
use of recurrent networks is another approach for characterizing transient responses [10]. The com-

plexity of network training increases with the number of regression terms. Neural networks were
also applied to detect venturi fouling by estimating feedwater flow rate and to estimate turbine

first stage impulse pressure. Finally, neural networks were used to identify the mismatch between
thermal power and generator power in a four-loop operating PWR.

BACKPROPAGATION NETWORK (BPN) ALGORITHM

This section briefly discusses one of the most commonly used neural network training algo-
rithms, namely the Backpropagation Network (BPN). BPN is applied to a multi-layer and

fully connected network [5]. Figure 1 shows a typical topology for a three-layer perceptron. The
first layer receives the information, and feeds it to the inner layers, the second layer which is
commonly known as a hidden layer receives information from the input layer and propagates this

forward through the connection weights. Hidden layer size and number of hidden layers are one of
the important issues in the development of a network architecture. The hidden layers are used to

457

AI91 FORTHENUCLEARINDUSTRY September 15-18,1991



characterize the nonlinear properties of the system to be analyzed. Cybenko [11] has shown that
nonlinear interpolation of the form y - f(x) is possible through weighted summation of the outputs
of processing elements which axe, for example, characterized by a sigmoidal function (Equation 2).
The last layer is the output layer where the desired output values received from the outside world
and the calculated values are presented to the environment. The output layer consists of multiple
processing elements• If the goal is to predict one variable as a function of (xi,z2,..., x,), then the
output will be a single processing element. If the purpose of using the BPN is plant-wide moni-
toring, then there will be m_y processing elements in the output layer; each processing element
corresponding to one of the signals. The generalized delta rule is employed in calculating the error
between the desired output and the calculated output [5].

The b_ckpropagation algorithm has several limitations. One of them is that it cannot reach its
extremities [0,1], therefore normalization of the training data is very important in BPN applica-
tions. The algorithm developed on the VAX workstation has the feature of automatic normalization
between 0.1 and 0.9 which enables the network to reach the extremities. This type of normalization
gives the advantage of interpolating and especially extrapolating the data.

The backpropagation network algorithm uses the generalized delta rule for training. Figure 1
shows the topology of the network. The algorithm as presented in [5] is outlined below•

1. Assign a random number r (uniformly distributed) in the range [+loll to ali the con-

nection weights wlj, and bias 0J of all PE's.

2. Present the normalized input vector, between 0.1 and 0.9, to the first layer and propagate
it to the output layer as

t 1

= '-, ,+e_) (2).++ zj_, 1 + e-_(_, ='p '%
t

! after which each PE in every laver of the network -will have an associated value z t- 2P'

J 3. For each PE compute the local error at the output layer between the desired value and
the calculated value using the generalized delta rule

' = ' ' - G) (a)_p - =jp)(tjp

t is the target valuewhere, tdp

4. For each PE in the hidden layers, starting at the layer below the output layer and ending
above the input layer, compute the local error by using

• G G)E I;' '+'= - wO. . (4)
i

5. Compute all the connection weight corrections by using

_,_w_j(n+ 1) t t-l= ,_(G=,,,)+ _a_lj(_) (5)

where n indexes the presentation number, and the bias corrections are given by

AoJ,=o6} (0)
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6. Update all the connection weights by adding the weight corrections to the old weights
as

wlj(n+ 1)= wljCn)+ A,_ljCn+ 1) (w)

7. Update ali the PE bias values by adding the bias corrections to the previous bias values
as

' 0J(0_(n+ 1)= ) + (8)

8. Present the next pattern, p, to the network until all the patterns are presented.

9. Repeat (step 2) until the error between the desired and the calculated values of the

output is sufficiently small.

SIGNAL VALIDATION APPLICATIONS USING PWR
STARTUP DATA

The prediction of various process variables during the startup of a four-loop Westinghouse
Pressurized Water Reactor (PWR) is considered first. The predicted values may be used for sensor

validation, process monitoring, and diagnostics applications [2] [4].

Separate networks were developed for hot leg temperature, pressurizer level, steam generator

main feedwater flow, and steam generator steam pressure. Many configurations with different in-
puts may be used for modeling each of these signals. It ma)' be necessary to haw redundant network

models with different input combinations for the same output signal. If one of the sensors fails,

then the other network will be responsible for estimating that signal.

Details of the networks and their results for several signals will be presented in tables and fig-

ures. For the case studies discussed, the networks were trained over the entire operational range.

Different intervals were used for training and recalling data sets so that the interpolation and ex-

trapolation capabilities of the BPN algorithm can be exploited. The software, developed on a VAX

workstation, has the feature of normalizing the inputs and outputs in the range (0.1, 0.9). After

training the networks, the output was denormafized and the variable was plotted showing both the
measured and estimated values.

During these case studies, the number of processing elements in the hidden layer was determined

by the formula developed under this project and is given by

H =Ixlog:N:t:l

where I is the size of the input vector, N is the number of training patterns, and :t:I is adjusted
between 0 and I.

Reactor Coolant System Hot Leg Temperature

Hot leg temperature signatures are very important in reactivity control using To_oge strateKv.

lt is important to validate the sensor readings at each state of the plant. Several networks with
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differentinputcombinationsweredevelopedforthehotlegtemperaturesignalusingstartupdata.

Figure2 shows thepredictionof thehotlegtemperatureusingthetrainednetwork(testdata).
I The standarddeviationsfortrainingand recallingaregiveninTableI.

Table11NetworkPerformanceforHot Leg Temperatureina PWR

ReactorPower

Input Signals Pressurizer level

RCS Cold Leg Temperature
Number of Training Patterns 150
Number of Hidden Nodes 21

Training Standard Deviation 0.536 OF
Recalling Standard Deviation 0.593 OF

Table 2: Network Performance for Pressurizer Level in a PWR

Reactor Power

Input Signals RCS Hot Leg Temperature
Steam Generator Main feedwater Flow

Number of Training Patterns 100
Number of Hidden Nodes 19

Training Standard Deviation 0.710 %

;t Recalling Standard Deviation 0.818 %
t,
t

1
! Pressurizer Level

Several networks with differext.t..Le.ts0f input combinations were created for the pressurizer level
signal. It should be noted that during the pressurizer analysis the charging pump flow was not
included, lt is necessary to include this signal, if available, as an input signal. One of the input

I sets sensor readings power, leg temperature, generator
included of reactor hot and steam main

feedwater flow. The other set included reactor power and hot leg temperature. Table 2 shows the
standard deviation of estimation for training and recalling data sets of the network. Figure 3 com-

I the test data and interpolation using the network. A high degree of was observed
pares accuracy

in the performance of the above two networks.

PLANT-WIDE MONITORING USING STEADY-STATE
PWR DATA

The use of neural networks in diagnosing transient or abnormal conditions in nuclear power

!I plants has been investigated [2] [12]. The technique is based on the fact that each physical state
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of the plant can be represented by a unique pattern of sensor outputs or instrument readings that
can be related to the condition of the plant. When a disturbance occurs in a power plant, sensor

outputs or instrument readings change, and form a different pattern that represents the new state
of the plant. To implement a diagnostic teel based on this principle (which is useful in the opera-
tion of nuclear power plants) requires a real time method of pattern recognition. Artificial neural
networks are able to provide this capability [8]. Plant-wide monitoring with neural networks is
one of the real-time applic,'ttions. In this particular application, there are many inputs and many

outputs. These inputs and outputs may or may not be related to each other.

In the balance of plant (BOP) system, it is necessary to minimiaze the unaccounted heat lossses.
This is the difference between the calculated and the measured heat rates. These losses sometimes

may result from the measurement errors. Factors such as, low pressure turbine efficiency, changes
in environmental conditions, and others would also co,tribute to this error. Computer programs
are used for heat rate calculations based on thermal-hydraulic analysis methods and to determine
unaccounted losses quantitatively. Diagnostic techniques are also used to determine, if possible,
the corrective actions to be taken. An alternative approach to this problem is to apply plant-wide

monitoring by using autoassociative I3PN network models.

For this case study, steady-state data from an operating four-loop Westinghouse Pressurized
Water Reactor were used. These data consisted of weekly measurements of plant variables and
some calculated values based on these measurements. Typical data spanning fourty weeks were
used during the neural network an,'d.vsis. The training data included 14 signals. These signals and
their physical units are given in Table 3. The first 32 out of 40 patterns were used to train the

network, and the remaining eight patterns together with the first 32 were predicted by the network.

The standard deviation errors of the signals are given in Table 3. lt was observed from the

network results that most of the signals followed their expected patterns. There was oni.v one
signal with an apparent deviatiou from its expected pattertL, namely, the generator output signal.

Figure 4 shows the comparison between the actual and the predicted output values for the generator

output signal.

CONCLUSIONS

For effective control strateg.v development in nuclear power plant systems (without challenging
their complex operability), it is necessary to validate plant sensors and to monitor a multitude

of variables. Neural networks or parallel distributed proccesing is found to be highly suitable for
developing relationships anaong various parameters. Neural networks are capable of performing
arbitrary mapping from inputs to outputs without knowing the complete system specifications (a

black-box approach to modeling). The following applications were completed using a multi-layer
neural network algorithm, the Backpropagation Network (BPh:):

* Multiple-input single-output heteroazsociative networks for signal validation of distributed
sensor arrays.

o Multiple-input multiple-output autoa.ssociative networks for plant-wide monitoring of a set

process variables for diagnostics. _I I
of

!
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Table 3: Network Performance of *,.hePlant-wide Monitoring Network

Input signals Std. Der. of Signals
Reactor" Power, % 0.051
Ideal Generator Output, MWe 0.771

Measured Generator Output, MWe 1.308,,.... ,

Final Feedwater Temperature, OF 0.115
Impulse Pressure No. I, Psig ....... 0.672

I Impulse'Pressure No'i _, Psig .... 0.911
Feedwater Flow 106 Ibm/ht ..... 0.008

Loop1 Temperature Difference, OF ...... 0.053 .....
Loop 2 Temperature Difference, OF 0.063

*_ ......

, Loop 3 Temperature Difference, OF 0.067..................................

l Loop g Temperature Difference, OF 0.050
, ,,

i_] Loop A v9. Temp. Difference, OF 0.032Turbine Power Corrected to Design, MWc 1.188
Impulse'Pressure average, Psia .L 0.630

............

An enhanced version of the BPN algorithm was implemented on a VAX workstation. Several
innovations were made in the original algorithm to accelerate the training and to improve the accu-
racy of the network models. The most important aspect of implementing neural networks is network

training. In the normal use of neural networks, parameters which appear in the weight updating
and thresholding (activation) function equations are held constant during the learning phase. The
present study has shown that progressively changing these parameters during the learning phase,
accelerates the convergence and improves the accuracy.

One of the open areas of multi-layer network research is the estimation of the size of the hid-
den layer. The studies completed in this research had shown that it is sufficient to use only one

hidden layer for solving the signal validation, plant-wide monitoring, and diagnostics problems.

An empirical formula for estimating the optimum size of the hidden layer in the above mentioned
applications was developed based on Shannon's information .

_ The parameter estimation capability of neural networks is currently being investigated for es-
timating the moderator temperature coefficient of reactivity, ac, in a PWR. Preliminary results

indicatc the feasibility of this approach [13]. Further research is necessary for extending this tech-
nique to estimate performance parameters during a fuel cycle using networks that are trained
on-line.
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