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ABSTRACT 

The Dykstra-Parsons method for prediction of oil recovery by water 
flooding is a well known technique which has been used by the petroleum 
industry since 1945. The present work carries their study further, solving 
the same problem of calculating coverage for certain values of 
permeability variation having water-oil-ratio and mobility ratio as fixed 
parameters. The work herein, instead of using 50 layers, uses 200. Also a 
more precise theoretical approach to the problem is given. Because of 
these differences the resulting curves are slightly modified. 

In a second part, we deal with empirical simplifications with 
considerable success. The idea was to collapse the data and curves obtained 
in the first part into a single curve which covers most of the range of 
variables commonly seen in reservoir displacements. 
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1. INTRODUCTION 

The Dykstra-Parsons1 method for prediction of oil recovery by water 
flooding is a classic in secondary recovery. It  is based on piston-like 
displacement of oil by water. Only water is assumed to be produced from a 
layer after breakthrough of the layer. A total of 50 layers with differing 
permeabilities was considered in their original study, and the result, when 
applied to large scale projects, closely fit waterflood recoveries. To our 
knowledge, up to the present time, no one has tried to verify whether their 
curves are correct. With the advance of computer facilities, this is not a 
difficult task. We decided, however, to take into account a more precise 
theoretical approach to calculate the values of water-oil-ratios. Also, for 
the sake of greater accuracy with the theory, we worked with 200 layers, 
rather than 50, as had been done by Dykstra and Parsons. 

We recognize that the ideas embodied in the Dykstra-Parsons method 
are not limited to waterflooding. They will work for any recovery process 
where there is nearly piston-like displacement of oil by the displacing 
fluids. 

In the second stage we developed a simplification to the curves 
obtained in the first stage. Many empirical relationships between the 
parameters were studied. We present only that method which gave the best 
result. 

2. MATHEMATICAL FORMATION FOR A LAYERED SYSTEM 

To illustrate the ideas involved, we first take a system of two layers 
initially saturated with oil and connate water, and displace these fluids with 
injection water from the left. After a certain period of time we would have 
the situation pictured below. 

0 x2 X1 L 
Fig. 1. Welayered waterflood displacement 



2.1 PISTON-LIKE DISPLACEMENT 

To simplify the equations defining th is  process, we assume that: 
1. Both layers have the same fluid saturations Soi,Swi, prior to 

water-flooding, and both layers have the same saturations, So,, 
behind the water front. 

2. There is no cross-flow between layers. 
3. The water and oil relative permeability ratios are equal for both 

layers. 
Production in both layers, at the outflow end, changes abruptly 
from oil to water; that is, a piston-like displacement. 

4. 

It should be recognized that these assumptions are not limited to waterflood 
displacements. They are valid any time the displacing fluid acts in a 
piston-like manner in the recovery process being used. However, for 
simplicity the remaining narrative will focus on waterflooding, as Dykstra 
and Parsons did. 

Applying Darcy’s law to Layer 1, we have, 

where: 
ki absolute permeability of Layer 1 

Repeating the equation for Layer 2, 

but, 
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Substituting Eqs. 3a and 3b into Eqs. 1 and 2, and rearranging, we get, 

1 

where: 

Q = porosity 
Asw = change in water saturation between oil zone and water zone, 

1 - Swi - S, 

Rearranging Eqs. 4 and 5, and equating, we get, 

where the porosity and the change in water saturation are assumed to be 
the same for both layers. Multiplying by k,/pw and letting 
M = krwpo / kropw, where M is the mobility ratio, we have, 

[xi + M(L - xl)]k2dxl= 11x2 + M(L - x2)]kldx2 (7)  

Integrating from zero to L for the first strip and from zero to x2 for the 
second strip, we get, 

L x2 

0 0 
I[x1 +M(L-x1)]k2dx1= I [x2 +M(L-x2)Ihdx2 (8) 

or, 
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Solving for x2/L we have, 

x2 -M + ,/M2 + (k2/kl)(1 - M") 
-= 
L 1-M 

Defining coverage, C, as the fraction of the total volume of the system 
which has been flooded with water, we get, 

1 + x2/L C= 
2 

If there were n layers, at breakthrough of the first strip the equation 
would be, 

n n 

Equation 12 gives the coverage at the time water is fiist produced from the 
layer of highest permeability, kl. Using Eqs. 10 and 12, we can write, 

n M-JM2 +(ki/kl)(l-M2) 

M-1 1 +  E 
c=  i=2 

n 
When the interface has reached the right end of the top (highest 

permerability) layer, the rate of water production (assuming a perfect 
interface) will bet 

And the rate of oil production from any lower permeability layer will be, 
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Therefore the producing water-oil-ratio (WOR) will be, 

Substituting Eq. 10 in Eq. 16 we have, 

This last equation gives the producing water-oil-ratio from n strips of 
permeabilities kl,k2 .... kn,  at the time water is first produced from layer, 
kl, in terms of ki/kl and M. 

For the case where the mth layer has just been flooded through, and 
where AI = A2 =....= A, , it is easy to show that Eqs. 13 and 17 become, 

n 

WOR = i=l 
ki n 

-9 - 
Y 

i=m+l JM2 + (ki /km)( 1 - M2) 

An interesting case happens when M = l  . In this special case the 
equations need to be derived in a slightly different manner, but their 
developments are quite simple, so they will not be discussed further here. 

2.2 MODIFICATIONS TO THE CALCULATIONAL APPROACH 

It is also important to consider the case where the m’th layer is not 
quite completely flooded through. The coverage in the this case will be the 
same as when the m ’th layer is completely flooded, but the water-oil-ratio 
is not the same. Nor is it the same as when the (m-1)’th layer has just 
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been flooded out. Dykstra and Parsons did not consider this case in the& 
study. It is important to consider this condition for with a finite number of 
layers, the calculated water-oil-ratios, as indicated in the figures below, 
proceed through a series of discrete jumps as each layer breaks through, 
rather than predicting a smooth curve. 

The Dykstra-Parsons equations calculate the values on the tops of the 
stair-step curves (indicated by circles). The concept that will be described 
here, calculates the bottoms of these curves (indicated by triangles). With 
a finite number of layers, both must be calculated to generate the best 
smooth curve. 

For this purpose, the coverage equation will remain the same as 
before, as indicated in Figs. 2 and 3. But the WOR equation will differ, since 
the myth layer will be producing oil rather than water just prior to 
breakthrough of that layer. When the m 'th layer has not quite broken 

Coverage 

Fig. 2 Water/oil ratio history for M < 1. 

t Coverage 

Fig. 3 Waterloil ratio history for M > 1. 
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through, Eq. 19 is changed to, 

Note that in the numerator of Eq. 20 we do not include km,  while in the 
denominator, we include it, because we are still producing oil from that 
layer. 

To make smooth WOR curves, the arithematic averages of Eqs. 19 and 
20 were used to define the WOR histories of all the cases studied. 

3. DYKSTRA-PARSONS PERMEABILITY DISTRIBUTION 

Dysktra and Parsons concluded that when permeability values were 
arranged in descending order, the distribution followed a log-normal 
curve, as indicated in Fig. 4. If more then one geologic unit is present, 
each unit presents its own characteristic log-normal curve. 

10 

1 
1 3 10 30 50 70 90 97 99 

Portion of Total Sample Having 
Higher Permeability 

Fig. 4 Log-normal permeability distribution graph. 
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This idea can be put into an equation, as follows, 

where: 
hf = cumulative fraction of core 
ki = permeabilityof core, i 

to due ,  i 

E = permeability of the average core, k50 
B = standard deviation of the permeability 

distribution 

To define the standard deviation, B , Dykstra and Parsons defined a term 
they called permeability variation, V, as follows, 

E-kG V=- 
k 

where: 

ko = the permeability at one standard deviation on 
the log probability graph, equal tok84.13 

Substituting Eq. 22 into the definition for 6, we get, 

B logE - log(ko) = -lOg(l- V) 

As a result, Eq. 21 becomes, 

t 24) 

Equation 24 can be used to calculate permeabilities of individual layers 
as a function of the permeability variation, V, and of the number of layers 
chosen. We chose to use 200 layers to help smooth the resulting curves. To 
accurately calculate the value of the permeability of each layer, we used an 
accurate empirical algorithm from Abramowitz and Stegun2 based on the 
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definition of the Gaussian distribution commonly used in statistics. For 
easy comparison, the results were interpolated to the same values of WOR 
used by Dykstra and Parsons. The resulting curves are displayed in Figs. 5- 
14, with WOR’s of 0.10,0.20,0.50, 1.0, 2.0, 5.0, 10,25, 50 and 100. 

4. EMPIRICAL CORRELATION 

In this part of the work, we tried some simplifications on the curves. 
The idea was to collapse the entire set of 130 curves into a single curve that 
would include the parameters: Coverage, C, Permeability Variation, V , 
Mobility Ratio, M, and Water-Oil-Ratio, WOR. The advantage of having a 
single curve is obvious, since a unique equation could be fitted to it, and 
anyone wishing to calculate Coverage knowing the other parameters could 
do it simply, without needing to use a large set of curves. A hand calculator 
could be used to produce answers in a few seconds. 

Many correlatiodtechniques were tried. The best we found was to 
graph WOR on logarithmic coordinates against Coverage on arithmetic 
coordinates. An example of these curves is shown, at a permeability 
variation (V) of 0.5, in Fig. 15. Note that the upper and right-hand parts of 
these curves have similar shapes. They can be moved vertically in such a 
way that they fall nearly on top of each other. 

The lower parts of the curves do not fit with each other in this way. 
We found, however, that if we add a constant to the value of WOR the 
curves did have similar shapes over larger portions of their ranges. 
Constants ranging from 0.1 to 0.5 were tried, and it was fond that a value of 
0.4 gave the best fit of the data. This idea is shown, as an example, in Fig. 
16. In this figure, the shapes of the curves are similar except at very low 
WOKS at a high mobility ratio (M > 10). 

The shapes of these curves were also similar at other values of 
permeability variation, V,  ranging from 0.3 to 0.8. We found that V’s 
equal to 0.2 and 0.9 did not fit the data as accurately. But these values of V 
are outside the range normally seen in reservoirs. 

Since the curves now had similar shapes on semilog paper, it only 
remained to correlate them as functions of WOR, permeability variation, 
V , and mobility ratio, M. The resulting match equations were a bit 
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Coverage as a Function of Permeability 
Variation and Mobility Ratio 
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Fig. 5. Coverage cumes for WOR = 0.1. 

10 



Coverage as a Function of Permeability 
Variation and Mobility Ratio 
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Eig. 6. Coverage a w e s  for WOR = 0.2. 
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Coverage as a Function of Permeability 
Variation and Mobility Ratio 
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Fig. 7 Coverage curves for WOR = 0.5. 
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Coverage as a Function of Permeability 
Variation and Mobility Ratio 
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Fig. 8. Coverage curves for WOR = 1.0. 
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Coverage as a Function of Permeability 
Variation and Mobility Ratio 
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Fig. 9. Coverage curves for WOR = 2. 
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Coverage as a Function of Permeability 
Variation and Mobility Ratio 

0.6 

Fig. 10. Coverage curves for WOR = 5. 

COVERAGE, C 
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Coverage as a Function of Permeability 
Variation and Mobility Ratio 
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Fig. 1 1. Coverage curves for W OR = 10. 
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Coverage as a Function of Permeability 
Variation and Mobility Ratio 

COVERAGE, C 

Fig. 12. Coverage curves for WOR = 25. 
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Coverage as a Function of Permeability 
Variation and Mobility Ratio 
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Fig. 13. Coverage curves for WOR = 50. 
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Coverage as a Function of Permeability 
Variation and Mobility Ratio 
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Fig. 14. Coverage curves for WOR = 100. 
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Fig. 15. Waterloil ratio histories for permeability variation V = 0.5. 
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F3g. 16. Effect of adding 0.4 to water/ou ratio cuwes, V = 0.5. 
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complex, being partly linear and partly semi-logarithmic, but the iesult fit 
the data well, and is displayed in Fig. 17. Notice that the correlating 
parameter, the y axis, is, 

( WOR + 0.4)(18.948 - 2.999V) 
Y =  -0.6891+0.9735V-1.6453V2 

(M + 1.13702 - 0.80943V)lO 

The various terms, WOR, M and V in this complex coordinate are the 
result of the correlating procedure discussed above. 

The curve in Fig. 17 was later fitted to an empirical equation by 
Fassihi.3 The equation he found was as follows, 

This equation fit the curve of Fig. 17 almost exactly. Thus, by combining 
Eqs. 25 and 26, a simple hand-held calculator program can be used to 
calculate the recovery history of a waterflood, both rapidly and easily. 

Since this correlation is empirical, it seems worthwhile to assess its 
accuracy, using the results of Figs. 5-14 as a basis. To test this, we checked 
permeability variation,V, values of 0.3, 0.5 and 0.7; at WOR's ranging from 
1 to 25; and M from 0.1 to 10; for a total of 60 points. The greatest errors in 
these results were two points which gave errors of 6 and 896, and a few 
others which were slightly greater than 2% in error. These all occurred at 
very low WOR's where the errors are not too important from an overall 
recovery history point of view. The overall standard deviation of the 
correlation for all 60 data points was 1.81%, a very good result, indeed. A 
simple computer program which expresses this correlation analytically 
was published by Fassihi.3 
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,Fig. 17. Final correlation of Dykstra-Parsons recovery curves. 
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5. coNcLusloNs 

As a result of the work discussed here, the following conclusions can 
be drawn. 

L 

2. 

3. 

The more precise calculation techniques used here modified the 
Dykstra-Parsons curves slightly. These revised curves are shown 
in detail. 
It was possible to empirically correlate these curves into a single 
curve which can be used in an equation to calculate coverage over 
a broad range of parameters. The Permeability Variation, V, can 
range from 0.3 to 0.8, the Mobility Ratio, M, can range from 0.1 to 
10, and the water-oil ratio, WOR, from 1 to 100. 
In this correlation, low WOR’s of 1.0 show greater errors in 
predicting Coverage (up to 8% in error), but higher values of WOR 
produce errors of less than 2% over the entire range of the 
correlation’s validity. 
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NOMENCLATURE 

A 
C 
erf 

k 
k 

h f 

- 
k, 
L 
M 
m 
n 

AS, 
t 

9 
V 
V 

Cross sectional area of layer 
Dykstra-Parsons coverage 
Error function 
Cumulative fraction of cores in permeability distribution graph 
Permeability 
Average permeability, k50 

Permeability at one standard derivation, k84.13 
Total length of layer 
Mobility ratio, k,po/k,pw 

Index on layer number 
Total number of layers 
Change in water saturation 
time 
Flow rate 
Dykstra-Parsons permeability variation 
Darcy velocity 

WOR Water/oil ratio 
X Horizontal distance 
p Viscosity 
Q Porosity 
Ap Pressure drop 
G Standard deviation of permeability distribution 

Subscripts 

i Individual layer 
m Index on layer number 
n Total number of layers 
r relative 
w water 
0 Oil 

1 Layer one 
2 Layertwo 
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