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PERCOLATION,
WAVE PROPAGATION,
and
VOID LINK-UP EFFECTS
IN
DUCTILE FRACTURE

D. L. Tonks (Applied Theoretical Division, LANL)

Abstract - This work investigates the time evolution and spatial morphology of ductile damage based
on void growth and coalescence. The size enhancement of damage cluster growth, as well as wave speed
limiting of growth, are treated microscopically. Simplified 2D plane strain simulations using individual
voids are done with uniaxial stress and explained with a probabilistic theory. At low strain rates, fracture
occurs by long, localized cracks. At high strain rates, widespread, random damage breaks the system. The
Voronoi tessellation of voids can be used to map out the spatial network of still solid material in 3D ductile
fracture. Using it, the spallation porosity is calculated based on percolation theory.

Introduction

On the microscopic scale, nigh strain rate ductile fracture is due to the nucleation, growth, and link up
of voids. The spatial ordering of this process depends on the initial ordering of the voids and how the voids
link up. We explore the above effects through model 2D and 3D simulations and analytical modeling of the
results. Wave speed limiting of void link-up is approximately included. It is shown that a disordered ini-
tial void configuration gives rise to spatially disordered breaking at high strain rates, where wave propaga-
tion times limit the range over which voids can communicate with each other. The sample breaks due to the
general build up of wide spread damage until percolation occurs. At low strain rates, for applied uniaxial
strain, the ductile damage consists of long, ordered, “crack-like” clusters. This is because, when voids link
up into a cluster, there is time for the enhanced stress and strain fields to form at their boundaries, which
extends the cluster’s void link up range. In this case, the sample breaks with little general damage, when the
longest crack rapidly outstrips is neighbors. Consequently, the strain to fracture in the low strain rate case is
significantly less than in the high strain rate case.

Roughly speaking, the wave speed limiting of void linking is treated by delaying the enhancement
in strain fields at the void cluster boundary by the time for a sound wave to transit the cluster. This delay is
similar to the one seen in the stress intensity factor of growing brittle cracks. The two situations should be
similar since, in both cases, the enhanced range is due to elastic release waves.

Inertia effects of void growth are not included but they have been shown to be negligible for typical
void sizes and driving strain rates.[1] Inertia is included in the retardation of void linking due to wave prop-
agation.

The simulation results show changes in the void cluster population, with cluster growth, from expo-
nential to a power law. There is a power law relating the damage at breaking to sysiem size, and a more
complicated size effect of the strain to fracture.

Analytical models have been formulated to explain the point of fracture in the 2D simulations. At
high strain rates, the wave speed limited regime is explained with random percolation theory. The orga-
nized clusters at low strain rates are explained using an integral equation for cluster growth.

The spallation calculation using the Voronoi tessellation is based on the network of still solid mate-
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rial. The earlier practice of using the porosity at which random voids percolate (307% ) is not accurate
because the solid connecting network still exists at this point.

Void Linking

In order to form a continuous internal surface that separates the sample, the growing voids must
come together in some way, or coalesce. We will use the term void linking here. In dynamic situations, this
will occur when the intervoid ligament undergoes a mechanical localized instability that rapidly thins out
the ligament in a localized region at the expense of an unloading and reduction of deformation in the sur-
roundings.[2-4] Various instability modes are possible. We assume only that some sort of localized flow
quickly destroys the stress carrying ability of the intervoid ligament when the instability is triggered. We
make the approximation that the loss of strength happens instantaneously. In reality, some local straining
occurs first, at a rate greatly amplified by the linking instability. For example, for the quasi static case, Tho-
mason([2] envisions a whole sheet of voids whose intervoid ligaments undergo flow localization all at once.
He states that, in this case, the elastic loading extends all the way to the sample boundaries, so that most of
the sample straining gets dumped into the very narrow linking void sheet, which then breaks almost
instantly with very little additional macroscopic strain. We are using this same general idea here, but on a
local scale.

To model void linking, the triggering conditions must be known. We will make the approximation
that the linking triggers when voids are closer than a certain distance. We will give each void a linking
range such that when the ranges of two voids overlap, the ligament necking process is triggered. The range
of a spherical void is roughly the size of its diameter.[2] Thomason has justified this sort of modeling for
the quasistatic situation with slip line fields and instability theory in both two and three dimensions.[2-4]

We have also added the effect of voids first linking up locally into local units which then further link
up. It is apparent that a large linked void group constitutes a big void with an enhanced linking range. This
enhancement occurs in uniaxial stress experiments done on sheets with drilled-in holes,[5-6), in which void
clusters formed long, narrow structures perpendicular to the stress axis. The data[5] indicate that the linking
range of a long, narrow void cluster extending perpendicular to the uniaxial strain is enhanced at the ends
of the cluster, in the perpendicular direction, roughly by a factor equal to the square root of the cluster
length.Thomason’s approximate slip line solutions[4] can be used to deduce the square root law. In the 2D
simulations done here, which involve uniaxial stress, the square root sizc enhancement will be used as a
realistic approximation. The general results should not depend on the exact power.

2D PLANE STRAIN SIMULATIONS

In this section the 2D void link-up simulations and their results will be described. The applied stress
used is uniaxial tension. No void nucleation is included. The growth of a random spatial distribution of
equal-sized voids is studied. Wave propagation effects in the linking-up of voids are included in an approx-
imate way.

Because of the uniaxial tension mostly long skinny void clusters will be produced, less so for the
high strain rate case. This situation is not as restrictive as it might seem, because there is evidence, even for
the quasi-static case,[2] that ductile void linking driven by more general stress fields occurs in 3D in sheets,
or in 2D in narrow bands; in both cases, mostly perpendicular than not to the axis of greatest principle
stress. For high strain rates, on the other hand, the void linking is much more uniform and random; its spa-
tial pattern depends less on the triaxiality of the stress state. (The rate of individual void growth depends a
great deal on the presence of negative pressure, however.)

The effects of local enhancements of void growth are not studied here for simplicity.

The action of stress release waves caused by a given growing cluster on nearby clusters has not yet
been studied. The action of stress release waves from a cluster on the cluster itself is treated, of course, by
means of the wave propagation modeling of void link-ups. This self action is responsible for the enhance-
iment of void link up range.

The simulation results given include snapshots of the void arrays, the effect of strain rate on break-
ing strain, and the size effect of breaking.

The modeling of void linking range and void growth used here is reminiscent of that found for holes
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in thin sheets by Magnusen et al.[5] We model general plastic loading, however, as so our results are appro-
priate for the case of 2D plane strain, which approximately includes 3D effects.

The simulations here are not hydrodynamic calculations in the usual sense. Stresses and strains are
not calculated using the dynamic equations of motion with constitutive relations. Rather, a global uniform
driving strain field is assumed, together with void growth laws and void link-up laws that are drawn quali-
tatively from experimental work like that of Magnusen et al[5], and slip line theory such as that of Thoma-
son[2] and Melander and Stahlberg.[7,8] Hence, most of the physics enters into the calcuiation via the void
growth and link up laws. The imposed uniform strain field is in the spirit of a “mean field theory” in which
the local strain field seen by a cluster is an averaged imposed one. For this reason, the behavior will be pre-
dicted well only until the final breakup. This should suffice for constitutive modeling, however. Also, spa-
tial variations in driving stress or strain are not treated; the results are suitable for a constant driving field as
in a computational cell of a hydrocode.

For calculational simplicity, rectangles are used for the void shapes, instead of circles.

The void growth laws used are the following. The width of a void in the direction perpendicular to
the stress axis stays at the constant value D,,. (The perpendicular direction will henceforth be referred to as
the horizontal direction for brevity.) The height of a'void, in the direction of the stress axis, grows as fol-
lows: D = D, (1+ae ) where Dy, is the initial void size, ¢; is the longltudma] strain, and a and « are con-
stants. The va]ues used for a, a, and Do are 1.3and 12.1 and 8.0x10%cm, respectively. Except for the value
of D, they are reminiscent of the thin sheet results of Magnusen et al [5] for 1100-0 Al. Hence, the model-
ing here is typical of a soft metal with little workhardening and fairly vigorous void linking behavior.
(Strong workhardening inhibits void linking.)The large void size is reminiscent of large inclusions. The law
used for r, the link range of a void in the horizontal direction is as follows:

r= DJW where W is the horizontal width of the cluster to which the void belongs. Thus, ris
scaled by the void size. ris given the lower bound, D. As a consequence, the horizontal range of an isolated
void is D. The link range of all voids in the direction along the stress axis is taken to be simply D/2[5]. The
linking criteria is facilitated by constructing ‘linking area figures’ around each void, which in this case are
rectangles centered on the void center of width 2r and height D. Two voids link when their linking figures
overlap.

Stress wave propagation effects are introduced into the cluster size enhancement of the linking
range by appropriately limiting the cluster width, W, used in the formula for r. Roughly speaking, W is
bounded from above by C; t. See Ref. [9] for more details. The idea is that a given void in a cluster will
only “know about™ other member voids if it is within the propagation distance of the release stress waves
that originated when the other member voids linked up to their neighbors. The stress enhancement seen by
a given void due to others in its cluster arises from the stress relaxation waves originating from the inter-
void ligaments of the other voids when those ligaments failed or localized. It takes time for these relaxation
waves to propagate. If not enough time has passed for such waves to travel along a cluster, a void in the
cluster will not *“see” the full width enhancement of its linking range. The value used for C; was 4x10° cn/
.

Figures 1 and 2 show snapshots of the final, or breaking, void linking configuration for two simula-
tions done at strain rates of 1/s and 107/s, respectively. The initial porosities are 0.05, and 4,000 voids were
used. The initial void configurations are the same.

Except for the largest cluster, only rectangular outlines enclosing the void clusters are shown. For
clusters with more than one void, the actual cluster outline falls inside this rectangle, as is seen for the larg-
est cluster. For clusters with a single void, the outline is identical with the physical boundaries of the void.
To provide more information, the largest cluster is broken down into individual void linking ranges (linking
range figures).

The two crossed boxes along the axes in Fig. 2 are a ruler showing the wave propagation distance,
Cit. In Fig. 1, the ruler is longer than the system.

In Fig. 1, the void linking is not wave speed limited at the low strain rate of 1/s. The largest initiai
cluster rapidly overtook its fellows and broke the system. In the high strain rate simulation of Fig. 2, the ini-
tial situation was the same as for the quasistatic case. But in this case, the time evolution did not give rise to
a single large crack because of the wave speed limitation of the cluster size range enhancement. Many clus-
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ters grew large together, to break the system. At the end, there is a strong preference for long cluster shapes
due to the uniaxial nature of the modeling, but the overlying randomaess is also apparent.

The final strain at breaking for the high strain rate case is 0.197, significantly larger than that of
0.065 for the quasistatic case. This is because the damage was not organized into long, far reaching struc-
tures and, so, more of it had to occur until enough of it was present to break the system.

These two simulations illustrate well the transition from a quasi-static process in which the damage
can organize and extend itself, to the high strain rate process in which the damage occurs almost randomly
and finally breaks the system by simply overwhelming it everywhere.

This latter behavior, the high strain rate limit, is an example of random continuum site percolation
theory.[10,11] In this theory, objects are placed at random and objects that overlap are said to be connected
and to form clusters. When the biggest cluster spans the system, it breaks.

Percolation theory predicts that our systems should break when the quantity 2<r>Dp,, which we
call @, reaches 1.1. This condition is realized fairly well at high strain rates, as we will shortly see.

Fig. 3 shows the breaking strain to failure for various initial porosities and strain rates, for a sample
of size 0.832mm x 0.832mm. Various initial porosities imply differing numbers of voids. There were 3000,
2327, 1695, 1099, 813, 535, and 264 voids, ranging from the largest to the smallest initial porosity, for the
initial porosities shown in Fig. 3. Note that the quasi-static curve involves the least strain to failure. The
place where it intersects the x axis, at about 10% porosity, is the initial porosiiy at which failure will occur
as soon as the stress waves have time to propagate and fail the nearest neighbor intervoid ligaments. (The
initial porosity at which the system falls apart without ligament failure, i.e. simply by virtue of being full of
holes, is at about 67%.) In general, the failure curves for higher strain rates fall at ever increasing strain. As
mentioned earlier, this is because more strain with more random damage is necessary before the sample
breaks when size enhancement of void linking is restricted by the requirements of the wave transit time.
The curve portions that lie to the right of the static curve x-axis intercept, which involve higher strain rates,
have non-zero strains to failure because some overall strain occurs while the stress waves are moving to
cause the failure of the nearest neighbor intervoid ligaments.

Judging both by cluster morphology and the value of 2<r>Dp,,, (whlch is P p)» the random percola-
tion limit is approximated well for the curve in Fig. 3 with strain rate of 107/s and somewhat less well for
the curve with strain rate of 10%s. The ®, values at breaking for the curve of strain rate 10/s, ranging from
low to high initial porosity, were 1.070, 0.931, 0.921, 0.848, 0.970, 0.953, and 0.905, respectively. The 10/
s strain rate curve involves one large breaking cluster except for initial porosities larger than 0.10, where
percolation-like cluster morphology reappears. Here there is enough initial porosity for percolation like
fracture as soon as the stress waves have time to reach out to nearby voids. The cluster morphology for the
strain rate of 1/s always involved one large break.

The cluster size statistics were calculated for the simulations. They show a change from an expo-
nential law at small strains, a sign of random clustering; to a power law at larger strains, which is a sign of
organization. The change to a power law was also seen by Curtin and Scher in simulations in a different
system.[12,13]

Fig. 4 shows, for the strain rate of 1/s, system size effects in quasi-static fracture, i. e. it shows
pOD2 the “bare void porosity,” at fracture versus the logarithm of the system size. The log of the system
size seems to work fairly well here to straighten out the plotted line. This is similar to elastxc beam sys-
tems.[14] The range in bare porosity is too small, however, to determine whether poD or its logarithm pro-
duces a straighter curve.

Analytical Approximations

This section concerns certain analytical approximations to the 2D simulations. The emphasis will
be on predicting the point of fracture. The analytical theory applies only qualitatively, but with adjustment
of one parameter, it can predict the point of fracture of the simulations fairly well.

The basic analytical tool to be used here is an integral equation for the probability, P, that a given
span in the horizontal direction (perpendicular to the tensile stress axis) is covered by a void cluster. By
‘cover’ is meant that the linking range of the cluster or the cluster itself covers the end of the interval. It is
assumed that a seed void exists at the beginning of the span. A simpler quantity involving a constant link-
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ing range is dealt with by Domb.[15]
The integral quuation for P is as follows:

P() = ¢je’¢“”"P(l')d1‘, (1

where l 1s the honzomal distance (span) of the interval dmded by D, the void size, and ¢ is the ‘bare
porosity’ poD‘ times an adjustable factor, f. I;, givenby [ = ﬁ is the smallest cluster length whose
range covers the end of the interval with no intervening voids. ll'he exponential is the probability that the
intervening space is vacant. The integral is over all possible such cases.

The factor f was adjusted to obtain fits with the simulation results. It accounts for 2D effects like a
a cluster wandering somewhat in the direction of the stress, as it grows horizontally. It should be at least
two. An f-value of 5.5 was found to fit the quasi static simulation results. Thus, the 2D effects included
through f are not trivial, but, with this f-value the 1D-like analytical theory is successful.

The calculated P is used to predict the breaking point in the following way. Each void in the system
is taken to be a seed void which gives rise to a cluster fannly whose covering properties are given by P(l).
The number of seeds is L‘po, where L is the system width. L2 po times P(1), where 1 is L/D, is, thus, the
probability that at least one of the seeds grows to a cluster that spans the system. Thus, when this expres-
sion equals one, the system should break. Only one direction of growth is assumed, which is appropriate for
clusters almost as large as the system.

In Fig. 5 we have plotted P(l) and l/(lzpoDz) versus l. (Note that lzpoD2 equals L2p° ) The intersec-
tion of the line with a curve for P(l) determines the l-value, or system size, that breaks for the given value of
¢. Plots for several ¢ values are given to show the variation in breaking size with ¢. The equation (1) was
solved numerically.

The analytically calculated points in Fig. 4 were produced in this way. The trend of the simulation
points there is fairly well reproduced by the calculation.

Wave propagation effects can be approximately introduced into the above theory by taking the
lower bound in the integral equation to be the upper bound minus the minimum of the static range and the
square root of Cjt. This has the effect for high strain rates, in the calculation of P(l), of eliminating the hori-
zontal asymptote seen in Fig. 5 and producing a steep fall off, instead. The static type fracture mode is
severely curtailed. The calculated P(l) can then be used to calculate a version of @, to see when it reaches
1.1 to predict when the percolation fracture mode takes over. This theory can rougﬁly predict the percola-
tion like fracture seen in the simulations with the same value of ¢ that predicts the static points of rupture.
The X in Fig. 3 is a prediction for ®, using this approach.

Voronoi Tessellation with Application to Spallation

The Voronoi tessellation was been discovered to be of great help in describing ductile damage
growth in 3D. In 3D, one can no longer rely on the void linking network to predict fracture like one can in
2D. In 2D, the creation of a spanning damage cluster coincides with the destruction of the network of solid
that connects up the structure. In 3D, when a damage cluster spans the system, a network of solid still exists
to hold it together. Somewhat more damage must be produced to break the spanning solid network. Hence,
in 3D, the network of interconnecting solid must be considered in addition to the damage network. This is
what the Voronoi tessellation does as well as giving the local details of linking.

For illustration purposes, Fig.6 shows a typical Voronoi tessellation in 2D. Each Voronoi edge repre-
sents a solid-connecting-ligament between voids. This ligament connects solid regions (an example of
which is the “chunk” in the figure), that exist inside each triangle formed by three voids at the triangle cor-
ners. The Voronoi network, i. e. the ligaments, constitutes the interconnecting solid network which is even-
tually destroyed by void coalescence.

In 3D, the tessellation is constructed by forming the perpendicular bisecting planes to each void pair
and then, for each void, selecting those planes that form an empty polygon about it. Each solid chunk is a
tetrahedron with voids at the vertices. The connecting solid network can be thought of as lines extending,
roughly, between the tetrahedral centers, which pack to fill the system. Each such connecting line runs per-
pendicularly through a gateway consisting of three voids arranged at the vertices of an equilateral triangle.
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The line usually goes though the triangle near its center, but not always. Thie line can be thought of as a
solid bond.

The breakup of the solid network occurs when these three gateway voids grow large enough to connect
and make the solid connecting bond into a narrow neck. In this way, the solid constraint of the connecting
bond is lost and it will very soon neck down and fail. This is the microscopic picture that the Voronoi tes-
sellation provides of the internal damage mechanism. This mechanism provides a way for a negative pres-
sure, say, to be turned into uniaxial tension within necks inside the sample; followed by rapid necking down
and fracture.

So far, we have applied the tessellation to spallation under negative pressure, which involves the high
strain rate percoiation limit, described above. In rapid spallation, the void link up geometry will be isotro-
pic, instead of directional as with uniaxial driving stress. Voids will have time only to link to their nearest
neighbors. A continuous path of void will form in the system when pV approximately equals 1.1, where p
is the density of void centers and V is the volume (or average volume) of the ‘linking volume figure’.
(When the linking figures of two voids overlap, they link.)

In the 3D percolation calculation, identical voids were placzd at random. The Voronoi tessellation was
then performed to establish the pathways of the solid interconnecting network. The void size was increased
in steps and the connectivity of the solid network examined after each step until no connection completely
across the sample remained.

The solid bonds of the network, described above, were taken to fail immediately after a neck formed. In
some cases, the three gateway voids are arranged such that no neck is possible. In these cases, the solid
bond was taken to fail when these gateway voids had eaten away enough of the bond.

Under negative pressure, the immediate failure when a neck forms is reasonable for the following rea-
sons. The action of the negative pressure on the neck is to suddenly throw the neck into a tension equal to
the negative pressure. This magnitude of this tension will be very much greater than the yield stress, which
is roughly the uniaxial stress that the neck can stand without failing by necking down. Thus, the neck rap-
idly fails by necking. This process can be viewed as a change in local geometry from 3D to 1D in which the
large negative pressure that the material can support in 3D is changed to a large uniaxial stress that the neck
cannot stand.

One adjustable modeling parameter, f, was used in the calculation, to determine the void linking radius
as 1+f times the physical void radius. Plausible f-values range from 0.5 to 1.0. The value of f depends on
the plastic workhardening. The f-values 1.0, 0.9, and 0.8 resulted in the breaking porosities 0.320, 0.375,
and 0.442, respectively. The results follow closely the relation ®p=1-exp(-9), where ¢ is 2.55/(l«|-f)3 and
@, is the breaking porosity.

As far as the author knows, this is the first theoretically correct 3-D percolation model for the spallation
porosity in ductile materials. Most existing spall models use a porosity of about 0.30, based on the percola-
tion of void spheres, which, as discussed above, is not the true spallation point. Depending on the
workhardening, however, the value 0.30 could be roughly correct.
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Figure Captions

1 2D simulation snapshot for a strain rate of 1/s, i. e. quasistatic, at a breaking strain (el) of 0.065.
Localized damage.

2 2D simulation snapshot for a strain rate of 107/ and the breaking strain of 0.197. Percolation like
damage.

3 Failure strain versus acual initial porosity at various strain rates. The squares, circles, triangles, and
pluses are at strain rates of 1, 10, 10°, and 107ss, respectively. The lines are to guide the eye. The X is a
prediction of an analytic theory.

4 The squares are the logarithm of the system size (edge length) versus poD2 at breaking for various
systems. The circles are from the analytical approximation illustrated in Fig. 5. The line is to guide the eye.

5 Log log piot of P(1), the void covering probability for the interval of length 1, versus |, for five actual
porosities ranging from (.087 to 0.123. The dotted line is an approximation to P(1) for the porosity 0.123.
The straight line is a plot of ll(lzpoDz). The iatercepts of this line with the solid curves gives the respective
breaking sizes. Four of these are plotted in Fig. 4.

6 2D example of Voronoi tessellation showing sclid interconnecting network (edges) and voids.
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