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Abstract 

The effect of a subsonic toroidal flow on the linear magnetohydrodynamic stabil- 
ity of a tokamak plasma surrounded by an external resistive w d  is studied. A complex 
non-self-adjoint eigenvalue problem for the stability of general kink and tearing modes 
is formulated, solved numerically, and applied to high p tokamaks. Results indicate 
that toroidal plasma flow, in conjunction with dissipation in the plasma, can open 
a window of stability for the position of the external wall. In this window, stable 
plasma beta values can significantly exceed those predicted by the Troyon scaling 
law with no wall. Computations utilizing experimental data indicate good agreement 
with observations. 
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I. Introduction 

In the next generation of steady-state advanced tokamaks, a high performance 
plasma must remain stable over time scales long compared to the flux dif€usion 
time of the external resistive wall (rw). At the same time, it is highly desirable 
to have ,& (PaB/I) exceed the value (g) given by the Boyon scaling law with no 
wall. The question is: can we rely on wall stabilization for maintaining the stable 
operation of the plasma? It is well that for a stationary plasma, an external 
resistive wall does not afEect its stability, only its growth rate which is slowed down 
to N l / ~ ~ .  Although the idea of resistive wall stabilization of tearing modes' in a 
rotating tokamak has been around for some time, the stabilization of the external 
kink mode by a resistive wall for a plasma with flow was only recently proposed by 
Bondeson and Ward.4 In their work, they demonstrated this idea by modeling a 
stationary plasma surrounded by a rotating external wall. 

Experimentally, it has been demonstrated in DIII-D5 that a high beta plasma 
can be maintained at P values above that given by pN' for time scales much longer 
than rW.' These discharges are usually heated by co-injected neutral beams and are 
therefore rotating toroidally. Computations7 assuming static plasma equilibrium give 
critical pN in agreement with experimentally observed values, when the external wall 
is assumed to be infinitely conducting. When the plasma slows down, instabilities are 
observed. The theory used in Ref. 7 ignores the toroidal rotation of the tokamak and 
c m o t  explain why the wall acts as though it were infinitely conducting. Similarly, 
the behavior of tearing mode unstable plasmas have been found to be at variance8 
with magnetohydrodynamic (MHD) theory based on a static plasma. For instance, 
the plasma has been found to disrupt less frequently than suggested by the simple 
idea of overlapping static  island^.^ These observations suggest that a comprehensive 
MHD study including the effect of plasma flow is needed. 

The effect of flow in MHD attracted early attention from theorists." However, 
since experimentally observed flows are usually much slower than the central sound 
speed, it was reasoned that flow would not &ect the short time scale stability of 
the plasma. Renewed interest has arisen recently because of the above experimental 
observations and the realized importance of improved stability for future tokamak 
development. 
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' 

This paper provides a theoretical framework for studying the stability of a 
tokamak plasma with a subsonic toroidal rotation and assesses its relevance to present 
day experiments. In Section 11, we give the formulation for determining stability as a 
non-self-adjoint eigenvalue problem. It is solved numerically using an extension of the 
MARS" code. In Section 111, we present the physical problem under investigation and 
utilize two simple dispersion relations to elucidate the characteristics of the solutions. 
It is shown that, in simplified situations, a tearing mode unstable plasma surrounded 
by an external resistive wall satisfies a quadratic dispersion relation; while a kink 
unstable plasma satisfies a cubic equation. Plasma rotation coupled with dissipation 
can stabilize these instabilities. In Section IV, we present the numerical results for 
both a low qe (edge safety factor) and a high qe, high ,C? equilibrium. For the high qe 
equilibrium that simulates a DIII-D discharge, the computed critical rotation velocity 
for plasma stability agrees well with the experimental value. Section V contains a brief 
s u m m a r y  and conclusion. 
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11. Formulation and Method of Solution 

In this section we present the formulation for determination of the linear stability 
of a tokamak plasma with a subsonic toroidal flow and surrounded by an external 
resistive wall. 

We start with the MHD equations for the density p ,  pressure p ,  magnetic field 
I?, and fluid velocity 5, 

where 

- + p V . v ' = O  dP - , 
dt 

dv' -. -+ -+ + *  
p - = - V p + J x B - V - I I  , 

dt 

+&? . d d  
d t  - dt 
_ - -  

(4) 

( 5 )  

* 
I? is the ratio of specific heats, q is the plasma resistivity, and II is the viscous stress 
tensor. At equilibrium (a/% = 0), we assume that transport induced effects from q 
and II are negligible or implicitly balanced by sources. We also assume the plasma to 
have a subsonic toroidal flow 

* 

where the subscript 0 is used to denote equilibrium quantities. It is then easy to 
see that the the axisymmetric plasma equilibrium still satisfies the Grad-Shafranov 
equation 
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(7) 

In steady-state, Eq. (3) shows that the toroidal rotation Erequency Oo($o) has to be 
a flux function 

A straightforward linearization of Eqs. (1) through (4) shows that the density 
perturbation is decoupled Erom the rest of the system. The system of linearized 
equations is then 

p (7 + inno) Gl = - epl +5 x 2 0  +5 x z1 - e. 61 - Po@ , - -  
- + - .  

z = V x b l  , 

where 7 = y - iw  is the complex growth rate. In Eq. (12), 

and 
- 2; 61 = perturbed viscous force . 

Comparing Eqs. (10) through (15) with the usual linearized MHD equations 
without flow, we note the presence of the underlined additional terms. These are the 
Doppler shifts, the modification to Ohm's law in Eq. (ll), and the Coriolis force and 
the perturbed viscous force in Eq. (12). To describe the interaction of the plasma 
with the resistive wall on the slow time scale, it is crucial that the perturbed viscous 
force term be included. However, there does not exist a comprehensive theory for 
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the proper form or magnitude of this term. We, therefore, have used several different 
forms to examine the sensitivity of the results to any specific model. These forms are 
given in the Appendix. One criterion that we used in adopting these forms is that 
the added tenns are dissipative in nature 

The perturbed MHD equations constitute a set of ten coupled linear homoge- 
neous equations for the ten perturbed quantities (51, bl ,  5, PI). One of the special 
features in this formulation is that explicit derivatives with respect to the radial 
variable appear only in first order. The components of in Eq. (13) are therefore 
also included explicitly as dependent variables. Not shown explicitly are equations 
which relate the electric field to the currents in the external wall surrounding the 
plasma. Equations (10) through (13) form a complex eigenvalue problem for the 
complex growth rate 7. Equilibrium flow terms cause the problem to be non-self- 
adjoint. The MARS code" has been adapted to solve this eigenvalue system. 

+ 
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111. Physical Characteristics of the Problem 

Before examining results from the MARS code, we attempt to gain a better 
understanding of the analytic structure of this system by considering two simple 
model dispersion relations. 

We consider a tokamak plasma surrounded by an external resistive wall located 
at cylindrical radius b and with a flux difhsion time rw. In here rw stands for poubS 
for a thin wall of thickness S and conductivity u. If the plasma is static and the 
external wall perfectly conducting (7, = oo), the plasma is assumed to be stable if b 
is less than a critical distance b,. If the plasma is static and the external wall resistive 
(7, < oo), the plasma is unstable to an external mode regardless of the value of b. 

This stability picture is modified when the plasma rotates with rotation fie- 
quency $20. E the wall is resistive and n o  is large enough, the plasma may be stabilized 
if b is less than b,. This phenomenon of stabilization by rotation occurs differently 
depending upon whether the plasma mode is a resistive instability (tearing mode) or 
an ideal external kink. The major difference is that for a tearing mode, the plasma 
kinetic energy is negligible whereas for an ideal external kink it is not. 

First consider the tearing mode case. Starting fiom the set of equations (10) 
through (13), specializing &st to no = 0, and ignoring the plasma inertia, a disper- 
sion relation for tearing mode unstable plasma surrounded by an external perfectly 
conducting wall may be obtained. A model dispersion relation for the perfectly con- 
ducting wall at b and a critical wall location at b~ may be given as qrT + 1 - b / h  = 0. 
Here, 7 is the complex growth rate (7 - iu) and r,, is the tearing mode growth time. 
The coupling of this tearing mode to the diffusion of flux through an external resistive 
wall modifies the dispersion relation to (qrT + 1 - b / h )  (1 +yh:) = 1. The quantity 
7; is a normalized12 resistive wall time. It is - rw(b - 1) when b < 1 + 1/2m, and - rw/2m when b > 1 + 1/2m. Here m is the poloidal mode number. Now there are 
two roots of the dispersion relation and one of them is always unstable. When b is 
less than h, the instability is a result of the coupling to the flux diffusion through 
the resistive wall and may thus be called a resistive wall mode. With the inclusion of 
plasma rotation, the dispersion relation is further modified to 

- .  
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A dispersion relation similar to Eq. (17) 

[1++-$] = 1  . (17) 

has been studied before by Bondeson 
and Persson.13 This is a simple quadratic equation in 7 and can be easily solved. 
The characteristics are slightly merent depending on whether rz is much longer or 
shorter than r,,. In present and future tokamaks, we expect rT to be larger than r$. 
The typical behavior of the growth rate as a function of RO and the wall position 
is shown in Fig. la. When 00 is small (curves marked by o), we have two widely 
separated branches. One is unstable at any location of the wall b and is called the 
tearing mode (when b > h) or the resistive wall mode (when b < h). The second 
mode, in which the perturbed flux is mainly difising through the external wall, is 
stable. As 0 0  increases, these two branches come together. A stability window in b 
appears near the plasma edge when 0 0  reaches a certain value 0: (curves are marked 
by 0). The stability window increases in size with Ro > 0: (curves are marked by 
-I-) and the largest stable b approaches b~ as Ro tends to 00. Note that we showed 
only the growth rate (real part of 7) in Fig. la. The full solution also shows that the 
unstable branch has its frequency w (imaginary part of 7 = y - i w )  always close to 
RO (locked to the plasma), whereas the stable branch has w always very small (locked 
to the wall). 

If the tearing mode growth time is much shorter than the resistive wall time 
(rT << r:), the growth rate diagram is as shown in Fig. lb. Here, below a critical 
Ro, the two stability branches are widely separated as shown in Fig. la. But as Ro is 
increased, the stability window first appears at a location intermediate between the 
plasma edge ( b  = 1) and b ~ .  A further increase in IC20 widens this stability window. As 
Ro increases, the frequency of the unstable mode does not increase with Ro. Rather, 
it remains very close to zero (locked to the wall). The frequency of the stable branch, 
however, is always close to the 520 (locked to the plasma). 

If the plasma behavior is close to ideal, then the kinetic energy term is of 
importance. Starting from Eqs. (10) through (14) in Section 11, we may derive the 
following dispersion relation for a plasma with a uniform rotation at angular frequency 
a0 
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1.0 4 

-3.0 I 

I I I I I 1 I I 
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

b 

FIG. la. Growth rate y as a function of.external d location b 
for coupled tearing mode and diffusion through the resistive wall, 
Eq. (17). The critical wall distance is at lq = 1.5. The two branches 
are coupled by plasma rotation no. As 520 increases, a stability 
window first appears near the plasma edge. This is the case for 
Tw << TT. 

A similar dispersion relation has also been obtained by Betti and Freidberg14 and 
Fit~patrick.'~ 

In (18), K is the kinetic energy integral, D is the dissipation energy integral, 
SW, is the plasma potential energy, SW: is the vacuum energy integral with a 
perfectly conducting wall at location b and SWvm is the vacuum energy with the 
perfectly conducting wall at infinity. It is assumed that for a perfectly conducting 
wall (T: = oo), the plasma is stable when b is less than b,. From Eq. (18), this 
indicates that SW, is equal to -SW$ when b equals b,. As b goes to 00, the system 
is unstable with SW, + 6Wvm < 0. 

We see that in contrast to the quadratic equation in 7 for the tearing mode 
given by Eq. (17), the dispersion relation for the coupled external kink and resistive 
wall gives rise to a cubic equation, Eq. (18). Without rotation, and with a perfectly 
conducting external wall, there are two modes present in the plasma. One is the 
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FIG. lb. Same as Fig. l a  for the case of 7; >> rw. The stability 
window first appears at the location between the plasma edge b = 1 
and bT. 

unstable external kink when b is larger than b, and the other is a damped (stable) 
plasma mode that may be modified by plasma effects not included in this model. 
Resistive diffusion of the flux introduces a third branch into the stability diagram 
and destabilizes the external kink when b is less than b,. It appears as the resistive 
wall mode. This is indicated in Fig. 2. As flo increases, the resistive wall mode is 
stabilized by coupling to the wall mode. This mode coupling is indicated in Fig. 2 
by the curves 0 0  = 0:. At 0:, the two branches coalesce and exchange character 
(note this is not the rotation fiequency at which the stability window first appears). 
A further increase in 0 0  leads to further opening up of the stability window. [Note 
that without dissipation, the solution of (18) indicates the damped branch does not 
couple with the resistive wall mode. No stabilization is achieved by increasing flo 
when there is no dissipation.] 
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Y 
-2 

-4 

-6 
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I 
I 
I 
I 
I 
I 

1 .o 1.2 1.4 1.6 1.8 2.0 
b 

FIG. 2. Growth rate 7 as a function of the external wall location b 
for coupled external kink and diffusion through the resistive wall, 
Eq. (18). The critical wall distance is at b, = 1.6. Three branches 
of the solution are shown. At no (no plasma rotation, long dashed 
curves), one of the branches (external kink-resistive wall mode) 
is unstable at al l  b. The other two branches are stable. As no 
increases, induced coupling between the stable and unstable branch 
causes the stability window to appear. $2; is the critical frequency 
for mode coupling. It is also close to the frequency at which the 
stability window first appears. The three branches of solutions at 

are shown as dotted curves. For a> Q;, the stability windows 
become substantial in size. These three branches are shown as solid 
curves. 

We thus see that the combined presence of plasma dissipation and plasma 
rotation profoundly changes the topology of the three roots of the dispersion relation. 
While rotation alone separates the resistive wall mode .from the “ideal” plasma mode, 
dissipation reduces the growth rate of the resistive wall mode and also imparts a finite 
real frequency to it. For a large enough rotation, and when D exceeds a minimum 
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value, the plasma stability for a fixed external wall then approaches that determined 
for a static plasma surrounded by a perfectly conducting wall. 
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IV. Numerical Results 

In this section we describe the numerical results obtained by applying the 
adapted MARS code to high beta equilibria. We begin with one of the cases that 
was studied previously by Bondeson and Ward? This equilibrium has aspect ratio 
R/u = 3, elongation tc = 1.6, triangularity S = 0.3, QO = 1.2, edge safety factor 
qe = 2.55, plasma p = 6.7%, normalized current IN = I /aB = 1.6, and normalized 
pN = puB/ I  = 4.25. Note that there is only one resonant surface in the plasma. In 
contrast to Bondeson and Ward,4 here the plasma is rotating instead of the external 
wall; the effects due to the Coriolis force and flow shear can thus be studied. We 
normalize the rotation frequency to the Alfvkn frequency 5 2 ~  G VA/R, where VA is 
the Alfvkn velocity at the plasma center and R is the major radius. In this fmt 
example, the plasma has a uniform rotation frequency of 0.06 C~A.  By varying the 
position of the external resistive wall (with QAT, = 5000), three distinct branches of 
the mode growth rates are found as shown in Fig. 3. The curve labeled 71 is the ideal 
branch; it has a frequency w close to no. The resistive wall mode branch labeled 7, 
has frequency close to zero. The third branch, labeled y3, is always heavily damped. 
This branch also has a very small frequency. The ideal branch and the resistive wall 
branch have very similar eigenfunctions within the plasma whereas the third branch 
has a different eigenfunction. Comparing these results with the expected analytic 
structure from Eq. (18), we recognize that another damped branch with its frequency 
w close to no is not found in the present numerical scheme. Also, the coupling of 
different components of the mode amplitudes can give rise to new modes with different 
polarizations in addition to those predicted by the simple model of Eq. (18). We have 
also found that the Coriolis force term in Eq. (12) has negligible effect. This justifies 
a posteriori the neglect of higher order plasma flow terms in the equilibrium equation. 
We see that in this case a stability window exists for bl  = 1.3 < b < b, = 1.66. 

The stability window shown in Fig. 3 may be altered by varying the plasma 
rotation frequency or the amount of dissipation. It is found that the plasma has to 
be rotating faster than a threshold value for the stability window to exist. And in 
general, decreases and the width of the stability window increases with increasing 
dissipation.16 Shown in Fig. 4 are computations illustrating these dependences for 
the same plasma configuration shown in Fig. 3. Case A has no = 0.04!2~, K,, = 1 [the 

GENERAL ATOMICS REPORT GA-A21903 13 
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I 0 yIx100.0 
" I  

0 

- 2  ; I I I I I 
1 ,o 1.2 1.4 1.6 1.8 2.0 2 

Wall DimensiodPlasma Dimension 

FIG. 3. The growth rate diagram computed for a low edge q con- 
figuration. Shown are the three branches of the solution for a 
numerical high p equilibrium with R / a  = 3, K. = 1.6, go = 1.2, 
qe = 2.55, p = 6.7%, I /aB = 1.6, PN = 4.25. The plasma is 
assumed to have a uniform rotation at = 0.06f.l~. The wall is 
assumed to be T~ = 5000 TA. 

2 

definition of K,, is given in Eq. (A2)], case B has 0 0  = 0 .06n~ ,  K,, = 0.1. The values 
of r] and p ,  me 0 for both A and B. Case C has no = 0.0652~, K,, = I, r] = 
p ,  = 7 x These transport coefficients are measured in units of global transport 
rate in time units of rA. We have also varied the resistivity of the plasma and find 
that it does not change the general nature of the stability diagram; thus, this resistive 
wall mode results from the coupling to the external kink rather than to a tearing 
mode.17 

Shown in Fig. 5 is the effect of flow shear for this configuration. We compare 
the growth rates of a uniformly rotating plasma with those of a plasma with sheared 
rotation. For uniform rotation, the rotation frequency at the q = 2 surface is the 
same as that at the plasma center. For the sheared rotation, we used the profile 
no = np[1 - s,p 2(1 - 2 / 3 p ) ]  where p is a generalized plasma radius defined as 
(?)lI2, 4 is the normalized poloidal flux, and p = = 1 at the plasma boundary. 
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B 1 .o 1.2 1.4 1.6 1.8 

Wall DimensiodPlasma Dimension 

FIG. 4. The stability diagram for the same equilibrium shown in 
Fig. 3 with different rotation frequency and plasma dissipation. 
This shows that the stability window is enlarged by both increase 
in plasma rotation frequency and increase in dissipation. In case A, 
520 = 0.0452~, fill = 1; case B, 520 = 0.0652~, fill = 0.1; case C, 
no = o.06aA, K,I = I, rl = 10-6, pL = 7 x 10-5. 

The rotation frequency is held k e d  at 0.06 5 2 ~  at the plasma center. The rotation 
velocity at the q = 2 surface is decreased by increasing 5,. The growth rates are 
plotted as a function of the rotation speed of the q = 2 surface with respect to the 
external wall. It is seen that, for this configuration, the rotation frequency at the 
q = 2 surface is more important than s, in determining the stability of the resistive 
wall mode. 

Shown in Fig. 6 is the stability diagram for an equilibrium simulating a DIII-D 
discharge with R/a  = 2.49, IC = 2.1, S = 0.8, QO = 1.405, qe = 5.8, ,B = 6%, 
IN = 1.6, pN = 3.8, 5 2 0 / 5 2 ~  = 0.01, 5 2 ~ ~ ~  = 5000, and fill = 1. There is no rotation 
shear. Once again, the stability diagram is that of an unstable external kink mode 
when no wall is present. When we vary the plasma rotation speed, keeping the 
experimentally obtained density and rotation profiles, we find the stability threshold 
in rotation is similar to that observed in the experiment. In this comparison, we 
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FIG. 5. The growth rate plotted as a function of the rotation fie- 
quency of the q = 2 surface for rotation profiles with and without 
rotation shear. The growth rate for uniformly rotating plasma is 
slightly higher than that of a plasma with rotation shear, showing 
that rotation at the singular surface is more important for stabi- 
lization than rotation shear. 

have taken K,, = 0.5. This variation with rotation is shown in Fig. 7. Although in 
the experimental case, near the plasma edge, Eq. (6) is not fully satisfied, we do not 
expect the present conclusion to be modified by the inclusion of inertial effects in the 
equilibrium. This is also being studied presently. 
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FIG. 6. Stability diagram for a high edge q configuration, simu- 
lating a discharge in DIII-D. This equilibrium has R/a  = 2.49, 
K = 2.1, 5 = 0.8, qo = 1.405, qe = 5.8, p = 6%, IlaB = 1.6, 
PN = 3.8, K,, = 1. The plasma is assumed to be rotating at 
$20 = 0.01 $ 2 ~  and rW = 50007,. 
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FIG. 7. Stability diagram for the same equilibrium as shown in 
Fig. 6 with fitted profiles to experimental rotation and density 
profiles. Computed are growth rates for different levels of rotation 
frequency and with IC,, = 0.5. It is shown that the experimentally 
observed threshold is well within the computed range of values. 
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V. Conclusion and Summary 

In this paper, we have formulated the MHD stability problem for a tokamak 
plasma with a subsonic toroidal flow, surrounded by an external resistive wall. For 
weak toroidal flow, the plasma satisfies the Grad-Shafranov equation without flow. 
Linear perturbations satisfy equations that constitute a non-self-adjoint eigenvalue 
problem for which the complex growth rate is the eigenvalue. The equations contain 
the usual MHD equations with additional terms coming from the Doppler shift, 
modification to Ohm's law, Coriolis force terms, and viscous dissipation. The complex 
eigenvalue problem is solved using an extension of the MARS code. 

When a static unstable plasma is surrounded by an external resistive wall, d i h -  
sion of the perturbed flux through the external wall will make the plasma unstable at 
any location of the resistive wall. Plasma rotation can couple the unstable mode with 
the stable damped mode and stabilize the plasma. Two simple dispersion relations 
are used to illustrate the characteristics of the solutions. Depending on the nature 
of the plasma response, the coupled dispersion relation is either quadratic for the 
tearing mode or cubic for the ideal external kink mode. The general features of these 
solutions are give in Section 111. 

The characteristics of the coupled system of an unstable external kink with 
a resistive wall (the resistive wall mode) are verified by computational examples of 
realistic equilibria for both a low qe and a high qe plasma. In general, it is found that 
sufficient toroidal flow opens up a stability window for the external wall location. 
The window size is enhanced by an increased flow velocity or an increased amount of 
plasma dissipation. We find the effect of the Coriolis force and other inertial forces 
on these modes to be minimal. For the low qe example, we find that stability depends 
more on the velocity of the resonant q surface relative to the external wall rather than 
on the flow shear. For the high qe example which simulates a DIII-D discharge, we 
find that the experimentally observed rotation speed is sufficient for the stabilization 
of the resistive wall mode. Insufficient knowledge of the plasma viscosity tensor from 
fist  principles means that the dissipation can be adjusted somewhat to favorably 
compare with experiment. This does not impact the favorable qualitative comparison 
with experiment but it makes the quantitative comparison less sharp. 
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Appendix: Viscous Damping Models 

The correct choice for a viscous damping model is unresolved. We therefore list 
a few of the possibilities here and expect to be able to refine them later on. The 
viscous force has been taken to be 

In (Al),  the parallel sound wave damping model is 

where K,, is the parallel wavenumber (n-m/q)(l/R), and fill is the strength parameter. 
This is used to model the Landau damping effect. The neoclassical damping model 
used is adapted from Ref. 18, 

with ei the ion collision frequency and p1 defined in Ref. 16. %eo is the strength 
parameter for this model. The force from anomalous perpendicular viscosity is taken 
to be 

Three adjustable parameters (fill, he,, 6,) are used within MARS to examine the 
sensitivity of the various damping models on plasma stability limits. 
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