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Orbit Analysis 

Leo Michelotti 

Fermilab’ 
P. 0. Box 500 

Batavia. IL 60510 

We take an overview of recently developed methods for studying single particle 
orbits in accelerators and discuss home physics underlying those which involve Lie 
operators. It will be further argued that object-oriented programming provides the 
appropriate computing strategy in which to model accelerators and to implement 
these techniques. 

The past fifteen years have witnessed a remarkable development of methods for analyzing 
single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which 
act upon differential equations, these methods proceed by manipulating Poincar& maps 
directly. This attribute makes them well matched for studying accelerators whose physics is 
most naturally modelled in terms of maps, an observation that has been championed most. 
vigorously by Forest. (16,17) In the following sections we will sketch a little background, 
explain some of the physics underlying these techniques, and discuss the best computing 
strategy for implementing them in conjunction with modeling accelerators. 

MICRO-HISTORY 

Accelerator physics has had a long involvement with perturbative techniques in classi- 
cal mechanics. By the 1960’s reference was made frequently to “Moser transformations” 
(27) as a technique for constructing normal form Hamiltonians. This referred to the USC 
of generating functions to provide canonical transformations to normal form coordinates 
in an action-angle representation. Although it seemed the natural approach - largely be- 
cause textbooks in classical physics emphasized both generating functions and action-angle 
coordinates - this technique was, in fact, decoying physicists away from another, more prof- 
itable path. At the same time that they were barely obtaining second order results for 
simple models (e.g., see Cole (lo)), Deprit and his colleagues (12,20) already had written 
a general purpose algorithm using Lie brackets that could be used easily to all orders, and 
they had made it ready for automated application2 to serious problems in celestial me- 
chanics. Indeed, the fundamental idea of applying Lie brackets to construct normal forms 
goes back even further. Poincart! himself proved a theorem, one of the many which now 
bear his name, amounting to a first order normal form calculation using the Lie bracket, 
and what originally led Sophus Lie to invent Lie algebras and groups was his study of how 
the form of differential equations change under coordinate transformations. But neither 
of these geniuses possessed the power of today’s computational hardware; whether that 
actually hindered them will be left to the judgment of the reader. 

In 1981, during the first U.S. Particle Accelerator School, Dragt independently introduced 
a different Lie algebraic method into accelerator theory. (14,13) Unlike Deprit, Dragt based 

‘Operated by the Universities Research Association, Inc. under contract with the U.S. Department 
of Energy. 

‘In fact, Deprit’s work inspired certain developments in the symbolic language MACSYMA, which 
was being written in the same period. A family of modules involving Poisson brackets and Taylor 
series were written to support his calculations. 
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his ideas on discrete maps rather than continuous ROWS.~ To some this formalism at first 
appeared formal and somewhat contrived: a bag of computational tricks that seemed to 
have little physics motivation behind them.4 That this misperception arose was a result 
of the way in which we were taught classical mechanics. Unlike the generating function 
techniques, which have always possessed a strong academic tradition, key ideas behind 
these manipulations simply did not appear in the curriculum. 

In the next section we will present the central physics concept behind normal form cal- 
culations that use Lie operators. While it may not be necessary for everyone to master 
every detail of these methods, it is important that physicists understand their underlying 
physical basis, which is so fundamental that the fact that they traditionally have not been 
an integral part of undergraduate curricula is something of a scandal. In doing this, we 
do not mean to ignore other activities occuring in this same time frame. Space does not 
permit anything approaching a comprehensive review, but the following milestones should 
be noted before moving on to the main topic.5 

Automatic differentiationand differentialalgebra. Automatic differentiation and dif- 
ferential algebra (AD/DA) provide a powerful framework upon which to build perturbation 
theoretic and optimization software. AD is a method of doing exacl numerical differentia- 
tion. The idea itself is old6 and can be based on the observation that the basic theorems 
of differential calculus provide rules for propagating the values of a function’s derivatives 
through arithmetic operations. One can also think of this as manipulating polynomials and 
truncating results at a particular order. In an “object-oriented” computer implementation 
(see below), one interprets variables appearing in a program not bs double precision numbers 
but as these polynomial objects. Equations appearing in such programs are then viewed as 
operating on functions rather than numbers. Berz (4), who emphasized the use of DA as 
well as AD, was the first to use the techniques for solving accelerator problems, but scien- 
tists, mathematicians, and engineers in other fields have been developing and using these 
tools as well, and there are many variations. (For example, see (11). What may distinguish 
our field is that we tend to be interested in higher order; most others are generally satisfied 
with taking only one or two derivatives.) 

Symplectic numerical integrators. In 1983, Ruth (28) and Channel1 (7) independently 
introduced numerical integration procedures that produced a symplectic map at each step 
and, therefore, throughout the interval of integration. Two years later, a similar approach 
was independently developed in China by Kang (21).’ By 1988, Channel1 and Scowl (9) 
were applying such methods more generally to Lie-Poisson systems, and between 1985 and 
1990 the procedures were reformulated in terms of Lie operators. (For example, see Yoshida 
(32). The first realization of the connection with Lie methods is due to Neri around 1985, 
and by 1986 Forest had rederived Ruth’s 4th order algorithm. (18)) The importance of all 
these developments is such that no one who wants to be taken seriously would now integrate 
orbits through a magnetic field using, say, a Rung+Kutta formalism. 

‘The approach may have been dimly foreshadowed by Stavroudis (30), who earlier had stressed 
bracket techniques in geometrical optics. 

“Over a decade ago I argued with an established colleague about the order in which fifth integer 
resonances should appear in sextupale perturbation theory. Eventually, in frustration, he closed 
the discussion with, “But what is the physics behind this? Explain it without using the words 
‘Poisson bracket.’ ’ 

SDisclaimer: The following paragraphs belong more to the realm of personal impressions and 
reminiscence than objective history. For the purpose of this essay, I have not put in the time 
necessary for authoritative historical research. 
“For example, an early FORTRAN implementation can be found in Chapter 17 of Arden (l), 

where it is called “formal differentiation.” 
‘I am told that RenC DeVogeleare actually invented this idea in 1956 and that Jack Wisdom also 

devised his own version independently. Clearly, it was a notion whose time had come. 
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“Nekhoroshev-like” calculations. By “Nekhoroshev-like” calculations we mean at- 
tempts to predict long term stability bounds based on processing short term information.’ 
This is accomplished by first constructing near-invariant surfaces in phase space, typically 
parametrized by some action coordinate. One measures a very small variation among the 
surfaces over small time scales (say, 50,000 turns) and, by converting this into a bound on 
the growth rate of an action coordinate, extrapolates to larger (but still reasonably small) 
variations over time scales, say, an order of magnitude greater. The description of the 
method implies its limitation: it applies to regions of phase space in which the motion is 
very nearly regular (integrable). Beginning in 1987 and extending to the present, Ruth, 
Warnock, and collaborators (3,31) have studied properties of maps by Fourier analysis in 
angle variables. While originally appealing to the Hamilton-Jacobi equation for its foun- 
dations, the flavor of their work has changed somewhat recently and can be understood as 
fitting maps - using the “data” provided by tracking programs - to Fourier series using 
splines in the action coordinates to model the coefficients. Using such representations, they 
can construct near invariant surfaces and obtain long term stability estimates, within the 
constraint of near-integrability already noted (31). Similar surfaces can be obtained using 
perturbation theoretic methods. Recently Berz and Hoffstitter (6) have added a new facet 
to this by using intervals9 to compute their bounds. Of course, none of this has much to 
do with the rigorous Nekhoroshev theorem, which is more legitimately represented by the 
work of Dumas and Ellison (15) on crystal channeling. 

Lyapunov exponents. Whether Lyapunov exponents provide an efficient way ofobtaining 
information useful for accelerator physics remains a controversial and intriguing question. 
A nonzero Lyapunov exponent in a region of phase space means that infinitesimally close 
orbits in that region diverge from each other exponentially rapidly; the exponent is, if you 
will, the rate of divergence. This diagnosic is best suited for studying attractors of dissi- 
pative systems, but it has been applied to Hamiltonian systems. The controversy arises 
when considering (a) how to calculate the exponent and (b) whether it is correct to use it 
for defining a dynamic aperture. Regarding (a), the one systematic study I know of was 
done in 1991 by Schmidt, Willeke, and Zimmerman (29). Regarding (b), the evidence is 
experiential: while it is true that chaotic orbits do not necessarily escape (8,19), the claim is 
that, for all practical purposes, in realistic models, if you can calculate a non-zero Lyapunov 
exponent for an orbit, it will eventually escape. 

LIE OPERATORS AND EXPONENTIAL MAPS 

Perturbation theories are quests for useful coordinates. Their objective is to find charts 
on which a vector field (dynamical system, differential equation) or its map is represented 
“as simply as possible.” When one has been found, we call the representation the vector 
field’s “normal form.” Perturbation theories provide paths through the forest of all possible 
coordinates using an “order parameter” natural to the problem at hand. 

Let 2 symbolize an array of local coordinates of some phase space and let orbits 
evolve according to the “equations of motion” (“vector field”, “dynamic”), i = ~(4, t). Let 
9 : R” -+ R, z H g(z) be (the local representation of) a classical obervable. The Lie deriva- 
tive of g is its “time” derivative along an orbit and is naturally evaluated by using chain 
rule. It is associated with a linear, differential operator, V, on the space of observables, in 
the obvious way.” 

‘Martin Berz has suggested that these should be called “Lyapunov-like calculations.” Actually, 
they are sufficiently dissimilar to what either Lyapunov or Nekhoroshev did that it probably does 
not make much difference. 

‘For an introduction to interval analysis, see Moore (26). 
“A more accepted mathematical notation for “V” is ‘L,.” I avoid using it here both because 



Because d/dt does not depend on the coordinate chart, V possesses the same property and 
is itself a geometric object, That is, it is invariant under a transformation, 4 ct z’ : 

v = r&,2) -& = v’(d,Q $7 

Decause of this, when V arises from an autonomous, integrable Hamitonian, it can be 
written immediately in terms of (local) action-angle coordinates as 

v = g .$ = g(I). 6 , 
- 

where the array g(I) contains the tunes, or winding numbers, associated with the angle 
variables ‘p on the KAM torus labelled with the action coordinates I. If we take g itself to 
be a coor&ate, then Eq.(l) provides a “covariant” way of writing the original equations 
of motion. 

g(z) = Li * (VS)(L) = 2’ &i = vi / 

A simple little “proof” that all dynamical systems are linear may help to clarify (?) 
this concept. Consider any two orbits, say gl(t) and 42(t), of an arbitrary vector field, 
V = II(Z, t) & and their sum, z(t) = II(t) +5(t). T o establish linearity, we show that E(t) 
is also an orbit; that is, we verify that it obeys the same equation of motion as z,(t) and 
42(t). 

L(t) = &(1) + z*(t)) = i,(t) +&z(t) 

= Vz,(t) + Vz.&) = V(z1 f&)(L) = v?(t) (3) 

“Therefore,” all dynamical systems are linear, and the subject of nonlinear dynamics does 
not exist. Anyone requiring more than thirty seconds to spot the fallacy in this argument 
needs to sit and meditate a little more on the meaning of a Lie derivative. 

If V is autonomous and g is a time-independent observable, then Eq.(l) is solved formally 
just as SchrGdinger’s equation is solved in quantum mechanics. 

gi = vg * g* = 2” go , (4) 

As a trivial example of this, consider the dynamic on a two-dimensional phase space, 
z = (~,p)~, which expresses a constant force field. 

v(d= (;) = (?:) 
We take z as our observable and apply V = 2.8 to it. 

Vr = ( J+n; + ma ap > z=p/m 1 vz = V(p/m) =a , 

and, of course, for all n > 2 we have V”z = 0. Evaluating the exponential, 

it is a bit cumbersome, and because a symbol like ‘V” represents more familiarly an object with 
vector properties. 
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2% = exp(tV)zo = 
( 

1 + tv + ;tw 
> 

Ill = z0 + (po/m)t + $2 (5) 

The shift in viewpoint that one adopts in doing this is similar to going between the 
SchrGdinger and Heisenberg pictures in quantum mechanics. One normally thinks of the 
dynamical variables appearing in Eq.(5) as standing for numbers. Start thinking of them 
as standing in for functions, in particular, coordinate functions. 

Using these concepts we can now state the “fundamental problem” solved by Lie derivative 
normal form techniques: given the one-turn map, 3 c g,,l’ of a periodic system, find 
(local) observables I and 1p and a function li : RN -+ RN such that - 

?, = ,~~YWl~~~ + O(c”) ) (6) 

where 3 and zt are now interpreted as coordinate functions, not points. The extra formal 
term has been attached to the end as a reminder that there is typically an order parameter, 
C, and that the equivalence to a normal form vector field is calculated up to some finite order 
in f. From Eqs.(2) and (4) - and remembering that “time” for a one-turn map is really an 
azimuthal angle that measures location around the ring, so that it increases by 2~ in one 
turn - we see that, on such a chart, the vector field would be O(P) indistinguishable from 
that of an integrable autonomous Hamiltonian. 

That, in a nutshell, is the objective and the physics that drives it. What should be 
clear, from the expression in Eq.(6), is that the map itself contains all the information 
necessary to carry out this programme, if it can be carried out. This was the breakthrough 
of Dragt, Forest, and their collaborators which, among other things, bypassed one of the 
fundamental difficulties of flow-based procedures: the need to repeatedly traverse the ring 
of accelerator elements in order to calculate multiple integrals as one goes to higher and 
higher order.” We cannot go into details here on how one tries to solve Eq.(6). Suffice 
it to say that computationally eflective perturbation theories, whether applied to maps or 
continuous flows, proceed along the following lines: (a) Represent the vector field or map on 
a chart whose origin is a critical orbit, most typically, a fixed point or periodic orbit. (b) Use 
a “near-identity” transformation to keep linear dynamics invariant. In multi-dimensional 
problems it is best to begin with a chart that diagonalizes the linear field; these are then 
the “linear normal form” coordinates, which will be complex for stable systems. (c) Try to 
eliminateonly the lowest order nonlinear terms from the representation via a transformation 
whose reverse specification contains only berms of that order. (d) Represent the map (or 
vector field) on the new chart. We then have the identical problem as in Step (c) but at 
higher order; that is, the lowest order nonlinear terms that appear are now of higher order 
than before. (e) At each stage of the iterative/recursive procedure we solve a linear system 
of equalions, the s+called “homological equations,” for both the next transformation and 
the normal form map (or vector field) at that order. This is the reality lurking behind 
the fraudulent Eq.(3). Dynamical systems are not linear, but their homological equations 
are, and they have the same structure al all orders, one that results from applying a Lie 
operator to the linear part of the map (or vector field). (f) The complete transformation 
from the first chart to the last is obtained by composing the individual, much simpler ones 
together. 

“Which can be constructed by using AD/DA variables in a tracking program. 
“Fourteen, or so, years ago, Ferdi Willeke complained strenuously about this feature of pertur- 

bation theories, stating, We’re doing something wrong; there must be a better way. Since then I 
have always thought of it as “Willeke’s lament.” 



Other normal forms 

The normal form expressed in Eq.(6), containing only shear terms, is what is traditionally 
meant by the term %ormal form,” but others are possible. One of great importance for ac- 
celerator physics is the “resonance normal form,” typically associated with the Hamiltonian 
of an isolated resonance model. 

H,,(‘p,L;B) = V’ L+ H,(I) + HP)(L) COS(IP’~+ no) + Hp)(I)sin(~?~. ‘p+ n8) 

If, symbolizes the “shear” terms, while H!‘) and H!d) are the “resonance” terms, 
which produce separatrices. Normally, one untwists the separatrices via transformations, 
(u, r) H (5, J), linear in the action-angle coordinates. On this chart, the resonance normal 
form is autonomous, 

K(F_, J) = ICI(J) + K,(L) + IQ’)(L) cost1 + K!“)(L) sin<] 

where the I<, is a linear functional of J, and the coefficient of J, is aK~/dJ1 = E. g+ n. 
Automated perturbation theories can compute resonance normal forms at whatever order 
they appear. Indeed, these can he extended to multiple resonance models, (e.g., see (22)) 
in which case the “normal form” is no longer integrable. 

And still other forms are possible, such as linear models with complex eigenvalues off 
the unit circle, which provide normal forms for linearly unstable motion (e.g., see Berz 
(5), which uses a different procedure, based solely on composition rather than exponential 
maps). All of these are obtainable by applying automated perturbation theories to either 
maps or flows, but the map algorithms are generally better for application to realistic, 
“hopelessly complicated” (16) accelerator problems. 

COMPUTATIONAL CONSIDERATIONS 

In the original email message announcing the Arcidosso Workshop, the Theoretical and 
Computational Techniques Group was charged with the question, “What can we and what 
cannot we calculate well?” To this I would add, “How can we calculate well?” This is no 
small consideration. Models of what it means to compute have undergone revolutionary 
changes in the last ten to fifteen years, and yet many (most?) physicists still program as 
they did in 1965. It is rather embarassing, but musicians and artists have done a much 
better job of keeping up than we. Many (most?) of us have become, by today’s standards, 
computationally illiterate. It may be stretching an analogy, but it almost seems as though 
late twentieth century physicists think of programming in a way similar to that in which 
their late nineteenth century predecessors thought of group theory. Perhaps developments 
in the twenty-first century will be able to shake off this complacency. If nothing else, it 
is certainly true that the next generation will view this activity very differently from the 
present one. 

The particular computing model that I strongly commend to your attention is object- 
oriented programming (OOP). It b g e an in the late 1960’s, at places like Xerox PARC, but 
did not become dominant until the early 1980’s, when the infamous “Macintosh interface” 
made its advantages manifestly obvious even to the most obtuse. Over five years ago (25) I 
became convinced that OOP provided our best hope for writing accelerator modeling and 
analysis software that might survive into the 21St century and guessed that C++ would 
be the appropriate language for creating scientific objects (24,23). This idea is shared by 
a small but growing number of people writing software for accelerator applications13 from 

13Amang wham are included Christaph Is&n, Chris S&marsh, Hiroshi Nishimura, Jim Niederer, 
Jim Holt, Johan Bengtsson, Nick Walker, Jane Richards, and others. 
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FIG. I. A theorem stated with and without useful mathematical objects. 

whose combined activities qill undoubtedly emerge even better objects for orbit analysis. 
And in the larger realm of high energy physics can be found the GISMO project (2), a 
collaborative exploitation of OOP for the purpose of modeling detectors. And yet these 
are exceptions: three decades have gone by without seeing OOP enter the mainstream of 
scientific programming. III a final, forlorn attempt to influence a few people to look into 
what may well be the most significant breakthrough in computing since FORTRAN, we will 
touch on a few of its basic ideas. 

Object oriented programming 

Early introductory books on object-oriented programming employed the metaphor of 
“passing messages to objects,” which was more appropriate for graphical user interfaces 
than scientific programming. To illustrate better what OOP means in the context of physics, 
consider the two foils shown in Figure 1. On the left a simple matrix theorem is stated and 
proved; on the right the same theorem is only stated but without using the mathematicnl 
objects Mat& and Complez Number. This is how the theorem would have to be written if 
mathematicians had not invented these useful objects. While both the content and proof of 
the theorem are simple to understand on the left, the statement on the right is essentially 
impossible to comprehend, and the obscurity of a proof can only be imagined. High level 
mathematical objects allow one to focus on essential algebraic features without tripping 
over details of implementation. In mathematics, objects hide inessential detail to make the 
structure of calculations and proofs more transparent. 

“Object-oriented programming” is an extension to programming of this same fundamental 
strategy that has been used in mathematics for centuries, as seen in statements like: 

z=x+iy = T.P, y=&.Z+Z? or g= (&.A& .h’ (7) 

By using objects, these simple expressions hide details of manipulations on what could be 
large structures of data, freeing the mind to focus on what is happening rather than how. 
OOP is, in fact, a natural way to organize complex problems. 
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In the context of both mathematics and programming, objects comprise (8) structures of 
data and (b) functions and operators that manipulate these data; to these, programming 
adds (c) rules for specifying what happens when objects come into or go out of scope. OOP 
is a technology for realizing and fully utilizing this abstract concept, Its defining attributes 
Ei*e: 

Data Abstraction/Encapsulation: Structures of data and the functions and opera- 
tions which manipulate them are joined to define new data types, thereby extending 
the programming language. As far a8 the language is concerned, these new, abstract 
data types are as valid as its original, primitive ones. Data hiding builds a wall around 
a type’s “private” data so that it can be accessed and modified only by the object’s 
member functions. 

Inheritance: One class (or object) can “inherit” the data, functions, and properties of 
another by being “derived” from it. For example, if a Matrix object is available, a 
new object, SquareMatrix, can inherit all of its properties and then extend them by 
including new member functions, such as determinant or inuersion. In this way, we 
can reuse already existing functionality and build on it incrementally. 

Polymorphism: Polymorphism means using different implementations of the same in- 
terface. For example, in Eq.(7) operator symbols like I‘+,” “=,” and “,” have been 
overloaded so that their meaning depends on context, yet the human reading these 
equations automatically understands what is going on, because the symbols, in fact, 
have similar properties in different contexts. The principle is that things that be- 
have similarly should look the same, so that application programmers can learn more 
quickly how to use what is new. 

Sample: C-W code fragment 

Despite popular belief to the contrary, the language in which one programs is important. 
A computing language is more than a method for communicating instructions to a machine, 
or we would all be programming in assembly language; it is also the medium in which people 
formulate solutions to problems. In the last section we suggested that object-oriented 
programming provided a model of extensible computing languages that was flexible and 
powerful enough to be used in scientific work. The objective in using OOP for programming 
is the same as that in mathematics: to use a syntax that makes it easier to understand 
what is being done. For example, let the columns of g be the eigenvectors of the Jacobian 
of a symplectic one-turn map. One step in writing a linear normal form normalizes the 
eigenvectors according to the condition 

BTJB J = q!, where lrll= 1 =nd L= 

This is implemented in the C++ code fragment shown in Figure 2. Lines 1-5 both in- 
stantiate variables via declaration of their types (Hap, HatrixC, HatrixD, and so forth) and 
perform computations using member functions Jacobian and eigenVectors of the Map 
and Matrix classes. In Line 2 eigenvectors of the Jacobian of thenap are calculated and 
stored in the complex matrix variable B. The operations are run in tandem (piped): Jaco- 
bian is a member function of the Map class which returns a double precision matrix. Upon 
this matrix is invoked eigenVectors, a member function of the matrix class, which then 
returns the complex matrix that is stored in B. Line 3 is a declaration of the 6 x 6 matrix 
&14 Line 5, which implements Eq.(S), b g e ins constructing a normalizing matrix, AX, and if 
theHap is symplectic, Ilx is diagonal, so that Lines 6-8 perform the required normalization. 

‘“Matrix constructors allow simple declarations for special matrices, such as J or ‘. 



I. Line i *I llap tkdhp; 

<‘ the”ap is obtained hera >> 

/. Line 2 l / llatrirc B = th.“ap.Jacobiano.sigsn”estorao: 
/. the 3 l / Ilarrixtl J( “I”, 6 ); 
I. IdlIe 4 *I solplel”i( o., -1. ); 

/. Line 6 *I Ilatrixc IX - .i * B.tran.po.so l J l * l 3: 

/r Line 6 l / *or< int i - 0; i c 6: i++ ) 
/. Line 7 *I ,r( i. i ) - 1.0, sqrt( abs( IX(i,i) 1 ); 

I* Line 8 *I B = m,x; 

FIG. 2. C++ code fragment that normalizes eigenvectors of a Jacobian 

The important point here is that even those not familiar with the C++ language can 
follow the flow of the program and understand what is going on fairly easily.‘5 High level 
programming languages were devised for the convenience of humans, not machines. The 
ideal is: If you understand the theory, Ihe program ilself should be transparent. The syntax 
of C++ , and other OOP languages, lends itself to this ideal, although it is difficult to 
overcome completely the ability of bad programmers to write obscure code. 
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