
EGG--2663
Distribution Category: UC-705

Software Reliability Models
for Critical Applications

Hoang Pham EGG-- 2 6 6 3
Michelle Pham

DE92 004797

Published December 1991

Idaho National Engineering Laboratory
EG&G Idaho, Inc.

Idaho Falls, Idaho 83415

Prepared for the _'_ __'_'_" ER
U.S. Department of Energy

Under DOE Field Office, Idaho j_Contract No. DE-AC07-761D01570
_t i _,i_ " _: __.i:_

ABSTRACT

This report presents the results of the first phase of the ongoing EG&G Idaho, Inc.,

Software Reliability Research Program. The program is studying the existing software

reliability mc:lels and proposes a state-of-the-art software reliability model that is relevant to

the nuclear reactor control environment.

This report consists of three parts: (1) summaries of the literature review of existing

software reliability and fault tolerant software reliability models and their related issues, (2)

proposed technique for saitware reliability enhancement, and (3) general discussion and future

research.

The development of this proposed state-of-the-art software reliability model will be

performed in the second phase.

iii

CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS ... ix

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 3

2.1 Characteristics of Software Reliability Models 3

2.1.1 General Description of Software and Software Reliability 4

2.1.2 Software Life Cycle 4

2.1.3 The Bug-counting Concept 5

2.1.4 Software Reliability versus Hardware Reliability 6

2.1.5 Time Index .. 6

2.1.6 Error Analysis .. 8

2.2 Classification of Software Reliability Models 12

2.2.1 Deterministic Models 12

2.2.2 Probabilistic Models 12

2.3 Characteristics of Specific Software Reliability Models 18

2.3.1 Halstead's Software Science Model 18

2.3.2 McCabe's Software Complexity Model 19

2.3.3 Models in The Error Seeding Group 21

2.3.4 Models in The Failure Rate Group 23

Jelinski and Moranda De-Eutrophication Model 24
Schick and Wolverton Model 25

J_linski-Moranda Geometric De-Eutrophication Model 25
Moranda Geometric Poisson Model 26
Modified Schick and Wolverton Model 26

Goel and Okumoto Imperfect Debugging Model 27

2.3.5 Models in The Curve Fitting Group 27

Estimation Of Errors Model 27

Estimation Of Change Model 28
Estimation Of Time Between Failures Model 29
Estimation Of Failure Rate Model 29

2.3.6 Models in The Reliability Growth Group 30

Duane Growth Model 30

Wall and Ferguson Model 31
Wagoner's Weibull Model 32
Logistic Growth Curve Model 33
Gompertz Growth Curve Model 33
Hyperbolic Reliability Growth Model 34

2.3.7 Models in The Program Structure Group 35

Littlewood Markov Structure Model 35

Cheung's User-oriented Markov Model 36

2.3.8 Models in The Input-Domain Group 38

Basic Input-Domain Model 38
Input-Domain Based Stochastic Model 40

2.3.9 Models in The Execution Path Group 41

Shooman Decomposition Model 42

2.3.10 Models in The Nonhomogeneous Poisson Process Group 43

Musa Exponential Model 45
Goel and Okumoto NHPP Model 46

Delayed S-shaped Growth Model 46
Inflection S-shaped Growth Model 47
Hyperexponential Growth Model 48

2.3.11 Models in The Markov Group 49

Linear Death Model With Perfect Debugging 50
Linear Death Model With Imperfect Debugging 50
Nonstationary Linear Death Model With Perfect Debugging 53

2.3.12 Models in The Bayesian Groop and Models in The Unified Group .. 54

2.4 Fault Tolerant Software Reliability Models 55

2.4.1 Recovery Block Scheme 55

2.4.2 N-Version Programming 56

vi

3. PROPOSED TECHNIQUE FOR SOFTWARE RELIABILITY ENHANISEMENT . .. 61

3.1 Self-Checking Duplex System 6.9

3.2 Reduction of Common-Cause Failures 65

4. GENERAL DISCUSSION AND FUTURE RESEARCH 67

REFERENCES .. 69

vii

TABLES

Table 1. Software Reliability versus Hardware Reliability 7

Table 2. Summary of References 59

FIGURES

Figure 2.1 Operators and operands for an Interchange Sort program 20

Figure 2.2 Linear death with perfect debugging 52

Figure 2.3 Linear death with imperfect debugging 52

Figure 2.4 Nonstationary linear death with perfect debugging 53

Figure 3.1 Duplex System .. 63

viii

ACKNOWLEDGMENTS

The authors ',,could like to express their appreciation to Professor Shambhu Upadhyaya

at State University of New York at Buffalo for his remarkable contribution to the

development of this work. We also thank Philip E. MacDonald, Group Manager, Steve A.

Eide, Unit Manager, and the SSRE Center of Excellence for supporting this program.

ix

1. INTRODUCTION

Since the invention of computers, computer software has gradually become an

important part of many systems. In the 1970s, the cost of software surpassed the cost of

hardware as being the major cost of a system [333]. In addition to the cost of developing

software, the penalty costs of software failures are even more significant. As missions

accomplished by human beings become more and more complex, for example, the air traffic

control system, nuclear power plant control systems, the space program, and military systems,

the failure of software may involve very high costs, human lives, and a social impact.

Therefore, how to measure and predict the reliability of software and techniques to enhance

reliability have become problems of common interest in the reliability literature.

In the past 20 years, more than 300 research papers have been published in the areas

of software reliability characteristics, software reliability modeling, software reliability model

validation, and software fault tolerance. Since software is an interdisciplinary science,

software reliability models are also developed from different perspectives toward software and

with different applications of the model. In order to pave the way for the future development

and evaluation of highly reliable software and systems involving software and hardware, a

detailed taxonomy of the existing software reliability models, software fault tolerant models,

and the assumptions behind those models is deemed important.

The purpose of this research is to collect the literature on existing software reliability

models and fault tolerance techniques to propose new reliability enhancement methods and a

fault tolerant technique relevant for nuclear reactor control systems. Continuing research will

be performed at EG&G Idaho, Inc. to develop a state-of-the-art software reliability model in

the second phase of this ongoing program.

Section 2 presents an overview of the software reliabilitv models and fault tolerant

software techniques. Section 3 presents reliability enhancement techniques and proposes a

simple but effective fault tolerant technique applicable to the nuclear reactor environment.

Section 4 is a general discussion and summary of proposed research to be conducted in the

next phase.

2. LITERATURE REVIEW

This section presents a review of literature that deals with the issues of software

reliability and fault tolerance. The general characteristics of existing software reliability

models are presented first (section 2.1). Then these models are classified into various types

and groups, and their characteristics discussed (section 2.2). Specific models in each group

are presented in further detail in section 2.3. Section 2.4 reviews the existing fault tolerant

softwaa-e reliability models and discusses to some extent these models.

2.1 Characteristics of Software Reliability Models

In hardware reliability, the mechanism of failure occurrence is often treated as a black

box. lt is the failure process that is of interest to reliability engineers. The emphasis is on the

analysis of failure data. In software reliability, one is interested in the failure mechanism.

Most software reliability models are analytical models derived from assumptions of how

failures occur. The emphasis is on the model's assumptions and the interpretation of

parameters.

In order to develop a useful software reliability model and to make sound judgments

when using the models, an in-depth understanding is needed of how software is produced;

hew errors are introduced, how software is tested, how errors occur, types of errors, and

environr,aental factors can help us in justifying the reasonableness of the assumptions, the

usefulness of the model, and the applicability of the model under a given user environment.

General descriptions of software and software reliability, software life cycle, the bug-

counting concept, software reliability versus hardware reliability, time index, and error

analysis are discussed below.

2.1.1 General Description of Software and Software Reliability

Similar to hardware reliability, time-domain software reliability is defined as the

probability of failure-free operation of software for a specified period of time under specified

conditions [333]. Software is a collection of instructions or statements of computer

languages. It is also called a computer program or simply a program. Upon execution of a

program, an input state is translated into an output state. Hence, a program can be regarded

as a function, f, mapping the input space to the output space (f: input --> output), where the

input space is the set of ali input states, and the output space is the set of ali output states.

An input state can be defined as a combination of input variables or a typical transaction to

the program.

A software program is designed to perform specified functions. When the actual

output deviates from the expected output, a failure occurs, lt is worth noting that the

definition of failure differs from application to application and should be clearly defined in

specifications. For instance, a response time of 30 seconds could be a serious failure for an

air traffic control system, but acceptable for an airline reservation system. A fault is an

incorrect logic, incorrect instruction, or inadequate instruction that, by execution, will cause a

failure. In other words, faults are the sources of failures, and failures are the realization of

faults. When a failure occurs, there must be a corresponding fault in the program, but the

existence of faults may not cause the program to fail and a program will never fail as long as

the faulty statements are not executed.

2.1.2 Software Life Cycle

A software life cycle is normally divided into a requirement and specification phase,

design phase, coding phase, testing phase, and operational and maintenance phase. The

design phase may include a preliminary design and a detailed design. The testing phase may

include module testing, integration testing, and field testing. The maintenance phase may

include one or more subcycles, each having ali the phases in the development stage.

4

In the early phase of the software life cycle, a predictive model is needed because no

failure data are available. This type of model predicts the number of errors in the program

before testing. In the testing phase, the reliability of the software improves through

debugging. A reliability growth model is needed to estimate the current reliability level and

the time and resources required to achieve the objective reliability level. During this phase,

reliability estimation is based on the analysis of failure data. After the release of a software

program, the addition of new modules, removal of old modules, removal of detected errors,

mixture of new code with previously written code, change of user environment, change of

hardware, and management involvement have to be considered in the evaluation of software

reliability. During this phase, an evolution model is needed.

2.1.3 The Bug-counting Concept

The bug-counting model assumes that, conceptually, there is a finite number of faults

in the program. Given that faults can be counted as an integer number, bug-counting models

estimate the number of initial faults at the beginning of the debugging phase and the number

of remaining faults during, or at the end of, the debugging phase. Bug-counting models use a

per-fault failure rate as the basic unit of failure occurrence. Depending upon the type of

models, the failure rate of each fault is either assumed to be a constant, a function of

debugging time, or a random variable from a distribution. Once the per-fault failure rate is

determined, the program failure rate is computed by multiplying the number of faults

remaining in the program by the failure rate of each fault.

During the debugging phase, the number of remaining faults changes. One way of

modeling this failure process is to represent the number of remaining faults as a stochastic

counting process. Similarly, the number of failures experienced can also be denoted as a

stochastic counting process. By assuming perfect debugging, i.e., a fault is ,ernoved with

certainty whenever 9 failure occurs, the number of remaining faults is a nonincreasing

function of debugging til:_e. With an imperfect debugging assumption, i.e., faults may not be

removed, introduced, or changed at each debugging, the number of remaining faults may

5

increase or decrease. This bug-counting process can be represented by a binomial model,

Poisson model, compound Poisson process, or Markov process.

2.1.4 Software Reliability versus Hardware Reliability

Since the emergence of the study of software reliability, reliability theoreticians and

practitioners have discussed the issues of software reliability versus hardware reliability in

terms of similarity, differences, modeling techniques, etc. [131,340]. Because the basic

modeling techniques of software reliability are adapted from reliability theory developed for

hardwaxe systems in the past 30 years, a comparison of software reliability and hardware

reliability ca_ help in the use of these theories and in the study of hardware-software systems.

Table 1 lists the differences and similarities between the two.

2.1.5 Time Index

In hardware, materials deteriorate over time. Hence, calendar time is a widely

accepted index for reliability function. In software, failures will never happen if the program

is not used. In the context of software reliability, time is more appropriately interpreted as

the stress placed on, or amount of work performed by, the software. The following time units

are generally accepted as indices of the software reliability function:

Execution time - CPU time; time during which the CPU is busy

Operation time - Time the software is in use

Calendar time - Index used for software running 24 hours a day

Run - A job submitted to the CPU

Instruction - Number of instructions executed

Path - The execution sequence of an input.

Models based on execution time, operational time, calendar time, and instructions

executed belong to the time-domain model. Models based on nm and path belong to the

input-domain model.

6

Table 1. Software Reliability versus Hardware Reliability

Software Reliability Hardware Reliability

Without considering program evolution, Failure rate has a bathtub curve. The burn-
failure rate is statistically nonincreasing, in state is similar to the software debugging

state.

Failures never occur if the software is Material deterioration can cause failures

not used. even though the system is not used.

Failure mechanism is studied. Failure mechanism may be treated as a
black box.

CPU time and run are two popular
indices for the reliability function. Calendar time is a generally accepted index

for the reliability function.

Most models are analytically derived
from assumptions. Emphasis is on Failure data are fitted to some distributions.
developing the model, the interpretation The selection of the underlying distribution
of the model assumptions, and the is based on the analysis of failure data and
physical meaning of the parameters, experiences. Emphasis is placed on

analyzing failure data.

Failures are caused by incorrect logic,
incorrect statements, or incorrect input Failures are caused by material deterioration,
data. This is similar to the design random failures, design errors, misuse, and
errors of a complex hardware system, environment.

2.1.6 Error Analysis

Error analysis, including the analysis of failures and the analysis of faults, plays an

important role in the area of software reliability, for several reasons. First, failure data must

be identified, collected, and analyzed before they can be plugged into any software reliability

model. In doing so, an unambiguous definition of failures must be agreed upon. Although

not critical to theoreticians, it is extremely important in practice. Second, the analysis of

error sources and error removal techniques provides information in the selection of testing

strategies and the development of new methodologies of software reliability modeling. Errors

are classified by (a) severity, (b) special errors, (c) error type, (d) error introduced in the

software life cycle, (e) error removed in the software life cycle, and (f) techniques of error

removal.

Severity

In practice, it is often nec ssary to classify failures by their impact on the

organization. As pointed out by Musa et al. [248], cost impact, human life

impact, and service impact are common criteria. Each criterion can be further

divided by the degree of severity. For example, minor error, incorrect result,

partial operation, or system breakdown can be a criterion for service impact.

To estimate the failure rate of each severity level, Musa et al. [248] suggest the

following approaches:

• Classify the failures and estimate failure rates separately for each class.

• Classify the failures, but lump the data together, weighing the time

intervals between failures of different classes according to the severity of

the failure class.

• Classify the failures, but ignore severity in estimating the overall failure

rate. Develop failure rates for each failure class by multiplying the overall

failure rate by the proportion of failures occurring in each class.

8

In addition to the estimation of failure rate of each severity class, the penalty

costs of failure can be measured in dollar value [107].

Special Errors

Transient error, internal error, hardware caused software error, previously fixed

error, and generated error are some special errors of interest to software reliability

engineers. Transient errors are errors that exist within too short a time to be

isolated [333]. This type of error may happen repeatedly. In failure data

collection, transient errors of the same type should be counted only once.

Internal errors are intermediate errors whose consequences are not observed in the

final output [173], which happens whe:'t an internal error has not propagated to a

Foint where the output is influenced. For instance, in fault-tolerant computing

some errors may be guarded against by redundant codes and not observed in the

final output. When setting up the reliability objective, decisions must be made to

either count the internal errors or simply count the observable errors.

Hardware caused software errors are errors that, if not carefully investigated, may

be regarded as common software errors [146]. For example, a program may

terminate during execution and indicate it by an error message of operating

system error. Without careful investigation, this error may be classified as

software error when the operating system error was actually caused by the

hardware.

Error Type

By analyzing the failure data or trouble reports, errors can be classified by their

properties. One of the classification schemes given by Thayer et al. [363]

includes the following error types:

t

• Computational errors

• Logical errors

• Input/output errors

• Data handling errors

• Operating system/system support errors

• Configuration errors

• User interface errors

• Data base interface errors

• Present data base errors

• Global variable definition errors

• Operator errors

• Unidentified errors.

As failure data are collected, the frequency of each type can be obtained. Other

classification schemes can be seen in [98, 112].

Error Introduced in the Software Life Cycle

Within the software life cycle, errors can be introduced in the following phases

[44, 173, 363]:

• Requirement and specification

• Design

- Function design

- Logical design

• Coding

• Documentation

• Maintenance.

For each phase, the frequency of occurrence can be obtained from failure data

[441.

10

Error Removed in the Software Life Cycle

Errors are removed through testing, which can be divided into the following

stages [363]:

• Validation

• Integration testing

• Acceptance testing

• Operation and demonstration.

The frequency of occurrence of each category is also of interest to software

reliability engineers.

Techniques of error removal

Some techniques of error removal given in [153, 260, 363] are summarized

below. This type of study gives us information on the selection and validation of

software design and testing techniques.

• Automated requirement aids

• Simulation

• Design language

• Design standard

• Logic specification review

• Module logic inspection

• Module code inspection

• Unit test

• Subsystem test

• System test

11

2.2 Classification of Software Reliability Models

Software reliability models can be classified into two types of models: the

deterministic and the probabilistic.

2.2.1 Deterministic Models

The deterministic type is used to study (1) the elements of a program by counting the

number of operators, operands, and instructions, (2) the control flow of a program by

counting the branches and tracing the execution paths, and (3) the data flow of a program by

studying the data sharing and data passing.

Performance measures of the deterministic type are obtained by analyzing the program

texture and do not involve any random event. There are two models in the deterministic

type: Halstead's software science model and McCabe's cyclomatic complexity model. In

general, these models represent a growing quantitative approach to the measurement of

computer software. Halstead's software science model is used to estimate the number of

errors in the program, whereas McCabe's cyclomatic complexity model [228] is used to

determine an upper bound on the number of tests in a program.

2.2.2 Probabilistic Models

The probabilistic type represents the failure occurrences and the fault removals as

probabilistic events. It can also be further divided into different groups of models: (a) error

seeding, (b) failure rate, (c) curve fitting, (d) reliability growth, (e) program structure, (f)

input domain, (g) execution path, (h) nonhomogeneous Poisson process, (i) Markov, and (j)

Bayesian and unified.

12

Error Seeding

The error seeding group of models estimates the number of errors in a program

by using the capture-recapture sampling technique. Errors are divided into

indigenous errors and induced errors (seeded errors). The unknown number of

indigenous errors is estimated from the number of induced errors and the ratio of

the two types of errors obtained from the debugging data.

Failure Rate

The failure rate group of models is used to study the functional forms of the per-

fault failure rate and program failure rate at the failure intervals. Since mean-

time-between-failure is the reciprocal of failure rate in the exponential distribution

random variable, models based on time-between-failure also belong to this

category.

Models included in this group are the

• Jelinski and Moranda De-Eutrophication [150]

• Schick and Wolverton [306]

• Jelinski-Moranda geometric De-Eutrophication [242]

• Moranda geometric Poisson [213]

• Modified Schick and Wolverton [354]

• Goel and Okumoto imperfect debugging [117].

Curve Fitting

The curve fitting group of models uses regression analysis t3 study the

relationship between software complexity and the number of errors in a program,

the number of changes, failure rate, or time-between-failure. Both parametric and

nonparametric methods have been attempted in this field.

13

Models included in this group are the

• Estimation of errors

• Estimation of change

• Estimation of time between failures

• Estimation of failure rate.

Reliability Growth

The reliability growth group of models measures and predicts the improvement of

reliability through the debugging process. A growth function is used to represent

the progress. The independent variables of the growth function can be time,

number of test cases, or testing stages, and the dependent variables can be

reliability, failure rate, or mmulative number of errors detected.

Models included in this group are the

• Duane growth [84]

• Weibull growth [381]

• Wagoner's Weibull [380]

• Logistic growth curve [398]

• Gompertz growth curve [261]

• Hyperbolic reliability growth.

Program Structure

The program structure group of models views a program as a reliability network.

A node represents a module or a subroutine, and the directed arc represents the

program execution sequence among modules. By estimating the reliability of

each node, the reliability of transition between nodes, and the transition

probability of the network, and assuming independence of failure at each node,

the reliability of the program can be solved as a reliability network problem.

14

Models included in this group are the

• Littlewood Markov structure [213]

• Cheung's user-oriented Markov [69].

Input Domain

The input-domain group of models uses run (the execution of an input state) as

the inde r of reliability function as oppesed to time in the time domain model.

The reliability is defined as the number of successful runs over the total number

of runs. Emphasis is placed on the probability distribution of input states or the

operational profile.

Models included in this group are the

• Basic input-domain

• Input-domain based stochastic.

Execution Path

The execution path group of models estimates software reliability based on the

probability of executing a logic path of the program and the probability of an

incorrect path. This model is similar to the input domain model because each

input state corresponds to an execution path.

The model forming this group is the

• Shooman decomposition [328].

Nonhomogeneous Poisson Process

The nonhomogeneous Poisson process (NHPP) group of models provides an

analytical framework for describing the software failure phenomenon during

15

testing. The main issue in the NHPP model is to estimate the mean value

function of the cummulative number of failures experienced up to a certain time

point.

Models included in this group are the

• Musa exponential [259]

• Goel and Okumoto NHPP [119]

• S-shaped growth I268,391]

• Hyperexponential growth [139, 268].

Markov

The Markov group of models is a general way of representing the software failure

process. The number of remaining faults is ni,;deled as a stochastic counting

process. When a continuous-time discrete-state Markov chain is adapted, the

state of the process is the number of remaining faults, and time-between-failures

is the sojourning time from one state to another. If we assume that the failure

rate of the program is proportional to the number of remaining faults, linear death

process and linear birth-and-death process are two models readily available. The

former assumes that the remaining error is monotonically nonincreasing, while the

latter allows faults to be introduced during debugging.

When a nonstationary Markov model is considered, the model becomes very rich

and unifies many of the proposed models. The nonstationary failure rate property

can also simulate the assumption of nonidentical failure rates of each fault.

Models included in this group are the

• Linear death with perfect debugging

• Linear death with imperfect debugging

• Nonstationary linear death with perfect debugging

16

• Nonstationary linear birth-and-death.

Bayesian and Unified

The Bayesian and Unified groups of models assume a prior distribution of the

failure rate. These models are used when the software reliability engineer has a

good feeling about the failure process, and the failure data are rare. Besides the

continuous time discrete state Markov chain, the exponential order statistics [215,

216, 269] and the shock model [160, 176, 251] are two other general models.

17

2.3 Characteristics of Specific Software Reliability Models

2.3.1 Halstead's Software Science Model

Halstead's theory of software science is probably the best known technique to measure

the complexity in a software program. Halstead [123] uses the number of distinct operators

and the number of distinct operands in a program to develop expressions for the overall

program length, volume, level (a measure of complexity), development time, development

effort, and the number of errors in a program [1061.

The following notation is used in the discussion:

n t = the number of distinct operators that appear in a program

ns = the number of distinct operands that appear in a program

N_ = the total number of operator occurrences

N2 = the total number of operand occurrences

N = length of the program

V = volume of the program

B = number of errors in the program

/_ = estimate of B

I = number of machine instructions.

Halstead shows that the length of the program, N, can be estimated:

N=N t +N 2

where

N_ = n_ logs n_

Ns = n2 log2 n2

and

V = N log2(n_ + ns) .

18

Halstead also derived a formula to estimate the number of errors in the program, B,

from program volume. The fonaula is

/__ v .
3000

Fitzsimmons [101], provides the following example: For the SORT module program

[101] shown in Figure 2.1, the volume for this pr%q'am can be calculated as follows:

N = Nt + N 2 = 50

V = N log2(nl + n2)

= 50 log2(10 + 7)

= 204.

2.3.2 McCabe's Software Complexity Model

A cyclomatic complexity measure of software proposed by McCabe [228] is based on

a control flow representation of a program. Cyclomatic complexity is a software metric that

provides a quantitative measure of the logical complexity of a program.

The cyclomatic number V(G) of a graph G with n nodes, e edges, and p connectcc,

components is

In a strongly connected graph (there is a path joining any pair of nodes), the

cyclomatic number is equal to the maximum number of linearly independent circuits. The

linearly independent circuits form a basis for the set of ali circuits in G, and any path through

G can be expressed as a linear combination of them.

When a program is represented as a flowgraph with a unique entry node and a unique

exit node, this flowgraph becomes a strongly connected graph if a dummy edge from the exit

19

Figure 2.1 Operators and operands for an Interchange Sort program

Interchange sort program

SUBROUTINE SORT (X,N)
DIMENSION X(N)
IF (N.LT.2) RETURN
DO 20 I = 2,N

DO 10 J = 1,I
IF (X(I).GE.X(J)) GO TO 10

SAVE= X(I)
X(I) = X(J)
X(J) = SAVE

10 CONTINUE
20 CONTINUE

RETURN
END

Operators of the Interchange sort program Operands of the Interchange sort program

Operator Count Operand Count

1 End of statement 7 1 X 6
2 Array subscript 6 2 I 5
3= 5 3J 4
4IF() 2 4N 2
5DO 2 52 2
6, 2 6 SAVE 2

7 End of program 1 n2 = 7 1 1
8 .LT. 1

9 .GE. 1 22 = N2
n_=!0GOTO 10 1

28 = N1

20

node to the entry node is added. When the number of connected components is greater than

1, i.e., a main program and some subroutines, the above formula is modified to

V(G) = e- n + 2p.

The cyclomatic number of a graph with multiple connected components is equal to the

sum of the cyclomatic numbers of the connected components. Another simple way of

computing the cyclomatic number is the following.

V(G) = n + 1

where n is the number of predicate nodes (decisions or branches) in the program. In other

words, the cyclomatic number is a measure of the number of branches in a program. A

branch occurs in IF, WHILE, REPEAT, and CASE statements (a GO TO statement is

normally excluded from the structured program). The cyclomatic number has been widely

used in predicting the number of errors and in measuring the software quality.

McCabe [228] notes that when used in the context of the basis path testing method,

the cyclomatic complexity, V(G), provides an upper bound for the number of independent

paths in the basis set of a program and an upper bound on the number of tests that must be

conducted to ensure that all program statements have been executed at least once.

2.3.3 Models in The Error Seeding Group

Mills [236] proposed an error seeding method to estimate the number of errors in a

program by introducing pseudo errors into the program. From the debugging data, which

consist of indigenous errors and induced errors, the unknown number of indigenous errors can

be estimated. This model can be represented by a hypergeometric distribution.

21

The probability of k induced errors in r removed errors follows a hypergeometric

distribution.

where

N = number of indigenous errors

n, = number of induced errors

r = number of errors removed during debugging

k = number of induced errors in r removed errors

r-k = number of indigenous errors in r removed errors.

Since ni, r, and k are known, the maximum likelihood estimate (MLE) of N can be

shown to be [236]

19- ni(r-k)
k "

D

This method was criticized for its inability to determine the type, location, and |_'m_
difficulty level of the induced errors such that they would likely be detected equally likely as

the indigenous errors. Basin [32] suggests a two-step procedure with which one programmer

detects ni errors and a second programmer independently detects r errors from the same

program. With this method, the n_ errors detected by the first programmer resembles the

induced errors in the Mill's model. Let k be the common errors found by two programmers.

The hypergeometric model becomes [32]

p(k;N,N_n1,r) = _ r-k

22

and the MLE of N is

- nir

Since no errors are actually introduced into the program, the difficulties in Mill's

method are overcome.

Lipow [200] modified Mill's model by introducing an imperfect debugging probability

q. The probability of removing k induced errors and r-k indigenous errors in m tests is a

combination of binomial and hypergeometric distributions.

N _ r-k _ O, n a _ k _ O, andm a r.

The interval estimate of N can be found in Huang [139].

2.3.4 Models in The Failure Rate Group

Based on the concept of bug-counting, the number of faults in the program increases

or decreases by an integer number (normally assumed to decrease by 1) at each debugging.

As the number of remaining faults changes, the failure rate of the program changes

accordingly. Since the number of faults in the program is a discrete function, the failure rate

of the program is also a discrete function with discontinuities at the failure times. Failure rate

models study (1) how failure rate changes at the failure time and (2) the functional form of

the failure rate during the failure intervals.

23

Jelinski and Moranda De-Eutrophication Model

The Jelinski and Moranda De-Eutrophication model [150] is one of the earliest

software reliability models, lt is the most often cited model. Many probabilistic

software reliability models are either variants or extensions of this basic model.

Assumptions include the following:

• The program contains N initial faults

• Each error in the program is independent and equally likely to cause a

failure during test

• Time intervals between occurrences of failure are independent of each other

• Whenever a failure occurs, a corresponding fault is removed with certainty

° The error removal time is negligible and no new errors are introduced during

the error removal process

• The software failure ra_e during a failure interval is constant and is

proportional to the number of faults remaining in the program.

The program failure rate at the ith failure interval is

Jt(tI) - ¢ [N- (i-I)]

where

= a proportional constant

N = the initial number of errors in the program

t_ = the time between the (i-1)st and the ith failures.

The probability density function (pdf) and cumulative distribution function (cdf)

of % are

f(t i) - ¢(N-(i-I))exp(-4)(N-(i-I)) t,)

and

24

F(t_) = l-exp(-_(N-(i-l)) tI)

respectively.

The software reliability function is

R(t I) --exp(-_(N-(i-l)) tI)

Schick and Wolverton Model

The Schick and Wolverton (S-W) model [306] is similar to the J-M model, except

it further assumes that the failure rate at the ith time interval increases with time

since the last debugging. In the model, the program failure rate function between

the (i-1)st and the ith failure can be expressed as

(_i)- ¢[N-(i-1)]tI

where _ is a proportional constant, N is the initial number of errors in the

program, and q is the test time since the (i-1)st failure.

Jelinski-Moranda Geometric De-Eutrophication Model

The J-M geometric De-Eutrophication model [242] assumes that the program

failure rate function is initially a constant D and decreases geometrically at failure

times. The program failure rate and reliability function of time-between-failures at

the ith failure interval can be expressed as

i (tI) = Dk _-I

and

25

R(t,) - exp(-Dki-Xtl)

where

D = initial program failure rate

k = parameter of geometric function (0 < k < 1).

A modified version of the J-M geometric model was suggested by Lipow [201] to

allow multiple error removal in a time interval. The program failure rate

becomes

_. (Ct) = D k n1-1

where ni., is the cumulative number of errors found up to the (i-1)st time interval.

Moranda Geometric Poisson Model

The Moranda geometric Poisson model [213] assumes that at fixed times T, 2T,

... of equal length interval, and that the number of failures occurring at interval i,

%, follow a Poisson distribution with intensity rate D kjl. The probability of

getting m failures at the ith interval is

Pr{n_=m} - e -_k_'_(D k l-a)_ml

Modified Schick and Wolverton Model

Sukert [354] modifies the S-W model to allow more than one failure at each time

interval. The program failure rate becomes

X(tI)- OtN-nl-a] tl

where n_.tis the cumulative number of failures at the (i-1)th failure interval.

26

Goel and Okumoto Imperfect Debugging Model

Goel and Okumoto [117] extend the J-M model by assuming that a fault is

removed with probability p whenever a failure occurs. The program failure rate at

the ith failure interval is

l (t_) - ¢ [N-p(i-l)] .

2.3.5 Models in The Curve Fitting Group

The curve fitting group of models finds a functional relationship between dependent

and independent variables. Linear regression, quadratic regression, exponential regression,

isotonic regression, and time series analysis, have been applied to software failure data

analysis. The dependent variables are the number of errors in a program, the number of

modules change in the maintenance phase, time between failures, and program failure rate.

Models of each type are discussed below.

Estimation Of Errors Model

The number of errors in a program can be estimated by a linear [27] or quadratic

[144] regression model. A general formula is

N = Et aIX1

or

N = _, a,X, + Et b,X_

where

N = number of errors in the program

X i = ith error factors

%, bi = coefficients.

27

Typical error factors are software complexity metrics and the environmental

factors. Most curve fitting models involve only one error factor. A few of them

study multiple error factors.

Estimation Of Change Model

Belady and Lehman [3"7]use time series analysis to study the program evolution

process. Some of the models studied by [37] are

MR = Ko+K_R+S +E

CR = 1%+K,R+K2R 2+S+E

fR -" Ko + KIR + K2R2 + K3HRR+ S +

HR R = K_ + S + e

CMHD = Ko+K_D+S +E

where

R = release sequence number

MR = number of modules at release R

IR = inter-release interval R

MHR = modules handled in IR

HRR = MHR/IR; handle rate

CR = MHR/MR; complexity

D = number of days since first release

CMHD = cumulative modules handled up to day D

IZ = error.

This model is applicable for software having multiple versions and evolving for a

long period of time, for instance, an operating system.

28

Estimation Of Time Between Failures Model

Crow and Singpurwalla [76] argue that software failure may occur in clusters.

Also addressed by Ramamoorthy and Bastani [285], failure data may come in

clusters at the beginning of each testing when different testing strategies are

applied one after another. To investigate whether clustering happens

systematically, a Fourier series was used to represent time between failures [76].

Data from two software projects were analyzed. However, no statistical test was

done to assess the adequacy of this model.

Estimation Of Failure Rate Model

Isotonic regression has been proposed to estimate the failure rate of a software.

Given failure times t, %, a rough estimate of failure rate at the ith failure

interval is

1

tl,a - t Jt

Assuming that the failure rate is monotonically nonincreasing, an estimate of this

function k°,, i=l, 2 n can be found by the least squares fit to the _i ' i=l,

2 n. This problem can be written as a quadratic programming problem:

Min _1._ (_i - X'I)2 (tl - ti-I)

subject to

x___- _._ > o

29

x: :_ o.

The objective function is tile least squares fit of _.*_,and the constraints ensure

monotonically nonincreasing of _.',.

This nonparametric estimation of program failure rate has been suggested by

Gubitz and Ott [122] and Miller and Sofer [235]. By imposing different

assumptions to the problem, for example, monotonicity and convexity of the

failure rate function, or equal spaced time intervals [235], the isotonic regression

problem can be formulated into different forms.

2.3.6 Models in The Reliability Growth Group

Widely used in hardware reliability to measure and predict the improvement of the

reliability program, the reliability growth model represents the reliability or failure rate of a

system as a function of time, testing stage, correction action, or cost. Dhillon [84]

summarizes 10 reliability growth models developed for hardware systems. This empirical

approach is also adapted for predicting the progress of a software debugging process.

Reliability growth models reported for software are summarized below.

Duane Growth Model

Plotting cumulative failure rate versus cumulative hours on log-log paper, Duane

observed a linear relationship between the two. This model can be expressed as

Z,c(t)= N(t) / t = atm

and

log _.c= log a- 13log t

30

where

N(t) = cumulative number of failure

t = total time

kc = cumulative failure rate

a, [5 = parameters.

The above fornaula shows that log Lc is inversely proportional to log t. This

model was adapted by Coutinho [73] to represent the software testing process.

He plotted the cumulative number of deficiencies discovered and the cumulative

number of correction actions made versus the cumulative testing weeks on log-log

paper. These two plots revealed a find-and-fix cycle, and are jointly used to

predict the testing progress. The least squares fit can be used to estimate the

parameters of this model [841.

Wall and Ferguson Model

Wall and Ferguson [381] proposed a model similar to the Weibull growth model

for predicting the failure rate of a software during testing. They used the

following notation:

N(t) = cumulative number of failures at time t

M(t) = maturity (man-months of testing, CPU time, calendar time, or number of

tests)

Mo = _:aling constant

No = parameters to be estimated

_,(t) = failure rate at time t

Lo = initial constant failure rate

G(t) = M(t)/Mo.

31

The model is summarized as follows:

N(t) = No [G(t)l _

L(t) = N'(t) = NoG'(t) [G(t)l __ .

Let NoG'(t) = _, then

_,(t) = _ [G'(t)l 13-t

= (7%/ 13)13[G'(t)l_t •

For 0 < [3 < 1, k(t) is a decreasing function of t. By letting a = X_/13,this model

is similar to the Weibull growth model with failure rate

.(t) = al3tI' .

This is the failure rate when failures follow the Weibull distribution. Note that

the failure rate of the Weibull growth model can be derived from the Duane

model. The MLEs of Weibull parameters can be found in [84]. Wall and

Ferguson [381] tested this model on six software projects and found that failure

data correlate well with the model. In their study, 13lies between 0.3 and 0.7.

Wagoner's Weibull Model

Adapted from hardware reliability, Wagoner [380] uses a Weibull distribution to

represent time between program failures. Let

f(t) = density function of time between failure

L(t) = failure rate function

R(t) = reliability function

a,13 = scale and s_.ape parameters

n = total number of rg;lures

32

n_ = number of failures up to the ith time interval

F(t) = nl/n.

The Weibull distribution has the following properties

f(t) = alB(at)I_t exp [-(at) I_]

R(t) = 1 - F(t)= exp [-(at)_]

and

k(t) = al3(at)_' .

The parameters estimation can be found in [380].

Logistic Growth Curve Model

Suggested by Yamada and Osaki [398], the logistic growth curve model has been

used to represent the cumulative number of errors detected during debugging.

The expected cumulative number of errors, ro(t), detected up to time t is

m(_) - k
l+ae-P t

where k, a, and 13are parameters to be estimated by regression analysis.

Gompertz Growth Curve Model

Nathan [261] adapted the Gompenz model to represent the cumulative number of

errors corrected up to time t. The model has an S-shaped curve with the

following form

N(t) = aAYt

where

a = number of inherent errors

N(O) = number of corrections made before the first test interval is completed

33

N(t) = cumulative number of errors corrected at time t

A = N(O)/a

In _, = correction rate.

The above formula can be written as

In [In (N(t)/a)] = In [In (N(O)/a)] + t In y

where a is the upper limit of N(t) when t approaches infinity.

The Gompertz model has been used in hardware reliability to predict system

reliability. The model is as follows

R(t) = aB vt

where R(t) is the system reliability, a is the reliability upper bound, and "fis the

rate of improvement. One method of estimating the parameters is given in

Dhillon [84].

Hyperbolic Reliability Growth Model

Sukert [354] adapted the hyperbolic reliability growth model to represent the

debugging process of software. He assumed that testing is divided into N stages,

each consisting of one or more tests until a change is made. Success counts and

failure counts are recorded and fitted to the model.

The following notation is used:

j = testing state

Rj = reliability at the jth state

y = growth rate

34

Ro. = upper bound of the software reliability.

The reliability of the software at stat,_ j is

Rj = R_. - 7/j

and the least squares estimates of Ro. and 7 are in [209].

2.3.7 Models in The Program Structure Group

By using structure design and structure programming, a program cao be decomposed

into a number of functional units. These functional units or modules are the basic building

blocks of sof:ware. The program structure model studies the reliabilities and interrelationship

of the modules, lt is assumed that failures of the modules are independent of each other.

This assumption is reasonable at the module level since they can be designed, coded, and

tested independently, but may not be true at the statement level. Two models involving

program structure are discussed below.

Littlewood Markov Structure Model

Littlewood's model [213] represents the transitions between program modules

during execution as the Markov process. Two sources of failures are considered

in the model. The first _;ource of failure comes from a Poisson failure process at

each module. It is recognized that as modules are integrated, new errors will be

introduced. The second source of failure is the interface between modules.

Assuming that failures at modules and interfaces are independent of each other,

Littlewood has shown that the failure process of the entire program is

asymptotically Poisson. Let

N = number of modules

P=(Pij) = transition probability matrix of the process

A=(a_j) = infinitesimal matrix of the process

35

_Li = Poisson failure rate of module i

qu = probability that transition from module i to module j fails

Fl=(x_) = limiting distribution of the process

ll'_j = first moment of the waiting time distribution.

It can be shown that [213] as _,_and % approach zero, the program failure process

is asymptotically a Poisson process with rate

N

Littlewood extends the above model by relaxing the assumption of exponential

waiting time at each module. He assumes that the waiting time distribution can

be approximated by its first and second moments. As _,_and % approach zero,

the program failure process is asymptotically a Poisson process with rate

where ai represents the proportion of time spent in module i and b_jis the

frequency of transition from i to j.

Cheung's User-oriented Markov Model

Cheung's user-oriented software reliability model [69] estimates program

reliability by representing a program as a reliability network. He uses a Markov

model to represent the transitions among program modules and assumes that

program modules are independent of each other. The execution starts with entry

module N and ends with an exit module N,. As the reliability of each module

and the transition probability matrix of the Markov process are determined, *.he

36

reliability of the program is the probability of successful execution from entry

module to exit module at or before n steps. Let

n = number of modules

N_ = module i

= reliability of module i

W = the nth power of matrix P

I = identity matrix

R_ = reliability of the program

C = state of correct output

F = state of failure

Q=(qij) = transition probability matrix of the module transition

P=(p_j) = transition probability matrix of the Markov process

R = diagonal matrix with _ at R(i,i) and zero elsewhere

M.. = Minor of W(n,1)

0. • •R.]2_mG r = [i-Rz...I-R n

Then

I 0

P = [G RQ]

and

a_ = P"(NI,C)
= S(N I, %) Rn

where

S = _ (RQ) k = (I - RQ) I = W-1 .
k-O

Besides the evaluation of program reliability, a sensitivity analysis can be

conducted to determine the most important module with the network. The

37

importance of module i is defined as

I i = c)R/c)R i

where

R = Rn(-I) n+' IMo, I/IWI •
!

2.3.8 Models in The Input-Domain Group

Basic Input-Domain Model

A program maps the input space to the output space. Input space is the set of ali

possible input states. Similarly, output space is the set of all possible output

states for a given program and input space. During the operational phase, some

input states are executed more frequently than the others. A probability can be

assigned to each input state to form the operational profile of the program. This

operational profile can be used to construct the input-domain software reliability

model.

In the input-domain model [264], software reliability is defined as the probability

of successful run(s) randomly selected from the input space. Therefore, the

reliability of one run, R(1), can be defined as

R(1) = _ p_e_
"-F

e_ = { 0 if'I ifails1 otherwise
or

R(1) = 1 - lim --Fz
N-.. N

38

where

I_ = input state i

Pi = probability of running the ith input state

F_ = number of failures in N runs

N = number of runs

R(k) = reliability over k runs.

In the operational phase, if errors are not removed when failures occur, the

probability of experiencing k failures out of M randomly selected runs follows a

binomial distribution:

Pk-I ,M.I[I- R(1)]k [a(1)]"-ki

During the testing phase, a sequence of M tests are selected randomly from the

input space without repeating the same test. Then, the probability of k failures

out of M runs follows a hypergeometric distribution:

G(k;N, FI, M) = M-k]

If a sequence of k runs is not selected randomly from the operational profile, R(1)

may be different for each run. In general, the reliability of k runs can be

expressed as 12651

k

a(k) - IIaj(_)
J-1

where

R(k) = reliability over k runs

Rj(1) = R(1) of the jth input.

39

The maximum likelihood estimate of R(1) can be obtained by running some test

cases. It can be expressed as

N_

where

F t = number of test cases that cause failure

N t = number of test cases.

Since the number of elements in the input space is a very large number, the

number of test cases has to be large in order to have a high confidence in

estimation. To simplify the estimation of R(1), Nelson [265] modifies the above

basic model by assuming that the input space is partitioned into m sets. As test

cases are selected from each partition and ali the errors from the test cases are

removed, the reliability of one run can be formulated as

R(1) = _ p_ (I- f_)
-F

where

p_ = probability that an input is from partition i

f_ = probability that an input from partition i will cause failure.

Input-Domain Based Stochastic Model

The input-domain based stochastic model was proposed by Ramamoorthy and

Bastani [285]. Unlike the failure rate model, which keeps track of the failure rate

at failure times, this model keeps track of the reliability of each run given a

certain number of failures have occurred.

40

The following notation is used in the discussion:

j = number of failures occurred

k = number of runs since the jth failure

Tj(k) = testing process for the kth run after the jth failure

f(Tj(k)) = severity of testing process; 0 < f(Tj(k)) < 1/_.

kj = error size given j failures have occurred; a random variable

Vi(k) - probability of failure for the kth run after j failures; f(Tj(k))kj

Rj(k Ikj) = probability that no failure occurs over k runs after j failures

Exj(.) = expectation over _,j

Aj = size of the jth error

X = random variable that follows distribution F.

Then

k

P.jCkIAj) - n [I- vj(i)]
k

= II [i - f(Tj(i))_j]
i-I

and

k

Rj(k) = E_ [n [I - f(Tj(i))Aj]] .i=i

2.3.9 Models in The Execution Path Group

The basic idea of the execution path model is similar to that of the input-domain

model. The model is based on (1) the probability that an arbitrary path is selected, (2) the

probability that an arbitrary path will cause a failure, and (3) the time required to execute a

path. By partitioning the input space into disjoint subsets, some authors [265,328] implicitly

assume that each partition corresponds to a logic path. Since one logic path may include

41

more than one physical path and two logical paths may share the same physical path, the

question of whether the execution path model should be based on logical path or physical

path remains unanswered.

If the logical path approach is used, testing should start with partitioning the input

space and finding out the logic path for each partition. The test cases can then be selected

from the disjoint subsets. If the physical path approach is used, testing should start with

enumerating ali the possible paths [228]. The test cases are then selected from those paths.

Since the relationship between input state, partition of input state, and path, is not readily

apparent, the execution path model is discussed separately from the input domain model.

Shooman Decomposition Model

The decomposition model proposed by Shooman [328] assumes that the program

is designed using structured programming methodology. Hence, the program can

be decomposed into a number of paths. He also assumes that the majority of the

paths are independent of each other. Let

N = number of test cases

k = number of paths

t_ = time to run test i

E(ti) = expected time to run test i

qi = probability of error on each run of case i

q0 = probability of system failure on each run

f_ = probability that case i is selected

nf = total number of failures in N test

H = total testing hours

Lo = program failure rate.

42

Then

k

nt = N_._ f_q_

and

qo : lim nf/N.
N-.,,

Assume that on the average a failure in path i takes tj2 to uncover,

k

H : N_.a fati(l - q_/2)

and

1 o : lim nf/H.
N-O

This model is very similar to the basic input-domain model. If R(1) denotes the

reliability of an arbitrary path, then

k

2.3.10 Models in The Nonhomogeneous Poisson Process Group

The nonhomogeneous Poisson process model (NHPP) represents the number of

failures experienced up to time t as an NHPP, {N(t), _0}. The main issue in the NHPP

model is to determine an appropriate mean value function to denote the expected number of

failures experienced up to a certain time point. With different assumptions, the model will

end up with different functional forms of the mean value function.

43

One simple class of NHPP model is the exponential mean value function model, which

has an exponential growth of the cumulative number of failures experienced. Musa

exponential model 12591 and Goel and Okumoto NHPP model [1191 belong to this class.

Other types of mean value functions suggested by Ohba I268] are the delayed S-shaped

growth model, inflection S-shaped growth model, and hyperexponential growth model.

The NHPP model has the following assumptions 13321.

• The failure process has an independent increment; i.e., the number of failures

occurred during the time interval (t, t+sl depends on current time t and the length

of time intervals s, and does not depend on the past history of the process.

• The failure rate of the process is

Pr{exactly 1 failure in (t,t+At) = Pr{N(t+At) - N(t)=l}

= k(t) At+ o(At)

where k(t) is the hazard function.

• During a small interval, At, the probability of more than one failures is negligible,

i.e.,

Pr {2 or more failures in (t, t+m)} = o(At) .

• Initial condition is N(0)=0.

Based on the above assumptions, it can be shown that N(t) has a Poisson distribution

with mean lt(t), i.e.,

Pr {N(t) -k} [I_ (t)]k_ e-_(c)
k!

By definition, the mean value function of the cumulative number of failures, It(t), can

be expressed in terms of the failure rate of the program, i.e.,

44

_(t) = fot A(s) ds.

The reliability function of the program is

R(t) - e -_(_ = exp[-f_ A(s) ds] i

Jo

The exponential growth curve is a special case of NHPP with

and

A(t) = Nf(t) =N_(t)e_[-L_(s)ds]

where

¢(s) = a proportional function of s

N = is the number of initial errors.

Based on the above general NHPP model, some special models are discussed below.

Musa Exponential Model

The Musa exponential model [2591 can be summarized as

_(t) =

_t(t) = Xo [1 - e*"'l

and

k(t) = Xo _ B e .*m

= (I)B [Xo- _(t)l.

45

Goel and Okumoto NHPP Model

The Goel-Okumoto model [119] has mean value function of

It(t) = N(1 - e*')

and

x(t) -
= /V_ e4t,

where

N = the number of initial errors

Cp = a proportional constant.

An extension of the exponential mean value function model has been suggested

by Yamada and Osaki [399]. They assume that faults come from different

sources with different failure rates. Let

n = number of types of fault

_ = failure rate of each type i fault

Pi = probability of type i fault.

Then

n

I_ (t) = N _-1 p_t[1 - e-#'c]"

Delayed S-shaped Growth Model

The delayed S-shaped model I268,391] divides the debugging process into a fault

detection stage followed by a fault removal stage. A fault is said to be removed

46

from the program if it goes through both stages. By assuming that the probability

of fault detection is proportional to the number of faults not detected, and the

probability of fault removal is proportional to the number of faults detected but

not removed, this model can be expressed by the following differential equations

h'(t) = alN- h(t)l

It'(t) = Xlh(t) - kt(OI

where

N = number of initial faults

h(t) = number of faults detected at time t

_t(t) = number of faults removed at time t

a = detection rate of each undetected fault

_, = removal rate of each detected but not yet removed fault.

By further assuming that _t=X=¢, _(t) can be solved as

lt(t) = N [1 - (1 + (I)t)e Ot].

This function becomes the mean value function of the NHPP model.

Inflection S-shaped Growth Model

Ohba 12681 models the dependency of faults by postulating the following

assumptions:

• Some of the faults are not detectable before some other faults are removed.

• The detection rate is proportional to the number of detectable faults in the

program.

• Failure rate of each detectable fault is constant and identical.

• Ali faults t.:ali be removed.

47

Then, the program failure rate during the ith failure interval is defined as

X, = ¢ t,t_[N- (i-l)]

where B_is the proportion of detectable faults when i faults are removed, N is the

number of initial faults, and B_[N - (i-l)] is the number of detectable faults at the

ith failure interval. As more faults are detected, more dependent faults become

detectable. Therefore, the proportion of detectable faults is an increasing function

of the detected faults. Let this function be

l.ti=r+i(l-r)/N, 0<r_<l.

Based on the above formulation, it can be shown that the mean value function of

this NHPP model is

(t)- N(I - e_)
1 + (l-r) r -x e -_c

As r approaches 1, the above model approaches the exponential growth model.

As r approaches 0, the above model approaches the logistic growth model.

Hyperexponential Growth Model

The hyperexponential growth model [139,268] is based on the assumption that a

program has a number of clusters of modules, each having a different initial

number of errors and a different failure rate. Examples are new modules versus

reused modules, simple modules versus complex modules, and modules which

interact with h:,rdware versus modules which do not interact with hardware.

Since the sum of exponential distributions becomes a hyperexponential

distribution, the mean value function of the hyperexponential class NHPP model

is

48

fl

_(t) = _._N_[I - e_t]

where

n = number of clusters of modules

N_ = number of initial faults in cluster i

_i = failure rate of each fault in cluster i.

2.3.11 Models in The Markov Group

The Markov model is a generalized bug-counting model which represents the number

of remaining faults at time t, N(t), as a continuous time discrete state Markov chain. The

state of the Markov process is the number of remaining faults. The continuous time is the

exponential time-to-failure. Binomial type model and Poisson type model are special cases of

the Markov process.

A Markov process has the property that the future behavior of the process depends

only on the current state and is independent of its past history. This assumption seems

re_.sonable for software failure processes, lt can be argued that the future of a failure process

depends only on the number of remaining faults at the present time and is not affected by the

past error content [248].

A general Markov process allows transitions to occur from any state to any other state.

In other words, multiple faults can be removed or introduced at each debugging. This model

is suggested by Sumita and Shanthikumar [355]. In practice, there were not enough failure

data to estimate ali parameters of the transition probability matrix. Some models have been

developed as special cases of the Markov chain. They are the linear death mcdel with perfect

debugging, stationary linear death model with imperfect debugging, and nonstatlonary linear

death model with perfect debugging. These models are discussed below.

49

Linear Death Model With Perfect Debugging

The Jelinski and Moranda model [150] is essentially a linear death model with

perfect debugging. Let

Pij = probability of transition from state i to state j

Pk(t) = Pr{N(t)=k}; probability of k remaining fault at time t.

= failure rate of each fault.

The transition probabilities can be expressed as

1 j=i-1

p_j = 1 i=j=0

0 otherwise i,j = 0,1 N

and the transition rate diagram is shown in Figure 2.2.

The differential-difference equation of Pk(t), say P'k(t), is

P'k(t) = (k+l) _ P_+_(t) - k _ Pk(t).

Solving the above equation with the initial condition N(0)=N, ali the performance

measures of the J-M model derived in the binomial model can also be derived

from this Markov chain point of view.

Linear Death Model With Imperfect Debugging

Suggested by Goel and Okumoto [116,117], the transition probabilities of the

linear death model with imperfect debugging can be expressed as

50

p , j=i-I

q=l-p, j=i

p_j = 1 , i=j---0

0 , otherwise i,j = 0,1 ,N

where p is the probability of successful debugging. The transition rate diagram is

shown in Figure 2.3.

This model assumes a probability q of not removing the fault whenever a failure

occurs. Some performance measures are summarized as follows. The expected

number of remaining faults at time t is

M(t) = E[N(t)] = Ne v_,.

The expected number of failures up to time t is

la(t) = EIX(t)] = N/P [1 - ep¢t].

The expected number of imperfect debugging errors by time t is

la_(t)= q la(t).

The reliability function of the kth failure interval is

k-1

where

_'j (c) ---e-J*c.

It has been shown [116] that

Rk(t) - exp{-[N - p(k-1)] _t}.

51

Figure 2.2 Linear death with perfect debugging

Figure 2.3 Linear death with imperfect debugging

(k-l) p_ kpa

• Q •

52

Nonstationary Linear Death Model With Perfect Debugging

Suggested by Shanthikumar [319,320], the transition probabilities of the

nonstationary linear death model with perfect debugging can be expressed as

1 , j=i-1

p,j = 1 , i=j=O

0 , otherwise j=0,1 N

and the transition rate diagram is shown in Figure 2.4.

Figure 2.4 Nonstationary linear death with perfect debugging

• • qJ

53

The differential-difference equation of P_(t) is

P'_(t) = (k+l) O(t) P_+,(t) - k O(t) P_(t).

Solving the above equation with the initial condition N(0) = N,

Pk(t)= (k)tF(t)l"-k[I - F(t)lk

where

F(t) = 1- exp I-lot,(s)ds].

This is the binomial type model derived in the failure rate model. Other

performance measures can be found in Section 2.3.4.

2.3.12 Models in The Bayesian Group and Models in The Unified Group

The Bayesian model and unified model are two other types of probabilistic software

reliability models. The Bayesian approach was discussed by Jewell [151], Serra and Barlow

[317], Kuo [181], Littlewood [206,209], Littlewood and Verrall [217], and Langberg and

Singpurwalla [183]. Besides the nonstationary linear death models [176,181], other unified

models are the exponential order statistics model by Miller [234], and Scholz [311], and the

shock model by Langberg and Singpurwalla [183].

54

2.4 Fault Tolerant Software Reliability Models

lt is important to provide very high reliability to critical applications such as aircraft

controller and nuclear reactor controller software. No matter how thorough the testing,

debugging, modularization, and verification of software are, design bugs still plague the

software. After reaching a certain level of refinement of the software, any effort to increase

the reliability even by a small margin will take exponential cost. Consider, for example, a

fairly reliable software subjected to continuous testing and debugging, and guaranteed to have

no more than 10 faults throughout the life cycle. Now, in order to improve the reliability

such that, for example, only 7 faults may be tolerated, the effort and cost to guarantee this

may be enormous. An alternate approach to increase fault tolerance is to provide redundancy.

Redundancy has been accepted as a viable approach to obtain reliability from unreliable

components.

Fault tolerant software assures the reliability of the system by use of protective

redundancy at the software level. There are two main techniques for obtaining fault tolerant

software:

• Recovery Block scheme

• N-Version Programming

2.4.1 Recovery Block Scheme

The recovery block scheme [9, 288] consists of three elements: (1) a primary module,

which executes critical software functions, (2) an acceptance test, which tests the output of

the primary module after each execution, and (3) a set of alternate modules, which performs

the same function as the primary module.

55

The simplest scheme of the recovery block is:

Ensure T

By P

Else by Ql

Else by Q2

Else by Q_._

Else Error

where T is the acceptance test condition that is expected to be met by successful execution of

either the primary module P or the alternate modules Q_, Q2..... Q_._.

When the failure of the primary module is detected by an acceptance test, an alternate

module is executed• If ali the alternate modules are exhausted, the system crashes. Pham

and Upadhyaya [277] have developed a model to obtain the optimal number of modules in

the recovery block scheme given the reliabilities of the individual modules• An optimization

model for a modified recovery block scheme is also given in [38], and a numerical method is

used to obtain the solution•

2.4.2 N-Version Programming

N-version programming (NVP) [65] is defined as tile independent generation of N > 2

functionally equivalent programs, called versions, from the same initial specification [15].

Independent generation of programs means that the programming efforts are carded out by N

individuals or groups that do not interact with respect to the programming process. Whenever

possible, different algorithms, techniques, programming languages, environment, and tools are

used in each effort [65].

56

N-version programming is the software equivalent of the N-Modular Redundancy

technique. In this technique, N program versions are executed in parallel on identical input

and the results are obtained by voting upon the outputs from the individual programs. The

advantage of NVP is that when a version failure occurs, no additional time is required for

reconfiguring the system and redoing the computation [274]. Pham [274] has given a cost

model to obtain the optimal number of program versions that minimizes the expected cost of

the NVP scheme. Pham further determined the optimum number of versions that minimizes

the expected total system cost subject to a restricted type I design error. The problem of

maximizing NVP system reliability subject to a constraint on expected system cost is also

obtained in [2741.

The main difference between the recovery block scheme and the N-version

programming is that the modules are executed sequentially in the former. Therefore, recovery

block generally is not applicable to critical systems where real-time response is of great

concern, thus precluding it from our discussion.

N-version programming has been researched thoroughly during the past decade.

Correlated errors form a main source of failure of the N-version programs. Correlated errors

can be minimized by design diversity [14, 15, 302]. A design paradigm has been developed

to assure design diversity in N-version software [221]. Several experiments have been

conducted to validate the assumption of error independence in multiple versions [169], to

analyze the types of faults [49, 327], to investigate the use of self checks and voting in error

detection [192], and to establish the need for a complete and unambiguous specification [162].

The problem of consistent comparison has been investigated in [50] and the voting algo, izhms

have been studied in [1091, [2201. There has been some effort on modeling the reliability of

fault tolerant software [1, 11,202, 267, 312, 3971. An environment for developing fault

tolerant software has been discussed in [281].

However, in critical systems with real-time deadlines, voting at the end of the

program, as in the basic N-version programming, may not be acceptable. Therefore, voting at

57

intermediate points is called for. Such a scheme, where the comparison of results is done at

intermediate points, is called the Community Error Recovery (CER) scheme [3751 and is

shown to offer a higher degree of fault tolerance compared to the basic N-version

programming [65]. This approach, however requires the synchronization of the various

versions of the software at the comparison points.

Another scheme which adopts intermediate votir_g is the N self checking programs

[185], where each version is subject to an acceptance test or a checking by comparison.

Whenever a particular version raises an exception, the correct result is obtained from the

remaining versions and execution continued. This method is not much different from the

CER approach, the only difference being the on-line detection in the former by an acceptance

test rather than a comparison.

lt is apparent from this literature study that there has been no significant advance in

the reliability enhancement literature for the past 15 years or so. Most of the papers

appearing recently on software fault tolerance are variations of the well known N-version

programming or recovery block schemes. In Section 4, we propose a new approach, called a

self checking duplex system, for the enhancement of software reliability. This scheme

incorporates redundancy at two levels and can increase the reliability of software in critical

systems to significant levels.

This section has reviewed classification of the software reliability models (mainly by

the modeling techniques) and fault tolerant software reliability models. Table 2 summarizes

related references for each category. These models are the fundamental sources for the study

of software-related problems. Besides reliability assessment, systems reliability optimization,

system design, reliability cost model, and hardware software systems, these are other areas in

which software reliability models can be applied.

58

Table 2 Summary of References
II IIIIII

Group Models References

General Software 2, 26, 64, 7981, 85, 91, 114, 120, 121, 130, 133, 142,

Reliability Models 143, 173, 193, 194, 212, 219, 248, 253, 293, 299, 321,
332, 340, 354, 359, 363, 374

Error Analysis 6, 98, 112, 146, 245, 246, 290, 300, 371,373

Software Science 123, 197, 307, 324, 325

Complexity Metrics 27, 28, 29, 30, 31, 66, 92, 102, 110, 144, 153, 198, 228,
241,279, 294, 295, 318, 324, 341,361,371,382, 387,
405

Error Seeding Group 28, 32, 139, 289, 305, 306, 369

Curve Fitting Group 37, 40, 58, 76, 122, 127, 235, 338, 361

Failure Rate Group 10, 28, 63, 80, 86, 113, 126, 150, 152, 172, 205, 206,
207, 208, 210, 211,214, 242, 243, 262, 263, 320, 330,
_45

Reliability Growth Group 73, 75, 84, 204, 261,381

Program Structure Group 19, 69, 213, 216, 308, 357, 358

Input-Domain Group 33, 264, 265, 283, 285, 340, 343, 349, 360, 385

59

Execution Path Group 89, 90, 93, 328

" Nonhomogeneous Poisson 68, 119, 124, 181,238, 250, 251,257, 259, 268, 297,
Process Group (NHPP) 347, 401

Markov Group 116, 117, 176, 187,215, 319, 331,355

Bayesian Group 3, 151,206, 209, 217, 304, 364, 365

Other Unified Group 19, 171, 183, 234, 311

Cost Models 60, 87, 103, 104, 107, 115, 170, 181, 198, 256, 272, 273,
296, 324, 400

Hardware-Software Systems 61, 118, 128, 129, 131, 167, 182, 340, 356, 364, 365

General Fault Tolerant Systems 1, 8, 9, 11, 16, 34, 39, 41, 60, 62, 71, 72, 95, 132, 149,
164, 185, 187, 189, 220, 222, 233, 266, 281,301,302,
313, 327, 336, 362

N-Version Programming 14, 15, 49, 50, 65, 109, 132, 162, 169, 192, 221,312,
379

Recovery Block 9, 78, 132, 166, 277, 288, 312

Other Fault Tolerant Approaches 11, 12, 38, 174, 184, 221,267, 312, 377

60

3. PROPOSED TECHNIQUE FOR SOFTWARE RELIABILITY

ENHANCEMENT

Before one could apply the N-version programming schemes to enhance the reliability

of critical software, such as the nuclear reactor controller system, their feasibility should first

be determined. Nuclear reactor controller software requires ultra-high reliability. The

existing N-version schemes may not be able to offer the required reliability because of

vulnerability to failures due to identical causes. If the majority of the versions fail because of

common design error, then a wrong result may be gi"en by voting on incorrect outputs. The

likelihood of common-cause failures in nuclear controller software cannot be ruled out

because of the complexity of the application.

Efforts to alleviate the common-cause failures include the development of diverse

versions by independent teams so as to minimize the commonalities between the various

versions of the software [14]. But according to recent research at the University of

Califomia, Irvine [49], the use of different languages and design philosophy has little effect

on the reliability in N-version programming because people tend to make similar logical

mistakes in a difficult-to-program part of the software. Thus, in the presence of a common-

cause failure ali the different variations of the N-version programming prove to be equally

useless, lt seems beneficial to have a single version in order to minimize cost.

According to the latest research ota the topics related to software reliability, fault

tolerance is a highly recommended application for the nuclear reactor control system to

improve the reliability of the embedded software. However, a new approach that could

alleviate the weakness of the existing fault tolerant software reliability models is even more

desirable.

61

In this section, we propose a new technique called Self-Checking Duplex System

applicable to real time software embedded systems. Section 3.1 presents more details about

this new technique. Further research is proposed to design a model using this technique.

Also, new design guidelines are proposed to reduce or eliminate the common cause failures in

software programs. These guidelines are presented in Section 3.2.

3.1 Self-Checking Duplex System

The University of Califomia, Irvine [49] research suggests not to go for N-version if it

is known that the probability of making common mistakes while programming cannot be

totally avoided. Instead, we recommend (1) developing fewer versions, (2) minimizing the

errors in the individual versions, and (3) minimizing/eliminating the incidence of common-

cause failures in these versions.

If individual versions are made highly reliable, an ultra-high reliability can be

achieved merely by having two versions. These two versions should be made self-checking

and should work simultaneously as a duplex system as shown in Figure 3.1. If one of the

versions (module i in the illustration of Figure 3.1) raises an exception, correct results can be

obtained from the other version as shown in the F_gure 3.1. We call this new approach a

self-checking duplex system. Figure 3.1 shows a simple architecture of the proposed system

where both versions are represented by a sequence of Ns modules.

Although N self-checking versions can be used [185], our preliminary studies show

that two versions are sufficient to raise the reliability to acceptable levels using our new

approach, lt is also more practical to have as few self-checking versions as possible because

of the high cost of developing N different self-checking versions.

Self-checking software can be developed in a variety of ways [138, 404]. Self-

checking provides an online detection of errors and prevents the contamination of the

62

Figure 3.1 Duplex System

I

63

software by not letting the errors manifest. Software integrity can be assured by testing for

illegal branching, infinite loops, wrong branching, etc., and testing for functionality and

reasonableness of the results, lt is easier to incorporate self-checking assertions into the

software during the design stage, because the team that develops the software is expected to

have the best understanding of the problem. A good understanding of the application and the

algorithms is deemed important for creating and placing meaningful assertions in the code.

Both local and global self-checking assertions need to be incorporated to guarantee a high

reliability. Hua and Abraham provide systematic method for developing the self-checking

assertions [138]. In the following paragraphs we show how self-checking assertions can

provide ultra-high reliability.

Let the executable assertions be inserted in a module both locally and globally. By

inserting local and global assertions, it is possible to check not only the internal states of the

modules, but also the input/output specifications. Because the inputs to an intermediate

module such as i + 1 (see Figure 3.1) are reset to the correct value by the corresponding

module of the other version if and only if an error is detected, any undetected error at module

i will propagate to the next module i+l. Let p represent the probability of detecting an error

in module i of a self-checking version. Now, given that an error goes undetected at the iu,

i+l rh, i+l-1 thmodule, the probability of this error being detected at the i+lth module of the

version is

P_ = P " .i

This probability is very high as described in the following paragraph.

Suppose that the probability of detecting a design error at a particular module by self-

checking is 0.9. If an error is not detected at this module, the probability of this error being

detected at the following module is 0.99 and the probability of detecting it at the next module

is 0.999 and so on. This establishes that self-checking assertions could be a very powerful

tool in increasing the software reliability.

64
-

The self-checking duplex system incorporates fault tolerance in two layers. The first

layer of protection is provided by self checking assertions. The second layer is duplication.

In the self-checking system, if one of the versions detects an error at the end of the current

module, results are obtained from the other version. After exchanging the correct results,

both versions will continue execution in a lock-step fashion. Finally, the outputs of the

duplicated versions are compared for consistency before accepting the result as correct. By

keeping the size of the modules sufficiently small, a larger number of errors can be masked

by this approach. However, too small a size for the module will increase the overhead of

implanting the self-checking assertions. The analysis of the reliability and the optimal

modules size selection requires further research. This is a significant part of the proposed

research.

Common-cause failure is still a problem in the self-checking duplex system. There ts

no known technique to address this in N-version programming. Therefore, it can only be

attempted to reduce the common-cause failures by design diversity. Next, we discuss and

provide some guidelines to reduce the probability of common-cause failures.

3.2 Reduction of Common-Cause Failures

Clearly, a complex software is developed in a modular fashion and not ali the modules

are equally complex and difficult to design. Therefore, it will be an accurate statement if we

say that the common-cause failures are confined to the "difficult to logically understand and

design" part of the problem. The common-cause failures can be reduced if such critical parts

are identified and certain design guidelines are followed.

We propose the following design guidelines that will reduce or eliminate the common-

cause failures:

65

• Techniques to identify critical parts in a program. Generally, the control flow

complexity of an algorithm indicates the level of difficulty. We can therefore use

the McCabe measure to identify the critical parts of a program [228].

• The manager of the project should identify the critical sections of the problem,

meet with the program development teams individually, and steer them to

different techniques for solving the critical parts. As an example, suppose that

the critical part involves sorting a file; then, one team should be asked to use,

Quicksort [5]. The other team should be asked not to use Quicksort but to use

some other naive scbeme. In this way, the probability of committing identical

logical mistakes can be reduced or eliminated.

Our proposal will address the development of additional design guidelines to minimize

the common-cause failures.

66

4. GENERAL DISCUSSION AND FUTURE RESEARCH

Enhancement of reliability of a software module followed by a global enhancement by

maintaining multiple versions of the software will bring the reliability to reasonable levels.

Such an approach [67] has found success in Wafer Scale Integration and we would like to

apply this concept to software reliability improvement. Our analysis shows that if a single

version is made sufficiently self-checking, design errors can be caught with very high

probability and corrected appropriately with a very high probability by duplication.

It is essential to estimate the reliability of the software before any redundancy

schemes, such as the self-checking duplex scheme proposed here, can be applied. Techniques

should be developed to estimate the number of errors that remain in the application software

at the time of release; then, if the reliability is below acceptable levels, the test expenditure

has to be spent on debugging and testing to obtain the desired level of reliability. Kubat and

Koch [179] investigated several test protocols to estimate the number of remaining errors in a

system at the time of software release. Singpurwalla [339] has presented a decision-theoretic

approach to determine the optimal time interval for testing and debugging software. Based on

these techniques, we propose to develop a model to predict the reliability of a software

program. This model will greatly help in determining the amount of effort required before

stopping testing and debugging of the software.

Computers used in harsh environments, such as the nuclear power industry, may be

subject to radiation. Radiation, power supply glitches, humidity, and vibration, may give rise

to what is called hardware-induced software faults. Such faults are generally transitory, but

may be sufficient to disrupt computation. Interestingly, the majority of failures in computer

systems has been recognized to be of temporary nature, including operator faults. Although

the proposed self-checking duplex system provides fault tolerance to design errors, it can also

handle a class of transient faults. However, transient faults that affect both versions cannot be

67

tolerated by the self-checking duplex system. In such cases, a backward error recovery such

as checkpointing and rollback [377] can be used.

In summary, we propose to investigate the following seven problems:

1. Develop a model to predict the reliability of a single software program.

2. Develop a cost model to determine the optimal time interval for testing the

software.

3. Develop a technique for the development of self-checking software versions.

4. Evaluate the performance of the self-checking duplex system and the development

of an appropriate reliability model to estimate the reliability of the fault tolerant

software.

5. Determine the optimal size of modules in the self-checking software versions.

6. Develop general and more comprehensive design guidelines to minimize the

common-cause failures among the various versions of the software.

7. Consider hardware-induced software errors in the nuclear reactor controller

software.

68

REFERENCES

[1] Abbott, R. J. "Resourceful systems for fault tolerance, reliability, and safety," ACM
Computing Survey, Vol. 22, No. 1, March 1990.

[2] Abdel-Ghaly, A. A., P. Y. Chan, and B. Littlewood. "Evaluation of competing
software reliability predictions," IEEE Transactions on Software Engineering, Vol.
SE-12, No. 9, 1986.

[3] Adams, E. N. "Optimizing preventive service of software products," IBM Journal
Research and Development, Vol 28, No. 1, 1984.

[4] Adams, E. N. "Minimizing cost impact of software defects," IBM Research Division,
Report, RC 8229 (35669), April 1980.

[5] Aho, A. V., J. E. Hopcroft, and J. E. Ullman. "Data structures and algorithms,"
Addison-Wesley, 1983.

[61 Akimaya & Fumo. "An example of software system debugging," IFIP Congress, 1971.

[7] Anderson, E. E. "A heuristic for software evaluation and selection," Software -

Practice and Experience, Vol. 19, No. 8, August 1989.

[8] Anderson, T., P. A. Barrett, D. N. Halliwell, and M. R. Moulding. "Software fault
tolerance: An evaluation," IEEE Transactions on Software Engineering, Vol. SE-11,
No. 12, 1985.

[9] Anderson, T. and P. A. Lee. Fault tolerance: Principles and practice. Englewood Cliffs,
NJ: Prentice-Hall, 1981.

[10] Angus, J. E. "The application of software reliability models to a major CCCI system,"
Proceedings Annual Reliability and Maintainability Symposium, 1984.

[11] Arlat, J., K. Kanoun, and J. C. Laprie. "Dependability modcling and evaluation of
software fault tolerant systems," IEEE Transactions on Computers, Vol. 39, No. 4,
April 1990.

[12] Arlat, J., K. Kanound, and J. C. Laprie. "Dependability evaluation of software fault-
tolerance," in Proceedings 18th IEEE International Symposium Fault Tolerant
Computinz (Frcs-18), Tokyo, Japan, June 1988.

69

[13] Ashrafi, N., R. C. Baker, and J. P. Kuilboer. "Proposed structure for decomposition
software reliability prediction model," Software Information Technology, Vol. 35, No.
7, 1990.

[14] Avizienis, A., M. Lyn and W. Schutz. "In search of effective diversity: A six-language
study of fault tolerant flight control software". Digest of 18th International Symposium
on Fault Tolerant Computing, Tokyo, Japan, 1988.

[15] Avizienis, A. and J. P. J. Kelly. "Fault tolerance by design diversity: Concepts and
experiments," IEEE Computers, Vol. 17, August 1984.

[16] Avizienis, A. "Design diversity - The challenge of the eighties," in Proceedings 12th
Annual International Symposium Fault-Tolerant Computing, Santa Monica, CA, June
1982.

[17] Bai, D. S. and W. Y. Yun. "Optimum number of errors corrected before releasing a
software system," IEEE Transactions on Reliability, R-37, No. 1, 1988.

[18] Bail_:y, N. T. J. The Element of Stochastic Process, John Wiley & Sons, New York,
1964.

[19] Barlow, R. E. & N. D. Singpurwalla. "Assessing the reliability of computer software
and computer networks: an opportunity for partnership with computer scientists,"
American Statistician, Vol. 39, No. 2, 1985.

[20] Barrow, H. G. "VERIFY: A program for proving correctness of digital hardware
designs," Artificial Intelligence, Vol. 24, December 1984.

[21] Basili, V. R. "Quantitative evaluation of software engineering methodology," in
Proceedings First Pan Pacific Computer Conference, Melbourne, Australia, September
10-13, 1985.

[22] Basili, V. R. and B. T. Perncone. "Software errors and complexity: An empirical
investigation," Communications of the ACM, Vol. 27, No. 1, 1984.

[23] Basili, V. R. and R. W. Selby. "Data collection and analysis in software research and
management," in Proceedings America Statistic Association and Biometric Society
Joint Statistical Meetings, Philadelphia, PA, August 13-16, 1984.

[24] Basili, V. R. and R. W. Selby. "Comparing the effectiveness of software testing
strategies," IEEE Transactions on Software Engineering, Vol. SE-13, No. 12, 1987.

[25] Basili, V. R. and D. M. Weiss. "A methodology for collecting valid software
engineering data," IEEE Transactions on Software Engineering, Vol. SE-10, No. 6,

70

1984.

[26] Basili, V. R. & R. W. Selby, Jr. "Four applications of a software data collection artd
analysis methodology," NATO Advanced Study Institute, The Challenge of Advanced
Computing TechnoloJzv to System Desizn Method, 1985.

[27] Basili, V. R., R. W. Selby, & T. Y. Phillips. "Metric analysis and data validation
across Fortran projects," IEEE Transactions on Software Engineering, SE-9, No. 6,
1983.

[28] Basili, V. R. & D. H. Hutchens. "An empirical study of a syntactic complexity
family," IEEE Transactions on Software Engine_erinl_, SE-9, No. 6, 1983.

[29] Basili, V. R. & R. W Reiter. "Evaluating automable measure of software
development," Proceedings Workshop on Quantitative Software Models, 1979.

[30] Basili, V. R. & A. J. Turner. "Iterative enhancement: a practical technique for software
development," IEEE Transactions on Software Engineering, SE-1, 1985.

[31] Basili, V. R. & B. T. Perricone. "Software errors and complexity: an empirical
investigation," Communications of the ACM, 27, No. 1, 1984.

[32] Basin, S. L. Estimation of software error rates via caoture-recapture sampling. Science
Application, Inc., Palto Alto, CA., 1973.

[33] Bastani, F. B. An Input Domain Based Theory of Software Reliability and Its
Application. Ph.D. dissertation, University of California, Berkeley, 1980.

[34] Bastos Martini, M.R., K. Kanoun, and J. M. De Souza. "Software reliability evaluation
of the TROPICO-R switching system," IEEE Transactions on Reliability, Vol. 39, No.
3, 1990.

[35] Beaudry, M. D. "Performance related reliability measures for computing systems,"
Proceedings International Conference on Fault-Tolerant Computing, 1977.

[36] Belady, L. A. and C. J. Evangelisti. "System partitioning and its measure," Journal
.System Software, Vol. 2, No. 1, 1982.

[37] Belady, L. A. and M. M. Lehman. "A model of large program development," IBM
System Journal, Vol. 3, 1976.

[38] Belli, F. and P. Jedrzejowicz. "An approach to the reliability optimization of software
with redundancy," IEEE Transactions on Software Engineerh_g, Vol. SE-17, No. 3,
1991.

71

[39] Belli, F. and P. Jedrzejowics. "Fault-tolerant programs and their reliability," IEEE
Transactions on Reliability, Vol. R-39, No. 2, 1990.

[40] Bendell, T. "The use of exploratory data analysis techniques for software reliability
assessment and prediction," NATO Advanced Study Institute, .The Challenge of
Advanced Technology to System Design Method, 1985.

[411 Bhargava, B. "Software reliability in real-time systems," Proceedings COMPCON,
1981.

[42] Bishop, P. G. and F. D. Pullen, "Error masking: A source of failure dependency in
multiversion programs", in Proceedinzs 1st International working Conference
Dependable Computers Critical Aoolication, Santa Barbara, CA, August 1989.

[43] Bittani, S., Ed., Software reliability modelling and identification (Lecture Notes in
Computer Science, No. 341). Berlin:Springer, 1987.

[44] Boehm, B. W. Sqftware engineering economics. Englewood Cliffs, NJ: Prentice-Hall,
1981.

[45] Boehm, B. W. and R. W. Wolverton. "Software cost modeling: Some lessons learned,"
J._Svstem Softw_are, Vol. 1, No. 3, 1980.

[46] Boehm, B. W., J. R. Brown, & M. Lipow. "Quantitative evaluation of software
quality," Proceedings Second International Conference on Software Engineering, 1976.

[47] Boehm, B. W. "Software and its impact: a quantitative assessment," Datamation, 19,
No. 5.

[48] Bridgewater, K., J. L. Gersting, and D. Robers. "New conditions for N-version
programming," 1988 International Hawaii Conference 21st, Software Track.

[49] Brilliant, S. S., J. C. Knight and N. G. Leveson. "Analysis of faults in an N-version
software experiment," IEEE Transactions on Software Engineering, Vol. 16, No. 2,
February 1990.

[50] Brilliant, S. S., J. C. Knight and N. G. Leveson. "The consistent comparison problem
in N-version software," IEEE Transactions on Software Engineering, Vol. 15, Nov.
1989.

[51] Brocklehurst, S., P. Y. Chan, B. Littlewood, and J. Snell. "Recalibrating software
reliability models," IEEE Transactions on Software Engineering, Vol. SE-16, No. 4,
1990.

72

[52] Brooks, F. P. Jr. The Mythical Man-Month. Addison-Wesley, Reading, Mass., 1975.

[53] Brooks, W. D. and R. W. Motley. "Analysis of discrete software reliability models,"
Technical Report RADC-TR-80-84, 1980, Rome Air Development Center, New York.

[54] Brown, D. E. "A method for obtaining software reliability measures during
development," IEEE Transactions on Reliability, Vol. R-36, 1987.

[55] Brown, D. B., S. Maghsoodloo, and W. H. Deason. "A cost model for determining the
optimal number of software test case," IEEE Transactions on Software Engineering,
Vol. SE-15, No. 2, 1989.

[56] Brown, J. R. and M. Lipow. "Testing for software reliability," in Proceedings
International Conference Reliable Software, Los Angeles, CA, April 1975.

[57] Buckley F. J. & R. Poston. "Software quality assurance," IEEE Transactions Software
Engineering, SE-10, No. 1, 1984.

[58] Butner, S. E. & R. K. Iyer. "A statistical study of reliability and system load at
SLAC," Proceedings International Conference on Fault-Tolerant comoutinz, 1980.

[59] Caruso, J. M. and D. W. Desormeau. "Intergrating prior knowledge with a software
reliability growth model," 13th International Conference on Software Engineering,
Austin, Texas, May 13-17, 1991.

[60] Caspi, P. A. & E. F. Kouka. "Stopping rules for a debugging process based on
different software reliability models," Fhoceedings International Conference on Fault-
Tolerant Computing, 1984.

[61] Castillo, X. & Siewiorek. "A workload dependent software reliability prediction
model," Proceedings International Conference on Fault-Tolerant Computing, 1982.

[62] Castillo, X. & Siewiorek. "A performance-reliability model for computing systems,"
Proceedings International Conference on Fault-Tolerant Comoutin_, 1980.

[63] Catuneanu, V. and A. Mihalache. "Improving the accuracy of the Littlewood-Verrall
model," IEEE Transactions Reliability, Vol. R-34, 1985.

[64] Cavano, J. P. "Toward high confidence software," IEEE Transactions on Software
Engineen'ng, SE-11, No. 12, 1985.

[65] Chen, L. and A. Avizienis. "N-version programming: A fault tolerance approach to the
reliability of software," in proceedings Eighth International Symposium Fault-Tolerant
Computing, Toulouse, France, June 1978.

73

[661 Chen, E. T. "Program complexity and program productivity," IEEE Transactions on
Software Engin.eering, SE-4, No. 2, 1978.

[67] Chen, Y. Y. and S. J. Upadhyaya, "An analysis of a reconfigurable binary tree
architecture based onmultiple-level redundancy", 20th Annual IEEE International
Symposium on Fault Tolerant Computing, June 1990.

[68] Chenoweth, H. B. "Modified Musa theoretic software reliability," Proceedings Annual
Reliability and Maintainability Symposium, 1981.

[69] Cheung, R. C. "An user-oriented software reliability model," IEEE Transactions on
Software Engineering, Vol. SE-6, 1980.

[70] Chiang, C. L. Introduction to Stochastic Processes in Biostatistics. Wiley, New York,
1968.

[71] Chisholm, G. H., J. Kljaich, B. T. Smith, and A. S. Wojcik. "An approach to the
verification of a fault-tolerant, computer-based, reactor safety system - A case study
utilizing automated reasoning," Electric Power Research Institute Technology Reoort,
Electric Power Research Institute, Palo Alto, CA, 1986.

[72] Cifersky, J. "Generalized Markov model for reliability evaluation of functionally
degradable systems," lhoceedings International Conference on Fault-Tolerant
Computing, 1982.

[73] Coutinho, J. S. "Software reliability growth," Proceedings International Conference on
Reliable Software, 1973.

[74] Cristian, F. "Correct and robust programs," IEEE Transactions on Software
Engineering, Vol. SE-10, No. 2, 1984.

[75] Crow, L. H. "Methods for assessing reliability growth potential," Proceedings Annual
Reliability and Maintainability Symposium, 1984.

[76] Crow, L. H. & N. D. Singpurwalla. "An empirically developed Fourier series model
for describing software failure," IEEE Transactions on Reliability, R-33, No. 2, 1984.

[77] Csenki, A. "Bayes predictive analysis of a fundamental software reliability model,",
IEEE Transactions on Reliability, Vol. R-39, No. 2, 1990.

[78] Csenki, A., "Recovery block reliability analysis with failure clustering", in Proceedings
1st International Working Conference Dependable Computers Critical Application,
Santa Barbara, CA, Aug. 1989.

74

[791 Culpepper, L. M. "A system for reliable engineering software," IEEE Transactions on
Reliability, R-33, No. 2, 1984.

[80] Currit, P. A., M. Dyer, and H. D. Miller. "Certifying the reliability of software," IEEE
Transactions on Software Engineering, Vol. SE-12, No. 1, 1986.

[81] Daniels, B. K. "Software Reliability," Reliability Enzineering, 4, 1983.

[82] Darringer, J. A. "The application of program verification techniques to hardware
verification," in Proceedings 16th Design Automat. Conference, San Diego, CA, June
1979.

[83] Davis, I. J. "Local correction of Helix (k) lists," IEEE Transactions on Computers,
Vol. 38, No. 5, May 1989.

[84] Dhillon, B. S. Reliability Engineering in Systems Design and Operation. Van Nostrand
Reinhold Co., New York, 1983.

[85] Dhillon, B. S. "Software Reliability- bibliography," Microelectronics and Reliability,
Vol. 22, No. 3, 1982.

[861 Dickson, J. C. "Quantitative Analysis of Software Reliability," Proceedings Annual
Reliability and Maintainability, 1972.

[871 Donelson, J. III. "Cost model for testing program based on nonhomogeneous Poisson
failure model," IEEE Transactions on Reliability, R-26, No. 3, 1977.

[881 Dong-Hae Chi and Way Kuo. "Optimal design for software reliability and
development cost," IEEE Transactions on Reliability, R-8, No. 2, 1990.

[891 Downs, T. "Extension to an approach to the modeling of software testing with some
performance comparisons," IEEE Transactions on Software Engineering, SE-12, No. 9,
1986.

[90] Downs, T. "An approach to the modeling of software testing with some applications,"
IEEE Transactions on Software Engineering, SE-11, No. 4. 1985.

1911 Dunham, J. R. "Experiments in software reliability: life-critical applications," IEEE
Transactions on Software Engineering, SE-12, No. 1, 1986.

[92] Dunsmore, H. E. & J. D. Gannon. "Experimental investigation of programming
complexity," Proceedings ACMflqBS 16th Annual Technical Symposium: Systems and
Software, 1977.

75

[93] Duran, J. W. and J. Wiorkowski. "Quantifying software validation by sampling," IEEE
Transactions on Reliability, R-29, No. 2, 1980.

[94] Duvall, L. "Data needs for software reliability modeling," Proceedings Annual
Reliability and Maintainability Symposium, 1980.

[95] Eckhardt, D. E. Jr. & L. D. Lee. "A theoretical basis for the analysis of multiversion
software subject to coincident errors," IEEE Transactions on Software Engineering,
SE-11, No. 12, 1985.

[96] Elliott, R. W. "Measuring computer software reliability," Computer and Industrial
Engineering, 2, 1978.

[97] Elshoff, J. L. "An analysis of some commercial PL/1 programs," IEEE Transactions on
Software Engineering, SE-12, 1976.

[98] Endres, A. "An analysis of errors and their caused in system programs," IEEE
Transactions on Software Engineering, Vol. SE-1, No. 6, 1975.

[99] Fa.gan, M. E. "Design and code inspections to reduce errors in program development,"
IBM System J., Vol. 15, No. 3, 1976.

[100] Fagan, M. E. "Advances in software inspections," IEEE Transactions on Software
Engineering, Vol. SE-12, No. 5, 1986.

[101] Fitzsimmons, A. and T. Love. "A review and evaluation of software science," ACM
Computing Surveys, Vol. 10, No. 1, March 1978.

[102] Fischer, K. F. & M. G. Walker. "Improved software reliability through requirements
verification," IEEE Transactions on Reliability, R-28, No. 3, 1979.

[103] Forman, E. H. and N. D. Singpurwalla. "An empirical stopping rule for debugging and
testing computer software," Journal American Statistic Association, Vol. 72, 1977.

[104] Forman, E. H. and N. D. Singpur,¢,alla. "Optimal time intervals for testing hypotheses
on computer software errors," IEEE Transactions on Reliability, Vol. R-28, 1979.

[105] Fosdick, L. D. and L. J. Osterweil. "Data flow analysis in softw_:e reliability," ACM
Computing Surveys, Vol. 8, No. 3, September 1976.

[106] Fragola, J. R. and J. F. Spahn. "The software error effects analysis: a quantitative
design tool," Proceedings International Conference on Reliable Software, 1973.

[107] Friedman, M. "Modeling the penalty cost of software failure," Proceedings Annual
Reliability and Maintainability Symposium, 1987.

[108] Geist, R. and K. Trivedi. "Reliability estimation of fault-tolerant systems: Tools and
techniques". IEEE Computers, Vol. 23, No. 7, July 1990.

[109] Gersting, J. L., R. L. Nist, D. B. Roberts, and R. V. Valkenburg. "A comparison of
voting Algorithms for N-version programming," Proceedings 24th Annual Hawaii
International Conference on System Sciences, Vol. II, January 1991.

[110] Gilb, T. Software Metrics. Winthrop, Cambridge, Mass., 1977.

[111] Girard, E. & J. C. Rault. "A pro_amming technique for software reliability,"
Proceedings International on Reliable Software, 1973.

[112] Glass, R. L. "Persistent software errors," IEEE Transactit,:'.s on Software Engineering,
Vol. SE-7, No. 2, 1981.

[113] Goel, A. L. "A summary of the discussion on an analysis of computing software
reliability models," IEEE Transactions on Software Engineering, SE-6, No. 5, 1980.

[114] Goel, A. L. "Software reliability models: Assumptions, limitations, and applicability"
IEEE Transactions on Software Engineering, Vol. SE-2, No. 12, 1985.

[115] Goel, A. L. and K. Okumoto. "When to stop testing and start using software?"
Performance Evaluation Review, 1, No. 10, 1981.

[116] Goel, A. L. and K. Okumoto. "A Markovian model for reliability and other
performance measures of software systems," Proceedings COMPCON, 1979.

[117] Goel, A. L. and K. Okumoto. "An analysis of recurrent software errors in a real-time
control system," Proceedings ACM Conference, 1978.

[118] Goel, A. L. and J. Soenjoto. "Models for hardware-software system operational
performance evaluation," IEEE Transactions on Reliability, R-30, No. 3, 1981.

[119] Goel A. L. and K. Okumoto. "Time-dependent error-detection rate model for software
and other performance measures," IEEE Transactions on Reliability, Vol. R-28, No. 3,
1979.

[120] Govil, K. K. "Philosophy of a new structure of software reliability modeling,"
Microelec_'onics and Reliability, 24, No. 3, 1984.

77

[121] Greenspan, S. J. & C. L. McGowan. "Structuring software development for reliability,"
Microelectronics and Reliability, 17, No. 1, 1978.

[122] Gubitz, M. & K. O. Ott. "Quantifying software reliability by a probabilistic model,"
Reliability Engineering, 5, 1983.

[123] Halstead, M. H. Elements of Software Science. Elsevier, New York, 1977.

[124] Hamilton, P. A. & J. D. Musa. "Measuring reliability of computation center software,"
Proceedings 3rd International Conference on Software Engineering, 1978.

[125] Haney, F. M. "Module connection analysis - a tool for scheduling software debugging
activities," Proceedings AFIPS Conference, 41, part I, 1972.

[126] Hansen, G. A. "Measuring software reliability," Mini-Micro System, Aug. 1977.

[127] Hart, G. "The software integrity of a computer system installed in Royal Navy
Frigate," Microelectronics and Reliability, 22, No. 6, 1982.

[128] Haynes, R. D. and W. E. Thompson. "Hardware and software reliability and
confidence limits for computer controlled systems," Microelectronics and Reliability,
20, No. 1, 1980.

[129] Haynes, R. D. and W. E. Thompson. "Combined hardware and software availability,"
Proceedings Annual Reliability and Maintainability Symposium, 1981.

[130] Hecht, H. "Mini-tutorial on software reliability," Proceedings COMPSAC, 1980.

[131] Hecht, H. "Can software benefit from hardware experience?" Proceedinjzs Annual
Reliability and Maintainability Symposium, 1975.

[132] Hecht, H. "Fault-tolerant software," IEEE Transactions on Reliability, R-28, No. 3,
1979.

[133] Hecht, H. and M. Hecht. "Software reliability in system context," IEEE Transactions
on Software Engineering, Vol. SE-12, No. 1, 1986.

[134] Hellerman, L. "A measure of computational work," IEEE Transactions on Computer,
C-21, No. 5, 1972.

[135] Heninger, K. L. "Specifying software requirements for complex systems: New
techniques and their applications," IEEE Transactions on Software Engineering, Vol.
SE-6, No. 1, 1980.

,,,,,v¢'_

[136] Henry, S. and D. Kafura. "Software quality metrics based on interconnectivity,"
Journal of System and Software, Vol. 2, No. 2, 1981.

[137] Howden, W. E. "Empirical studies of software validation," Microelectronics and
Reliability, 19, No. 1, 1979.

[138] Hua, K. A. and J. A. Abraham. "Design of systems with concurrent error detection
using software redundancy," Joint Fault Tolerant Computer Conference, 1986.

[139] Huang, X. Z. "The hypergeometric distribution model for predicting the reliability of
software," Microelectronics and Reliability, 24, No. 1, 1984.

[140] Humphrey, W. S. and N. D. Singpurwalla. "Predicting (Individual) software
productivity," IEEE Transactions on Software Engineering, Vol. SE-17, No. 2, 1991.

[141] Humphrey, W.S., Managing the software process, Reading, MA: Addison-Wesley,
1989.

[142] Iannino, A. "Criteria for software reliability model comparison," IEEE Transactions on
Software Engineering, SE-10, No. 6, 1984.

[143] IEEE Standard Glossary of Software Engineering Te?minology. IEEE Standard 729,
1983.

[144] Islam, M. M. and F. Lombardi. "Estimation of total errors in software,"
Microelectronics and Reliability, 22, No. 2, 1982.

[145] Iyer, R. K. and D. J. Rossetti. "Effect of system workload on operating system
reliability: a study on IBM 3081," IEEE Transactions on Software Engineering, SE-11,
No. 12, 1985.

[14.6] Iyer, R. K. and P. Velardi. "Hardware-related software errors: measurement and
analysis," IEEE Transactions on Software Engineering, SE-11, No. 2, 1985.

[147] Jacoby, R. and Y. Tohma. "The hyper-geometric distribution software reliability
growth model (HGDM): Precise formulation and applicability," in Proceedings
COMPSAC-90, Sept. 1990.

[148] Jacoby, R. and Y. Tohma. "Parameter value computation by least square method and
evaluation of software availability and reliability at service-operation by the hyper-
geometric distribution software reliability growth model," 13th International
Conference on Software Engineering, Austin, Texas, May 13-17, 1991.

79

[149] Jaffe, M. S., N. G. Leveson, M. P. E. Heimdahl, and B. E. Melhart. "Software
requirements analysis for real-time Process-control systems", IEEE Transactions on
Software Engineering, Vol. SE-17, No. 3, March 1991.

[150] Jelinski, Z. and P. B. Moranda. "Software reliability research," in Statistical Computer
Performance Evaluation, W. Freiberger, Ed. New York: Academic, 1972.

[151] Jewell, W. S. " Bayesian extensions to a basic model of software reliability," IEEE
Transactions on Software Engineering, Vol. SE-11, 1985.

[152] Joe, H. and N. Reid. "On the software reliability models of Jelinski-Moranda and
Littlewood," IEEE Transactions on Reliability, R-34, No. 3, 1985.

[153] Jones, T. C. "Measuring programming quality and productivity," IBM Systems Journal,
17, No. 1, 1978.

[154] Kaaniche, M., K. Kanoun, and S. Metge. "Role of the hyperexponential model in the
software validation process of a telecommunication equipment," in Proceedings 7th
International Conference Reliability and Maintainability, Brest, France, June 1990.

[155] Kanoun, K., M. R. Martini, and J. M. De Souza. "A method for software reliability
analysis and prediction application to the TROPICO-R switching system," IEEE
Transactions on Software Engineering, Vol. SE-17, No. 4, 1991.

[156] Kanoun, K., J. C. Laprie, and T. Sabourin. "A method for software reliability growth
analysis and assessment," in Proceedings Le Genie Logiciel et Ses Applications,
Toulouse, France, December 5-9, 1988.

[157] Kanoun, K. and T. Sabourin. "Software dependability of a telephone switching
system," in Proceedings 17th IEEE International Symposium Fault Tolerant
Computing, Pittsburgh, PA, June 1987.

[158] Kanoun, K., J. C. Laprie, and T. Sabourin. "A method for software reliability growth
analysis and assessment," in Proceedings 1st International Workshop Software
Engineering and Its Applications, Toulouse, France, December _988.

[159] Kapur, P. K. and R. B. Garg. "Optimum release policy for an inflection s-shaped
software reliability growth model," Microelectronics and Reliability, Vol. 31, No. 1,
1991.

[160] Kareer, N., P. K. Kapur and P. S. Grover. "An S-shaped software reliability growth
model with two types of errors," Microelectronics and Reliability, Vol. 30, No. 6,
1990.

[161] Keller, R. K., M. Cameron, R. N. Taylor, and D. B. Troup. "Chiron-1: A user
interface development system tailored to software environments," Proceedings 24th
Annual Hawaii International Conference System Sciences, Hawaii, 1991.

[162] Kelly, J., D. Eckhardt, M. Vouk, D. McAllister, and A. Caglayan. "A large scale
second t_eneration experiment in multi-version software: Description and early results,"
in Digest Papersz FTC5-18, Tokyo, Japan, 1988.

[163] Kenneth, R. and M. Pollak. "A semi-parametric approach to testing for reliability
growth, with application to software systems," IEEE Transactions on Reliability, R-35,
No. 3, 1986.

[164] Kim, K. H. "An approach to experimental evaluation of real time fault tolerant
distributed computing schemes," IEEE Transactions on Software Engineering, Vol. SE-
15, No. 6, June 1989.

[165] Kim, K. H. and H. O. Welch. "Distributed execution of recovery blocks: An approach
for Uniform Treatment of Hardware and software faults in real time applications,"
IEEE Transactions on Computers, Vol. C-38, No. 5, May 1989.

[166] Kim, K, and J. Yoon. "Approaches to implementation of a reparable distributed
recovery, block scheme," in Digest Papers, FFCS-18, 1988, Tokyo, Japan.

[167] Kline, M. B. "Software and hardware R&M: what are the differences?" Proceedings
Annual Reliability and Maintainability Symposium, 1980.

[168] Kljaich, J., B. T. Smith, and A. S. Wojcik. "Formal verification of fault tolerance
using theorem-proving techniques," IEEE Trans Computers, Vol. C-38, No. 3, March
1989.

[169] Knight, J. C. and N. G. Leveson. "An experimental evaluation of the assumption of
independence in multiversion programming," IEEE Transactions on Software
Enzineerin_, SE-12, January 1986.

[170] Koch, H. S. and P. Kubat. "Optimal release time of computer software," IEEE
Transactions on Software Engineering, Vol. SE-9, 1983.

[171] Kock, H. S. and P. J. C. Spreij. "Software reliability as an application of martingale
and filtering theory," IEEE Transactions on Reliability, Vol. R-32, 1983.

[172] Koch, H. S. and P. Kubat. "Quick and simple procedures to assess software reliability
and facilitate project management," Journal of Systems and Software, 1981.

[173] Kopetz, H. Software Reliability. MacMillan Press, Ltd., London, 1979.

ol
OI

[174] Korel, B. and J. Laski. "Algorithmic software fault localization," Proceedings 24th
Hawaii International Conference System Sciences, Hawaii, Vol. II.

[175] Koren, I. and A. D. Singh. "Fault tolerance in VLSI circuits". IEEE Computers, Vol.
23, No. 7, JulLy1990.

[176] Kremer, W. "Birth-death and bug counting," IEEE Transactions on Reliability, Vol. R-
32, 1983.

[177] Kubat, P. "Assessing reliability of modular software." _Operation Research Letters, Vol.
8, 1989.

[178] Kubat, P. and H. S. Koch. "Managing test-procedures to achieve reliable software,"
IEEE Transactions on Reliability, Vol. R-32, 1983.

[179] Kubat, P. and H. S. Koch. "Pragmatic testing protocols to measure software
reliability,", IEEE Transactions on Reliability, Vol. R-32.

[180] Kuo, W. "On optimal bum-in modeling and its application to an electronic product,"
Proceedings 3rd International Conference on Reliability and Maintainability, France,
1982.

[181] Kuo, W. "Software reliability estimation: a realization of competing risk,"
Microelectronics and Reliability, 23, No. 2, 1983.

[182] Landrault, C. and J. C. Laprie. "Reliability and Availability modeling of systems
featuring hardware and software faults," Proceedings International Conference on
Fault-tolerant Comoutinz, 1977.

[183] Langberg, N. and N. D. Singpurwalla. "A unification of some software reliability
models," SIAM Journal of Statistic Computing, Vol. 6, No. 3, 1985.

[184] Laprie, J. C., J. Arlat, C. Beounes, and K. Kanoun. "Definition and analysis of
hardware- and software-fault tolerant architectures," IEEE Computers, Vol. 23, No. 7,
July 1990.

[185] Laprie, J. C., J. Arlat, C. Beounes, K. Kanoun, and C. Hourtolle. "Hardware-and
software-fault tolerance: Definition and analysis of architectural solutions," in
Proceedings FTCS-17, Pittsburgh, PA, July 1987.

[186] Laprie, J. C. "Dependability modeling and evaluation of hardware and software
systems," in Proceedings 2nd GI/TqTG/GMR Conference Fault Tolerant Computin/_,
Bonn, Germany, September 1984.

82

[187] Laprie, J. C. "Dependability evaluation of software systems in operation," IEEE
Transactions on Software Engineering, Vol. SE-10, No. 6, 1984.

[188] Lawless, J. F. Statistical Models and Methods for Lifetime Data, John Wiley & Sons,
New York, 1982.

[189] Leu, S. W., E. B. Fernandez, and T. Khoshgoftaar. "Fault-tolerant software reliability
modeling using petri nets," Microelectronics and Reliability, Vol. 31, No. 4, 1991.

[190] Levendel, Y. "Reliability analysis of large software systems: Defect data modeling,"
IEEE Transactions on Software Engineering, Vol. 16, No. 2, February 1990.

[191] Levendel, Y. "Defects and reliability analysis of large software systems: Field
experience," in Proceedings !9th IEEE International Symposium Fault Tolerant
Computing, Chicago, IL, June 1989.

[192] Leveson, N. G., S. S. Cha, J. C. Knight, and T. J. Shimeall. "The use of self checks
and voting in software error detection: An Empirical study," IEEE Transactions on
Software Engineering, Vol. 16, No. 4, April 1990.

[193] Leveson, N. G. and P. R. Harvey. "Analyzing software safety," IEEE Transactions on
Software Engineering, SE-9, No. 5, 1983.

[194] Levy, L. S. "A metaprogramming method and its economic justification," IEEE
Transactions on Software Engineering, SE-12, No. 2, 1986.

[195] Lipow, M. "On software reliability," IEEE Transactions on Reliability, Vol. R-28, No.
3, 1979.

[196] Lipow, M. and E. Book. "Implications of R&M 2000 on software," IEEE Transactions
on Reliability, Vol. R-36, No. 3, 1987.

[1971 Lipow, M. "Number of faults per line of code," IEEE Transactions on Software
Engineering, SE-8, No. 4, 1982.

[198] Lipow, M. "Prediction of software failures," Journal of Systems and Software, 1, No.
1, 1979.

[199] Lipow, M. and T. A. Thayer. "Prediction of software failures," Proceedings Annual
Reliability and Maintainability Symposium, 1977.

[200] Lipow, M. "Estimation of software residual errors," TRW Software Series, Report
TRW-SS-72-09, Redondo Beach, CA, 1972.

OR
O.9

[201] Lipow, M. "Some variation of a model for software time-to-failure," TRW Systems
Group, Correspondence, ML-74-2260, August 1974.

[202] Littlewood B. and D. R. Miller. "A conceptual model of multi-version software," in
Proceedings FT.CS-17, Pittsburgh, PA, July 1987.

[203] Littlewood, B. and A. Sofer. "A bayesian modification to the Jelinski-Moranda
software reliability model," Software Engineering J., Vol. 2, 1987.

[204] Littlewood, B. and P. A. Keiller. Adaptive Software Reliability Modeling. IEEE 0731-
3071/84.

[205] Littlewood, B. "A critique of the Jelinski-Moranda model for software reliability,"
Proceedings Annual Reliability and Maintainability Symposium, 1981.

[206] Littlewood, B. "Stochastic reliability growth: A model for fault-removal in computer
programs and hardware designs," IEEE Transactions on Reliability, Vol. R-30, No. 4,
1981.

[207] Littlewood, B. and J. Verral. "Likelihood function of a debugging model for computer
software reliability," IEEE Transactions on Reliability, Vol. R-30, No. 2, 1980.

[208] Littlewood, 13. "Theories of software reliability: How good are they and how can they
be improved?," IEEE Transactions on Software Engineering, Vol. SE-6, No. 5, 1980.

[209] Littlewood, B. "A Bayesian differential debugging model for software reliability,"
Proceedings COMPSAC, 1980.

[210] Littlewood, B. "What makes a reliable program - few bugs or a small failure rate?"
Proceedings COMPCON, 1980.

[211] Littlewood, B. "The Littlewood-Verrall model for software reliability compared with
some rivals," Journal of Systems and Software, 1980.

[212] Littlewood, B. "How to measure software reliability and how not to," IEEE
Transactions on Reliability, Vol. R-28, No. 2, 1979.

[213] Littlewood, B. "Software reliability model for modular program structure," IEEE
Transactions on Reliability, Vol. R-28, No. 3, 1979.

[2141 Littlewood, B. "Validation of a software reliability model," Proceedings Software Life
Cycle Management Workshop, 1978.

84

[215] Littlewood, B. "A semi-Markov model for software reliability with failure cost,"
Proceedings Symposium on Computer Software Engineering, 1976.

[216] Littlewood, B. "A reliable model for systems with Markov structure," Aoolied
Statistics, 24, No. 2, 1975.

[217] Littlewood, B. and J. L. Verral. "A bayesian reliability model with a stochastically
monotone failure rate," IEEE Transactions on Reliability, 1974.

[218] Littlewood, B. and J. L. Verral. "A bayesian reliability growth model for computer
software," Journal Royal Statistical Society, Series C, Vol. 22, 1973.

[219] Lloyd, D. K. and M. Lipow. Reliability Management, Methods, and Mathematics.
Lloyd, Redondo Beach, CA., 1977.

[220] Lorczak, P. R., A. K. Caglayan, and D. E. Eckharatt. "A theoretical investigation of
generalized voters for redundant systems. Proceedings FTCS-19, Chicago, IL, June
1989.

[221] Lyu, M. R. and A. Avizienis. "Assuring design diversity in N-version software: a
design paradigm for N-version programming," Proceedings second International
Wor.__.___kingConference on Dependable Computing for Critical Applications1 1991.

[222] Makam, S. V. and A. Avizienis. "ARIES 81: a reliability and life cycle evaluation tool
for fault-tolerant systems," Proceedings International Conference on Fault-Tolerant
Comoutinz, 1982.

I223] Malaiya, Y. K. and P. Verma. "Detectability profile approach to software reliability,"
Advances in Reliability and Quality Control, M.H. Hamza, Ed., 1989.

[224] Mallory, S. R. "A hybrid software development model for medical instruments,"
Software Development, 1990.

[225] Martini, M. R. B., K. Kanoun, and J. M. De Souza. "Software reliability evaluation of
the TROPICO_R switching system," IEEE Transactions c_nReliability, Vol. 39, No. 3,
1990.

[226] Masuda, Y., N. Miyawaki, U. Sumita, S, Yokoyama. "A statistical approach for
determining release time of software system with modular structure," IEEE
Transactions on Reliability, Vol. R-38, No. 3, 1989.

[227] Mazzuchi, T. A. and R. Soyer. "A bayes empirical-bayes model for software
reliability," IEEE Transactions on Reliability, Vol. R-37, No. 2, 1988.

Ot_
o..3

[228] McCabe, T. J. "A complexity measure," IEEE Transactions on Software Engineering,
Vol. SE-2, No. 4, 1976.

[229] McCall, J. A., P. Pierce, R. Hartley, and R. Thonerfelt. "Measuring technology for
software life cycle support," COMPCON, 1985.

[2301 McDonald, W. C., and R. W. Smith. "A flexible distributed testbed for real time
applications," IEEE Transactions on Computers, Vol. 15, 1982.

[231] Meiraold R. J. and N. D. Singpurwalla. "Bayesian analysis of a commonly used model
for describing software failures," The Statistician, Vol. 32, 1983.

[232] Meyer, F. J. and D. K. Pradhan. "Dynamic testing strategy for distributed systems,"
IEEE Transaction_ on Computers, C-38, No. 3, 1989.

[233] Migneault, G. E. "Software reliability and advanced avionics," Proceedings
COMPCON, 1980.

[2341 Miller, D. R. "Exponential order statistic models of software reliability growth," IEE_._._E
Transactions on software Engineering, Vol qE-12, No. 1, 1986.

[235] Miller, D. R. and A. Sofer. "Complet,-ly monoto_e regression estimation of software
failure rate," Proceedings Internation_d Conference on Software Engineering, 1985.

[236] Mills, H. D. "On the statistical valid_,tion of computer programs," IBM FSD,
unpublished paper, July 1970.

[237] Mills, H. D. "On the development of large rel!able software," in Rec. 1973 IEE..._...EE
Svmoosium Computer Software Reliability, Ne_ York, April 30-May 2, 1973.

[238] Misra, P. N. "Software reliability analysis," IBM Systems Journal, 22, No. 3, 1983.

1.239] Miyamoto, I. "Reliability evaluation and management for an entire software life
cycle," Software Life Cycle Management Workshop, 1978.

[240] Moawad, R. "Comparison of current software reliability model_,," Proceedings
International Conference on Software Engineering, 1984.

[241] Mohanty, S. N. "Models and measurements for quality assessment of software,"
Computing Surveys, 11, No. 3, 1979.

[242] Moranda, P. B. "An error detection model for application during software
development," IEEE Transactions on Reliability, R-28, No. 5, 1979.

8b

[243] Moranda, P. B. "A comparison of software error-rate models," Proceedings Texas
Conference on Computing Systems, 1975.

[244] Moranda, P.B. "Prediction of software reliability during debugging," Proceedings
Annual Reliability & Maintainability Symposium, 1975.

[245] Morey, R. C. "Estimating and improving the quality of information in a MIS,"
Communications of the ACM, 25, No. 5, 1982.

[246] Mourad, S. and D. Andrews. "The reliability of the IBM MVS/XA operating system,"
Proceedings International Conference on Fault-Tolerant Computing, 1985.

[247] lVlusa, J. D. and A. F. Ackerman. "Quantifying software validation: When to stop
testing?" IEEE Software, May 1989.

[248] Musa, J. D., et al., Software reliability measurement, prediction, application. New
York: McGraw-Hill Internationai, 1987.

[249] Musa, J. D. "Software quality and reliability basics," in Proceedings 1987 Fall Joint
Conference IEEE Exploring Technolojzv Today and Tomorrow, October 25-29, 1987,
Dallas, TX, 1987.

[250] Musa, J. D. and K. Okumoto. "Application of basic and logarithmic Poisson execution
model in software reliability measure," NATO Advanced Study Institute, The
Challenge of Advanced Computing Technology to System Design Method, 1985.

I251] Musa, J. D. and K. Okumoto. "A logarithmic poisson execution time model for
software reliability measurement", Proceedings 7th International Conference on
Software Engineering, 1984.

[252] Musa, J. D. and K. Okumoto. "A comparison of time domains for software reliability
models," Journal of Systems and S0ftw.are, 4, No. 4, 1984.

[253] Musa, J. D. and K. Okumoto. "Software reliability models: concepts, classification,
comparisons and practice", Electronic Systems Effectiveness and Life Cycle Costing,
Ed. J.K. Skwirzynski, Springer-Verlag, 1982.

[254] Musa, J. D. "The measurement and management of software reliability," Proceedings
IEEE, Voi. 68, 1980.

[255] Musa, J. D. "Software reliability measurement," Journal of Systems and Software, 1,
No. 3, 1980.

87

[256] Musa, J. D. "Software reliability measures applied to system engineering," Proceedinzs
COMPCON, 1979.

[257] Musa, J. D. "Validation of execution time theory of software reliability," IEEE
Transactions on Reliability, R-28, No. 3, 1979.

[258] Musa, J. D. "The use of software reliability measures in project management,"
Proceedings COM..PS A .C,1978.

[259] Musa, J. D. "A theory of software reliability and its applications," IEEE Transactions
on Software Engineering, Vol. SE-1, No. 3, 1975.

[260] Myers, G. J. Software reliability: Principles and Practic.es, John Wiley & Sons, 1976.

[261] Nathan, I. "A deterministic model to predict error-free status of complex software
development," Workshop 01) Quantitative Software Models, 1979.

[262] Nayak, T. K. "Software reliability statistical modeling and estimation," IEEE
Transactions on Reliab_ity, R-35, No. 5, 1986.

[263] Nayak, T. K. "Estimating population size by recapture sampling," Report Department
of Statistics_ George Washington University, 1986.

[264] Nelson, E. C. A statistical basis for software reliability assessment. TRW-SS-73-03,
TRW, 1973.

[265] Nelson, E. C. "Estimating software reliability from test data," Microelectronics
Reliability, Vol. 17, No. 1, 1974.

[266] Nelson, V. P. "Fault-tolerant computing: fundamental concepts," IEEE Computers,
Vol. 23, No. 7, July 1990.

[267] Nicola, V. F and A. Goyal "Modeling of correlated failures and community error
recovery in multiversion software", IEEE Transactions on Software Engineering, Vol.
16, No. 3, 1990.

[268] Ohba, M. "Software reliability analysis models," IBM Journal Research Development,
Vol. 21, No. 4, 1984.

[269] Ohba, M. and S. Yamada. "S-shaped software reliability growth models," in
Proceedings 4th International Conference Reliability and M_intainability, Perros
Guirec, France, 1984.

88

J

[2701 Ohtera, H. and S. Yamada. "Optimal allocation and control problems for software-
testing resources," IEEE Transactions on Reliability, Vol. R-39, No. 2, 1990.

[2711 Ohtera, H. and S. Yamada. "Optimum software-release time considering an error-
detection phenomenon during operation," IEEE Transactions on Reliability, Vol. 39,
No. 5, 1990.

[27211 Okumoto, K. and A. L. Goel. "Optimum release time for software systems, based on
reliability and cost criteria," Journal Systems and Software, Vol. 1, 1980.

[273] Okumoto, K. "A statistical method for software quality control," IEEE Transactions on
Software Engineering, SE-11, No. 12, 1985.

[.274] Pham, H. "On the optimal design of fault tolerant N-version programming software
systems subject to constraints", Submitted to IEEE Transactions on Computers.

[275] Pham, H. Optimal designs of systems with comDetinlz failure modes. Ph.D.
Dissertation, State University of New York at Buffalo, New York.

1276] Pham, H. "Optimal cost-effective design of hybrid hardware redundant systems",
International Journal Systems Science, Vol. 22, No. 3, 1991.

[277] Pham, H. and S. J. Upadhyaya. "Reliability analysis of a class of fault tolerant
systems' IEEE Transactions on Reliability, Vol. 38, No. 3, August 1989.

[278] Podgurski, A. and L. A. Clarke. "A formal model of program dependencies and its
implications for software testing, debugging, and maintenance,", IEEE Transactions on
Software Engineering, Vol. 16, No. 9, 1990.

[279] Potier, D. "Experiments with computer software complexity and reliability,"
Proceedings International Conference on Software Engineering, 1982.

[280] Pressman, R. S. Software engineering, A oractitioner's approach. Addison-Wesley,
1983.

[281] Purtilo, J. M. and P. Jalote. "An Environment for developing fault tolerant Software,"
IEEE Transactions on Software Engineering, Vol. 17, No. 2, February 1991.

[282] Raftery, A. E. "Analysis of a simple debugging model," Journal Royal Statistical
, Society, Series C, Vol 37, 1988.

[283] Ramamoorthy, C. V. and F. B. Bastani. "Modeling of the software reliability growth
process," Proceedings COMPSAC, 1980.

89

[284] Ramamoorthy, C. V. and S. F. Ho. "Testing large software with automated software
evaluation systems," IEEE Transactions on Software Engineering, SE-1, No.l, 1975.

[285] Ramamoorthy, C. V and F. B. Bastani. "Software reliability status and perspective,"
IEEE Transactions on Software Engineering, Vol. SE-8, 1982.

[286] Ramamoorthy, C. V., Y. K. Mok, E. B. Bastani, G. H. Chin, and K. Suzuki.
"Application of a methodology for the development and validation of reliable process
control software," IEEE Transactions on Software Engineering, Vol. SE-7, No. 6,
1981.

[287] Ramamoorthy, C. V., A. Prakash, W. Tsai, and Y. Usuda. "Software engineering:
problems and perspectives," Comouter, Vol. 17, No. 10, 1984.

[288] Randell, B. "System structure for software fault tolerance," IEEE Transactions on
Software Engineering, Vol. SE-1, No. 2, 1975.

[289] Ramzan, M. T. "Seeded bug volume for software validation," Microelectronics and
Reliability., 23, No. 5, 1983.

[290] Reifer, R. J. "Software failure modes and effects analysis," IEEE Transactions on
Reliability, R-28, No. 3, 1979.

[291] Reiss, R. M. "A prediction experience with three software reliability models,"
Workshop on Ouantitative Software Models, 1979.

[292] Roca, J. L. "Normal approach on correctness software estimation," Microelectronics
and Reliability, Vol. 27, No. 3, 1987.

[293] Romeu, J. L. and K. A. Dey. "Classifying combined hardware/software R models,"
Proceedings Annual Reliability and maintainability Symposium, 1984.

[294] Ronback, J. A. "Software reliability - how it affects system reliability,"
Microelectronics and Reliability, 14, No. 2.

[295] Rosene, A. F., J. E. Connolly, and K. M. Bracy. "Software maintainability - what it
means and how to achieve it," IEEE Transactions on Reliability, 30, No. 3, 1981.

[296] Ross, S. M. "Software reliability: The stopping rule problem," IEEE Transactions on
Software Engineering, Vol. SE-11, No. 12, 1985.

[297] Ross, S. M. "Statistical estimation of software reliability," IEEE Transactions on
Software Engineering, SE-11, No. 5, 1985.

90

[298] Rossetti, D. J. and R. K. Iyer. "Software related failures on the IBM 3081: a
relationship with system utilization," CH1810-IEEI_, 1982.

[299] Rubey, R. J. "Planning for software reliability," Proceedings Annual Reliability &
Maintainability Symposium, 1977.

[300] Rubey, R. J., J. A. Dana, and P. W. Biche. "Quantitative aspect of software
validation," IEEE Transactions on Software Engineering, SE-1, No. 2, 1975.

[301] Rutledge, R. A. "The reliability of memory, subject to hard and soft failures,"
Proceedings international Conference on Fault-Tolerant Computing, 1980.

[302] Saglietti, F. and W. Ehrenberger. "Software diversity - some considerations about its
benefits and its limitations," Proceedings SAFECOMP '86, Sarlat, France, Oct. 1986.

[303] Sandoh, H. "Reliability demonstration testing for software," IEEE Transactions on
Reliability, Vol. r'.-40, No. 1, 1991.

[304] Schick, G. J. and C. Y. Lin. "Use of a subjective prior distribution for the reliability of
computer software," Journal of Systems and Software, 1, No. 3, 1980.

[305] Schick, G. J. and R. W. Wolverton. "Achieving reliability in large software system,"
Proceedings Annual Reliability & Mai_tainability Symposium, 1974.

[306] Schick, G. J. and R. W. Wolverton. "An analysis of competing software reliability
models," IEEE Transactions on Software Engineering, Vol. SE-4, No. 2, 1978.

[307] Schneider, V. "Some experimental estimators for developmental and delivered errors in
software development projects," Proceedings COMPSAC, 1980.

[308] Schneidewind, N. F. "The use of simulation in the evaluation of software," Computer,
10, No. 4, 1977.

[309] Schneidewind, N. "Application of program graphs and complexity analysis to software
development and testing," IEEE Transactions on Reliability, Vol. R-28, No. 3, 1979.

[310] Schutt, D. "On a hypergraph oriented measure for applied computer science,"
Proceedings COMPCON, 1977.

[311] Scholz, F. W. "Software reliability modeling and analysis," IEEE Transactions on
Software Engineering, SE-12, No. 1, 1986.

[312] Scott, K., J. W. Gault, D. F. McAllister. "Fault tolerant software reliability," IEEE
Transactions on Software Engineering, Vol. SE-13, May 1987.

91

[313] Scott. R. K. "Experimental validation of six fault-tolerant software reliability models,"
Proceedings International Conference on Fault-Tolerant Computing, 1984.

[314] Selby, R. W. "Empirically based analysis of failures in software systems," IEEE
Transactions on Reliability, Vol. 39, No. 4, 1990.

[315] Selby, R. W. and V. R. Basili. "Analyzing error-prone system structure," IEEE
Transactions on Software Engineering, Vol. 17, No. 2, 1991.

[316] Selby, R. W. Evaluations of software technologies: Testing, clean-ro.gm, and metrics.
Ph.D. dissertation, Department Computer Science, University Maryland, College Park,
Tech. Rep. TR- 1500, 1985.

[317] Serra, A. and R. E. Barlow. ed. Theory of Reliability. North-Holland, Amsterdam,
1986.

[318] Shannon, C. and W. Weaver. The Mathematical Theo_ of Communication. University
of Illinois Press, Urbana, 1975.

[319] Shanthikumar, J. G. "A general software reliability model for performance prediction,"
Microelectronics and Reliability, 21, No. 5, 1981.

[320] Shanthikumar, J. G. "A state and time-dependent error occurrence-rate software
reliability model with imperfect debugging," Proceedings COMPCON, 1981.

[321] Shanthikumar, J. G. "Software reliability models: A review," Microelectronics and
Reliability, Vol. 23, 1983.

[322] Shanthikumar, J. G. and S. Tafekci. "Optimal software release time using generalized
decision trees," Proceedings Fourteenth Annual Hawaii International Conference
System Science, lO81.

[323] Shanthikumar, J. G. and S. Tafekci. "Application of a software reliability model to
decide software release time," Microelectronics and Reliability, Vol. 23, 1983.

[324] Shen, V. Y. "Identifying error-prone software - an empirical study," IEEE
Transactions on Softwar e Engineering, SE-11, No. 4, 1985.

[325] Shen, V. Y., S. D. Conte, and H. E. Hunsmore. "Software science revisited: a critical
analysis of the theory al_d its empirical support," IEEE Transactions on Software
Engineering, SE-9, No. 2, 1983.

[326] Sherer, S. A. and E. K. Clemons. "Software risk assessment," in AFIPS Conference
Proceedings, Vol. 56, Chicago, IL, June 1987.

92

[327] Shimeall, T. J. and N. G. Leveson. "An empirical comparison of software fault
tolerance and fault elimination," IEEE Transactions on Software Engineering, Feb.
1991, Vol. 17, No. 2.

[328] Shooman, M. L. "Structure models for softwarereliability prediction," Proceedings
International Conference on Software Engineering, 1984.

[329] Shooman, M. L. "Software reliability - analysis and prediction," Integrity in Electronic
Flight Control Systems, France, AGARD AG224, 1977.

[330] Shooman, M. L. "Software reliability: measurement and models," Proceedings Annual
Reliability & Maintainability Sy,.mposium, 1975.

[331] Shooman, M. L. and A. K. Trivedi. "A many-state Markov model for computer
software performance parameters," IEEE Transactions on Reliability, R-25, No. 2,
1976.

[332] Shooman, M. L., Software Engineering, New York:McGraw-Hill, 1983.

[333] Shooman, M. L., SoftwareEngineering: Design, Reliability, Management, New York:
McGraw-Hill, 1985.

[334] Shooman, M. L. "Operational testing and software reliability estimation during
program development," Proceedings International Symposium Computer Software
Reliability, 1973.

[335] Shooman, M. L. "Probabilistic models for software reliability prediction," in Statistical
Computer Performance Evaluation, W. Freidberger, Ed., New York:Academic, 1972.

[336] Siewiorek, D. P. "Fault tolerance in commercial computers," IEEE Computers, Vol.
23, No. 7, July 1990.

[337] Simkins, D. J. "Software performance modeling and management," IEEE Transactions
on Reliability, R-32, No. 3, 1983.

[338] Singpurwalla, N. D. and R. Soyer. "Assessing software reliability growth using a
random coefficient autoregressive process and its ramifications," IEEE Transactions on
Software Engineering, SE-11, No. 12, 1985.

[339] Singpurwalla, N. D. "Determining an optimal time interval for testing and debugging
software," IEEE Transactions on Software Engineering, Vol. SE-17, No. 4, 1991.

[340] Soi, I. M. and K. Gopal. "Hardware vs. software reliability - a comparative study,"
Microelectronics and Reliability, 20, 1980.

93

[341] Soi, I. M. "Software complexity: an aid to software maintainability," Microelecnonics
and Reliability, 25, No. 2, 1985.

[342] Soi, I. M. and K. Gopal. "Some aspects of reliable software packages,"
Microelectronics and Reliability, 19, 1979.

[343] Soi, I. M. and K. Gopal. "Error prediction in softwale," Microelectronics and
Reliability, 18, 1978.

[344] Soi, I. M. and K. Gopal. "Detection and diagnosis of software malfunctions,"
Microelectronics and Reliability, 18, 1978.

[345] Spreij, P. "Parameter estimation for a specific software reliability model," IEEE
Transactions on Reliability, Vol. R-34, 1985.

[346] Stark, G. E. "Dependability evaluation of integrated hardware/software systems," IEEE
Transactions on Reliability, R-36, No. 4, 1987.

[347] Strandberg, K. and H. Anderson. "On a model for software reliability performance,"
Microelectronics and Reliability, 22, No. 2, 1982.

[348] Strong, E. J. "Software reliability and maintainability in large scale systems,"
Proceedings COMPSAC, 1978.

[349] Sugiura, N. "On the software reliability," Microelectronics and Reliability, 13, 1974.

[350] Sukert, A. N. "Empirical validation of three software error prediction models," IEEE
Transactions on Reliability, Vol. R-28, 1979.

[351] Sukert, A. N. "A guidebook for software reliability assessment," Proceedings Annual
Reliability & Maintainabihty Symposium, 1980.

[352] Sukert, A. N. "A four-project empirical study of software error prediction models,"
Proceedings COMPSAC, 1978.

[353] Sukert, A. N. "Analysis of software error model predictions and questions of data
availability," Software Life Cycle Management Workshop, 1978.

[354] Sukert, A. N. "An investigation of software reliability models," Proceedings Annual
Reliability & Maintainability Symposium, 1977.

[355] Sumita, U. and J. G. Shanthikumar. "A software reliability model with multiple-error
introduction and removal," IEEE Transactions on Reliability, Vol. R-35.

94

[356] Sumita, U. and Y. Masuda. "Analysis or software availability/reliability under the
influence of hardware failures," IEEE Transactions on Software Enginee.ring, SE-12,
No. 1, 1986.

[357] Suri, P. K. and K. K. Aggarwal. "Software reliability of programs with network
structure," Microelectronics and Reliability, 21, No. 2, 1981.

[358] Suri, P. K. and K. K. Aggarwal. "Reliability evaluation of computer
program_,"Microdectronics and Reliabilit2_, 20, 1980.

[359] Swearingen, D. and J. Donahoo. "Quantitative software reliability models-data
parameters: a tutorial," Workshoo on Ouantitative Software Models, 1979.

[360] Szabo, S. G. "A schema for producing reliable software," Proceedings International
Conference on Fault-Tolerant Compu.ting, 1980.

[361] Takahashi, M. and Y. Kamayachi. "An empirical study of a model for program error
prediction," Proceedings International Conference on Software Engineering, 1985.

[362] Taylor, D. J. "Redundancy in data structure: improving software fault-tolerance," IEEE
Transactions on Software Engineering, 6, No. 6, 1980.

[363] Thayer, T. A., M. Lipow, and E. C. Nelson. Software Reliability. North-Holland
Publishing Co., Amsterdam, 1978.

[364] Thompson, W. E. and P. O. Chelson. "Software reliability testing for embedded
computer systems," Workshop on Quantitative Software Models, 1979.

[365] Thompson, W. E. and P. O. Chelson. "On the specification and testing of software
reliabili:y," Proceedings Annual Reliability & Maintainability Symposium, 1980.

[366] Tohma, Y., K. Tokunaga, S. Nagase, and Y. Murata. "Structural approach to the
estimation of the number of residual software faults based on the hypergeometric
distribution," IEEE Transactions on Software Engineering, Vol. 15, 1989.

[367] Tohma, Y., H. Yamano, M. Ohba, and R. Jacoby. "The estimation of parameters of the
hypergeometric distribution and its application to the software reliability growth
model," IEEE Transactions on Software Engineering, Vol. SE-17, No. 5, 1991.

[368] Trachtenberg, M. "A general theory of software-reliability modeling," IEEE
Transactions on Reliability, Vol. R-39, No. 1, 1990.

[369] Trachtenberg, M. "The linear software reliability model and uniform testing," IEE_....EE
Transactions on Reliability, Vol. R-34, 1985.

95

[370] Trachtenberg, M. "Discovering how to ensure software reliability," RCA Engineer,
1982 January/February.

[371] Trachtenberg, M. "Order and difficulty of debugging," IEEE Transactions on Software
Engineering, SE-9, No. 6, 1983.

[372] Tran, T. L. "Software metrics: measuring the progress of software development,"
Microelectronics and Reliability, Vol. 28, No. 5, 1988.

[373] Troy, R. and Y. Romain. "A statistical methodology for the study of the software
failure process and its application to the ARGOS center," IEEE Transactions on
Software Engineering, SE- 12, No. 9, 1986.

[374] Troy, R. and R. Moawad, "Assessment of software reliability models," IEEE
CHI810-1, 1982.

[375] Tso, K. S. and A. Avizienis. "Community error recovery in N-version software: a
design study wi'th experimentation," Proceedings Fault Tolerant Computing
Symposium, FTCS-17, 1987.

[376] Tso, K. S., A. Avizienis, and J. P. J. Kelly. "Error recovery in multi-version software
development," in Proceedings SAFECOMP '86, Sa:lat, France, October 1986.

[377] Upadhyaya, ,_. J. and K. K. Saluja. "A watchdog processor based general rollback
technique with multiple retries," IEEE Transactions on Softwag.e Engineering, SE-12,
January 1986.

[378] Vosbury, N. A. "The process design system," in Proceedings IEEE International
Computers Software Application Conference (COMPSAC), 1979.

[379] Vouk, M. A., A. M. Paradkar, and D.F. McAllister. "Modeling Execution time of
Multi-Stage N-version fault tolerant software," IEEE Computer Software and
Applications Conference, November 1990.

[380] Wagoner, W. L. The final report on a software reliability measurement study. Report
TOR-0074(41221)-l. The Aerospace Corp., El Segundo, CA, 1973.

[381] Wall, J. K. and P. A. Ferguson. "Pragmatic software reliability prediction,"
Proceedings Annual Reliability & Maintainability Symposium, 1977.

[382] Walsh, T. "A software reliability study using a complexity measure," Proceedings
AFIPS Conference, 48, 1979.

96

[383] Waiters, G. F. and J. A. McCall. "Software quality metrics for life-cycle cost
reduction," IEEE Transactions on Reliability, R-28, No. 3, 1979.

[384] Weiss, S. N. and E. J. Weyuker. "An extended domain-based model for software
reliability," IEEE Transactions on Software Engineering, Vol. SE-14, No. 10, 1988.

[385] Williams, M. W. H. "Reliability of large real-time control software systems,"
_oceedings International Conference on Reliable Software, 1973.

[386] Wojcik, A. S., J. Kljaich, and N. Srinivas. "A formal verification system based on an
automated reasoning system," in Proceedings 2lth Desilzn Automate Conference,
Albuquerque, NM, June 1984.

[387] Woodward, M., M. Hennell, and D. Hedley. "A measure of control flow complexity in
program text," IEEE Transaction_ on Software Engineering, SE-11, No. 12, 1985.

[388] Xizi, H. "Non-linear regression for predicting software reliability," Microelectronics
and Reliability, Vol. 28, No. 6, 1988.

[389] Xizi, H. "The limit condition of some time between failure models of software
reliability," Microelectronics and Re._abilitv, Vol. 30, No. 3, 1990.

[390] Yamda, S., H. Ohtera and H. Narihisa. "Software reliability growth models with
testing-effort,"IEEE Transactions on Reliability, R-35, No. 1, 1986.

[391] Yamada, S., M. Ohba, and S. Osaki. "S-shaped software reliability growth models and
their applications," IEEE Transactions on Reliability, Vol. R-33, 1984.

[392] Yamada, S. and S. Osaki. "Optimal software release policies for a nonhomogene,-_us
software error detection rate model," Microelectronic and Reliability, Vol 26, 1986.

[3931 Yamada, S. and S. Os'aki. "Optimal software release policies with simultaneous cost
and reliability requirements," European Journal Operational Research, Vol. 31, 1987.

[394] Yamada, S., H. Ohtera, and H. Narihisa. "Software reliability growth models with
testing-effort," IEEE Transactions on Reliability, Vol. R-35, 1986.

[395] Yamada, S., H. Ohtera, H. Narihisa. "A testing-effort dependent software reliability
model and its application," Microelectronics and Reliability, Vol. 27, 1987.

[396] Yamada, S., H. Narihisa, and S. Osaki. "Optimum release policies for a software
system with a scheduled software delivery time," International Journal System Science,
Vol. 15, No. 8, 1984.

97

[397] Yamada, S. and S. Osaki, "Reliability growth modeling for software error detection,"
IEEE Transactions on Reliability, Vol. R-32, No. 5, 1983.

[398] Yamada, S. and S. Osaki. "Software reliability growth modeling: Models and
applications," IEEE Transactions on Software Engineering, Vol. SE-11, No. 12, 1985.

[399] Yamada, S. and S. Osaki. "Software reliability growth modeling: models and
applicatio:_s," IEEE Transactions on Software Engineering, SE-11, No. 12, 1985.

[400] Yamada, S. and S. Osaki. "Cost-reliability optimal release policies for software
systems," IEEE Transactions on Reliability, R-34, No. 5, 1985.

[401] Yamada, S. and S. Osaki. "Reliability growth model for hardware and software
systems based on nonhomogeneous Poisson process: a survey," Microelectronics and
Reliability, 23, No. 1, 1983.

[402] Yamada, S. "Software reliability aralysis based on a nonhomogeneous error detection
rate model," Microelectronics and Reliab.ility, 24, No. 5, 1984.

[403] Yamada, S. "S-shaped reliability growth modeling for software error-detection," IEE_.__..EE
Transactions on Reliability, R-32, No. 5, 1983.

[404] Yau, S. S. and R. C. Cheung. "Design of self-checking software," 1975 Reliable
Software, April 1975.

[405] Yee, J. G. and S. Y. H. Su. "A scheme for tolerating fault data in real-time systems,"
Proceedings COMPSAC, 1978.

[406] Yun, W. Y. and D. S. Bai. "Optimum software release policy with random life cycle,"
IEEE Transactions on Reliability, Vol. R-39, No. 2.

[407] Zahedi, F. and N. Ashrafi. "Software reliability allocation based on structure, utility,
price, and cost," IEEE Transactions on Softw..are Engineering, Vol. SE-17, No. 4,
1991.

98

s

o

