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Drift Chamber Tracking with a VLSI Neural Network"

Clark S. Lindsey_ Bruce Denby, Hermxn Haggerty
Fea'miNational Labor_to_r:

P.O. Boz 500, Batau:a, Ii. 60510, USA

and

Ken Johns

Dept. of Physics, Univer#ity of Arizona
Tucson, Az. 85721, USA

We have tested a commercial analog VLSI neural network chip for finding in real time the
intercept and slope of charged particles traversing a drift chamber. Voltages proportional to
the drift times were input to the Inte! ETANN chip and the outputs were recorded and later
compared off line to conventional track fits. We will discuss the chamber and test setup, the
chip specifications, and results of recent tests. We'll briefly discuss possible applications in high
energy physics detector triggers.

I. Introduction

Neuralnetworksimplemented in VLSI offertilecapabilityof veryfastpatternrecognition.Tile
firstgenerationof such chipscan processan entiremultilayernetwork in microseconds and

could provideon lineprocessing.In high energy physicsexperiments,an important on line

applicationofVLSI neuralnetworkswould be theselectionofeventswrittento tape. (Here an

eventrefersto a collisionof two particlesand the subsequentsignalsinduced in the detectors

from the reactionproducts.)This on lineselectionprocess,calledtriggering,isa crucialpart
of an experiment. Collisionscf particlescan occur at ratesof hundreds of kIIz and the rate

willincludebackground interactionssuch as straybeam particlesstrikingbeam pipe material.
Usuallythe most interestingeventsoccuronly at a smallfractionof the totalrateand alsothe

recordingthe detectorsignalsonto tape forlaterof[lineprocessingistypicallylimitedto tens

of Hz. So the triggersystem must selectonly thosetypes of eventsofgreatestinterest,while
efficientlyrejectingthe backgrounds.

The firststepor levelin a typicaltriggersystem makes cutson simpleraw signalssuch as

the amplitudeof the signalfrom a calorimeter.The second levelof the triggertransformsthe

raw signalsfrom the detectorsintomore elaboratequantitiessuch as the trajectoryparameters
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of the particles and then makes cuts on these quantities. Each level in the trigger process will
reduce the number of accepted events passed to the next level by as much as factors of 10-100.

Typically, the first two trigger levels are in hardware. After the second level the trigger rate
has been reduced to a rate that can usually be handled by software. After perhaps two more
trigger levels the remaining events are written to tape.

The use of hardware neural networks in high energy physics has been discussed frequently and
several projects are currently in development. *'_Here we discuss using a VLSI neural network
chip to find the slope and intercept of a charged particle traversing one type of commonly
used particle detector called the drift chamber. This technique could be useful for a second
level trigger where, for example, there might be a requirement that a minimum number of

tracks point to the same collision vertex. The drift chamber provides analcg voltage signals
proportional to coordinates along the trajectory of the particle through the chamber's active
volume. The chip receives these signals as inputs and provides the slope and intercept of the
track as output. We reported previously on our initial results 3. Here we review t_,ose results
and report on some subsequent developments.

2. Drift Chambers and Test Setup

Figure la shows a cross-section of a single drift chamber cell. The cell consists of a sense wire
(typically 30_m in diameter) at a high positive voltage. The wire is inside of an aluminum
channel held at ground potential. The channel is filled with a gas such as a CO2/Ar mixture.
If a charged particle traverses the gas, it will ionize some of the gas molecules along its path.
The electrons will de/ft *owards the positive voltage sense wire and the ions will drift towards
the grounded aluminum. When the electrons reach the high electric field close to the wires

there is an avalanche of ionization that produces a current pulse detectable by an amplifier
attached to the wire end. The time between when the particle initially crossed the cell (this
start time can be known from the accelerator timing or from another detector) and the time
of tile subsequent wire pulse is proportional to the distance between the wire and the point
of closest approach of the track. The drift velocity of the electrons for the chamber used here
is about 5cm/t_s. The sense wire is 5cre from the right and left walls and so the maximum

drift time is about l_ts. A time to voltage converter (TVC) was used here to produce a voltage
proportional to the drift distance.

Note that there exists a left-right ambiguity. One doesn't know from a single cell signal
which side of the wire the particle passed. Figure lb shows a section of a 4-layer drift chamber.
The cells are staggered with respect to each other so that the pattern of hits can eliminate the
ambiguities.

For the particular chamber used here, the cells are actually paired together in that the sense
wires are electrically connected at one end (see figure lc). This allows one to measure the drift

time and also the transit time for the signal to travel along the wire (difference in arrival time
of pulses at each end). The transit times are of the order of a few nsees for the meter long
chamber used here. No correction to the drift time measurements was made for tracks in the

left versus right cell or for the variatio,a in transit times due to variation in track position along
the wire.

As seen in figure la, above and below the wires there are metal pads. The ionization
.... 1__ 1. _ al ' 1 " 1 ,1 1 I • •
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analog pad signals were used to set a latch of 3v output if the signal was above a threshold.
Here we only use the pad latch signal of the right hand cell of each pair to determine which
of the two cells was hit. For example, if the pad signal of the right hand cell was 3v, then the
track was in that cell, but if it was 0v, the track was in the left hand cell.

The chamber design illustrated in figure 1 is that of the chambers used to detect muons in
the DO experiment at the proton-antiproton collider at Fermilab. *'s These chambers can have
up to 96 cells and be several meters long. For these test, however, a small prototype was used
that was about a meter long and had only eight cells in four layers (three layers were used
in ref. 3). Figure 2 shows the test setup. For the data here, cosmic rays were used in place
of beam particles. Coincidences of two scintillator counters act as the trigger. The TVC and
pad latch signals are sent to the neural network chip, which is then read out from an analog
bus. A computer reads out the digitized values of the TVC, pad latches and neural net chip
outputs. This chamber has a position resolution of about 5001zm. We define resolutions here
as the sigma of Gaussian fits to distributions of residuals for fit tracks. For the neural net cases
we use sigmas of Gaussian fits to distributions of differences between the parameters from the
fit and the neural network. Since the neural network resolution is usually much larger than the
fit resolution we ignore the error in the fit parameters.

3. Neural Network Architectures

_re want to use the analog drift time voltages and the pad latches as inputs to a neural network
which then computes the slope and intercept of the track. Here the slope is given as the angle

from vertical (+45 °) and the intercept is the crossing point in the plane of the sense wires of
the second layer from the top (in figure lb, 0 cm to 20 cm from the left cell wall of the left cell
to the right hand cell wall of the right hand cell). The simplest method to implement the net
consists of one output neuron having an activation proportional to the intercept, and a second
neuron whose activation is proportional to tile slope. However, there are several drawbacks to
this scheme. As described in the next section, the chip used here has limited weight resolution
(6-7 bits), a maximum weight of +2.5, nonlinearities in the weight-input multiplications, and
electronic jitter. These imperfections limit how accurately the chip can calculate the activation
of a single neuron.

For some applications this type of proportional output scheme would still be desired but
here we used an alternative method. Figure 2 shows the architecture of the network used. It
is a feedforward network with 12 inputs, a hidden layer with 48 neurons, and an output layer
with 64 neurons. The four drift time voltages are repeated twice (to help overcome the limited
maximum weight) and there are four pad voltage inputs. The outputs are divided into two
sections of 32 neurons each. The first section provides the intercept and the second section
provides the slope. The intercept range of 0cre to 20cm is divided into 32 bins of 0.625cm. The
first neuron represents the range 0cm to. 0.625cm, the second represents 0.625cm to 1.25cm,
etc. For a given intercept value the target distribution is a Gaussian (with sigma = 0.Sem)
centered at the intercept point. This results in 3-4 neurons activated. There is a similar scheme
for the slope section where each neuron represents a bin of 2.9° and ranges from +45 ° . To
determine the intercept, the neuron with the maximum activation is found and an. average over
+2 neurons around it is calculated.
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possible track due to the left-right ambiguities, the output can show more than one answer (i.e.
multiple bumps). The disadvantages of this distributed output method _.re the large number of
neurons needed and the need for a second circuit to do the averaging.

Figure 4 shows a comparison of the proportional output method versus the distributed
method using a simulation program. Here the maximum weight was limited to ±2.5 but there
were no nonlinearities, electronic jitter, or fimited precision included. Simulated track events

were produced for the 4-layer chamber by sending tracks at random angles across the cells and
requiring that the tracks cross active regions of one cell in each layer. A drift resolution of
50Ogra was simulated. Sets of 10000 training patterns were made, with each pattern having
the network input and target output values. The neural network simulations each used 12
inputs values (2x4 drift times + 4 pad voltages). Th_ simulations were done for 16, 32, 48, and
64 hidden units for both cases. The networks were trained with a back-propagation program
(modified to limit the maximum weight) for greater than ten million iterations. The results
in figure 4 were made with independent patterns not used in the training. One sees that the
distributed output scheme gives about 2-3 times better resolution than the proportional output
scheme. Implementation of some of these nets in the chip is currently being studied but the
resolutions are expected to be roughly twice as big.

4. Neural Network Chip

The Intel Electrically Trainable Analog Neural Network (ETANN) chip is described in detail
in references 6-8. Experience in using it for tracking was discussed in reference 3. We will only
briefly review it here. The chip accepts up to 64 inputs and can be configured for 64 hidden
neurons and 64 output neurons. Each neuron is connected to 16 internal fixed voltages (biases)
so there are 80x64=5120 synapses for the hidden and the same for the output layer for a total
of 10240 synapses. The syn,_pse is basically a Gilbert multiplier circuit with two floating gates
whose voltages determine the output currelLt of the synapse for a given input voltage. Based
on eprom technology, the charge on the gates can be altered by using large voltage pulses to
cause electrons to tunnel through the insulation layer to the metal gate, where the charges will
remain indefinitely. The gates are nonvolatile. The currents of 80 synapses are summed and
presented to a threshold amplifier that represents the neuron. The amplifier turns on with a
response similar to the sigmoidal characteristics desired.

A PC based system is available that lets one communicate with the chip. One can do

emulation of the chip, loading and reading of weights, presentation of input voltage patterns
and readout of the chip. The chip does not have learning circuitry built into it. Instead, for
back-propagation, the PC calculates the delta weight changes for each iteration. This chip-in-

the-loop (CIL) processing is fairly slow but doing the emulation first usually means that the
CIL starts off fairly close to the desired performance.

5. Results

In reference 3 we discussed the use of the chip for finding tracks in three layer events. Figures 5a-
b show typical tracks through the 3 layer chamber. The chip intercept resolution was 850#m
and the slope resolution was 15mrad. With only 3 layers there were often ambiguous tracks.
Figure ,Sc-d ._hnw typical ,";;.._p.,: wh,*., rh,- .o_ ,.k.-,_- _ A;tr.... _ t--":- ,t.., ,_._ t.,_:__._.... '_m..m.tt_.,.m._..,lL.tu tg_k_,R't. (_JL[CI_b bJLt_l_ UIIg UUI, aLLIt_LI
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slope or intercepts, they just were not the largest ones. If one combined the the output of one
chamber with another one, a secondary bump might become the largest one in the combined
distribution.

Recently we have used the chip for a 4-layer chamber. Figures 6a-c show tracks in the four
layer chamber. In the 3-layer chamber study there were trigger timing problems that prevented
coverage over the full distance from the sense wire to the cell walls. We have improved the
timing here so that there is full coverage. With the 4-layers there are reduced possibilities of
ambiguous tracks but they still occur. Figures 6d shows one such case. However, the percentage
of these is much less than for the 3-layer case (less than half percent in simulations.) Analysis
of the four layer tracking is currently underway and resolutions and efficiencies will be reported
later.

O. Discussion

We have shown that the Intel analog neural network chip can find track parameters from
drift chamber signals in real time. This work was done in a test setup. We hope to attach the
network to a chamber in the DO experiment and investigate its performance under actual beam
conditions. A muon trigger system might eventually be developed using these techniques 9. The

current DO muon trigger system obtains an effective position resolution of about 5cm. Even if
the proportional output method was used, the network could improve this by a factor of 10-20.

The distributed output technique used here to obtain the track parameters is not very
efficient in the use of neurons (e.g. most of the output neurons are off in a given event.) This is
a drawback for hardware implementation in that the number of available neurons on the chip is
limited. Also, it obviously produces a large number of signals to m_nage. However, it may be
quite useful to have the greater precision over the proportional net. Most importantly, though,
the ability 'to provide secondary answers is unique to this method. This method could be used
for other neural network applications, not just in hardware, where there are ambiguities and

knowledge of more than one possible answer is useful.
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