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Common Sense on Standards of Proof

Kevin M Clermont*

Nier l'existence des sentiments
tiddes parce qu'ils sont tides, c'est
nier le solei tant qu'il n'est pas a
midi. La verite est tout autant dans
les demi-teintes que dans les tons
tranchis.

-Gustave Flaubert to Louise
Colet, December 11, 1846**

ABSTRACT

The law speaks clearly on the standards of proof but listeners often
misunderstand its words. This Article tries, with some common sense and a
modicum of multivalent logic, to explain how the law expects its standards
to be applied, and then to show how the law thereby avoids such
complications as the conjunction paradox.

First, in accordance with belieffunction theory, the factfinder should
start at zero belief Given imperfect evidence, the factfinder will end up
retaining a fair amount ofuncommitted belief As evidence comes in, though,
the factfinder willform a belief in the truth of the disputed fact but also form
a disbelief or a belief in the fact's falsity. At the close of evidence, the
standard of proof requires only comparing belief and disbelief For
example, the civil standard, rather than asking whether a fact more likely
than not happened according to traditional probability theory, asks whether
the factfinder believes in the fact's happening more than the factfinder
believes that the fact did not happen. The burdened party need not push
proofabove fifty percent by dispelling the phantoms ofevery possibility, and
the opponent need not generate a competing version of truth but can instead

Robert D. Ziff Professor of Law, Cornell University. I thank Zach Clopton and Dale Nance
for their comments.
** GUSTAVE FLAUBERT, CORRESPONDANCE: PREMI RE SEIE (1830-1846) 417 (1926) ("To
deny the existence of lukewarm sentiments because they are lukewarm is to deny the sun
when it is not at noon. Truth lies as much in its shadings as it does in vivid tones."). This
epigraph captures the essence of multivalent logic.
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rely on denial to demand that the burdened party generate a belief
Second, belief and disbelief being nonadditive partial truths, the

mathematical result is that one cannot combine beliefs by traditional
probability theory, as by using the product rule designed for conjunction of
betting odds. Instead, one should use fuzzy logic, including its rule that
conjoined likelihood equals the likelihood ofthe least likely element. Linking
the elements in a chain tells a story that is as likely as its weakest link.
Consequently, if each element of a claim or defense passes the standard of
proof the conjunction of elements will pass the standard of proof The
conjunction paradox thus vaporizes for factfinding, just as the law has
always maintained The law found the way to decide in accord with our best
knowledge of the facts.
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2018] COMMON SENSE ON STANDARDS OF PROOF

I. INTRODUCTION

The conjunction paradox has legs. For almost a century it has received
lots of attention, and still does.' It is easy to grasp. In a civil case, say, the
plaintiff needs to prove two elements, a and b.2 Assume she proves element
a to 0.70 and b to 0.60, whatever that means. According to American law,
she wins, having proven each element by a preponderance.3 Paradoxically,
she should lose according to American law professors, supposedly because
she has proven the conjunction of a and b to only 0.42.

Despite the niche notoriety of the conjunction paradox, most law
professors have never thought about conjoining elements until one
introduces them to the paradox. Apparently, the law's element-by-element
application of the standard of proof has completely accorded with their
common sense up to that very moment. Then suddenly and ironically, the
law professors' "common sense" demands the application of traditional
probability's product rule and induces their immediate condemnation of the
law's result as being illogical. That is, almost every law professor who
finally contemplates the problem accepts as a matter of common sense that
the law's approach is paradoxical; indeed, a few of the hardiest will then

1 The best statement of the paradox appears in Charles Nesson, The Evidence or the
Event? On Judicial Proofand the Acceptability of Verdicts, 98 HARV. L. REv. 1357, 1385-88
(1985). An early rendition of the paradox lies in the innovative JEROME MICHAEL &
MORTIMER J. ADLER, THE NATURE OF JUDICIAL PROOF 140-43 (1931) (also equating
preponderance with the p > 0.50 standard for the first time, according to John Leubsdorf, The
Surprising History ofthe Preponderance Standard of Civil Proof 67 FLA. L. REv. 1569, 1579
n.45 (2015)). More recent scholars reflexively invoke the paradox. E.g., DALE A. NANCE,
THE BURDENS OF PROOF 74-78 (2016) (accepting the paradox, although he seemed to later
renounce the conjunction paradox in Dale A. Nance, Formalism and Potential Surprise:
Theorizing About Standards of Proof 48 SETON HALL L. REv. 1017, 1036-37 (2018)),
reviewed, Federico Picinali, 9 JURISPRUDENCE 192 (2018), https://ssrn.com/abs
tract=3033818; Ronald J. Allen & Sarah A. Jehl, Burdens of Persuasion in Civil Cases:
Algorithms v. Explanations, 2003 MICH. ST. L. REv. 893; Edward K. Cheng,
Reconceptualizing the Burden ofProof 122 YALE L.J. 1254 (2013); Jason luliano, Jury Voting
Paradoxes, 113 MICH. L. REv. 405 (2014); Jonathan J. Koehler & John B. Meixner, Decision
Making and the Law: Truth Barriers, in 2 THE WILEY-BLACKWELL HANDBOOK OF JUDGMENT
AND DECISION MAKING 749, 752 (Gideon Keren & George Wu eds., 2015); Michael S. Pardo,
Group Agency and Legal Proof Or, Why the Jury Is an "It," 56 WM. & MARY L. REv. 1793
(2015). The two most recent forays argue at length that the conjunction paradox is real and
that therefore the law should change to conform to the product rule. David S. Schwartz &
Elliott R. Sober, The Conjunction Problem and the Logic ofJury Findings, 59 WM. & MARY
L. REv. 619 (2017); Mark Spottswood, Unraveling the Conjunction Paradox, 15 LAW,
PROBABILITY & RISK 259 (2016).

2 "Element" means a finding necessary to a claim or defense under the substantive law.
See KEVIN M. CLERMONT, STANDARDS OF DECISION IN LAW: PSYCHOLOGICAL AND LOGICAL
BASES FOR THE STANDARD OF PROOF, HERE AND ABROAD 191 (2013); Kevin M. Clermont,
Conjunction of Evidence and Multivalent Logic, in LAW AND THE NEW LOGICS 32, 57 (H.
Patrick Glenn & Lionel D. Smith eds., 2017).

See infra note 49.
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contort themselves in efforts to find ways to live with the law's approach.4

This paradox has long bothered me, because I had grown up to accept
the law professors' wisdom on this point.5 Regardless of its practical impact,
the conjunction paradox is of great theoretical importance. But over the
years, my bother has decreased. In a series of writings over thirty years, I
have tried to show that there is in fact no paradox.6 The law is correct, and
so are all the philosophers and logicians who support the law's result.' The
law professors are therefore largely in error. Their error stems from a lack
of common sense about standards of proof generally.

In his Symposium article, Professor Risinger in large part has set the
professors straight by explaining how to view standards of proof in other
than the traditional framework of probability theory.' In this comment on

4 See Kevin M. Clermont, Trial by Traditional Probability, Relative Plausibility, or
Belief Function?, 66 CASE W. RES. L. REV. 353, 356 (2015). The hardiest contortion is the
relative plausibility theory, which posits (i) that the factfinder constructs the overall story (or
stories, in some variants of the theory) that the plaintiff is spinning and another story (or
stories) that the defendant is (or could be) spinning and (ii) that the factfinder then compares
the two stories (or collections of stories) and gives victory to the plaintiff only if the plaintiff s
version is more plausible than the defendant's. See Allen & Jehl, supra note 1, at 929-43. In
addition to some real advantages, the theory has serious problems. Most notably, it does not
track well the law, which tells its factfinders to proceed element-by-element and apply the
standard of proof to each element, not to create holistic stories and compare them; it further
diverges from the law by compelling, or at least imposing a practical obligation on, the non-
burdened party to choose and formulate a competing version of the truth, even though the law
allows the defendant to stand mute and still prevail. Also significantly, the theory gives no
reason in logic for narrowing the focus to certain stories, and no explanation for how to
compare stories when, say, the plaintiff's story is strong on all but one element. See Clermont,
supra, at 358-60.

See RICHARD H. FIELD, BENJAMIN KAPLAN & KEVIN M. CLERMONT, MATERIALS FOR A

BASIC COURSE IN CIVIL PROCEDURE 669-72 (6th ed. 1990) (my introducing discussion of the

paradox to our casebook, a discussion that evolved until its elimination in the eleventh edition
of the book in 2014).

6 See CLERMONT, supra note 2, at 5 n.4 (citing my seven previously published articles
on standards of proof); see also Clermont, supra note 2 (subsequent article on multivalent
logic); Clermont, supra note 4 (subsequent article on belief functions).

7 See L. JONATHAN COHEN, THE PROBABLE AND THE PROVABLE 89-91, 265-67 (1977)
(arguing that the conjunction of two or more propositions has the same inductive probability
as the least likely conjunct); BERTRAND RUSSELL, HUMAN KNOWLEDGE: ITS SCOPE AND LIMITS
359-61 (1948) (arguing comparably that his "degrees of credibility" do not follow the product
rule of traditional probability); Didier Dubois & Henri Prade, A Set-Theoretic View of Belief
Functions: Logical Operations and Approximations by Fuzzy Sets, in CLASSIC WORKS OF THE
DEMPSTER-SHAFER THEORY OF BELIEF FUNCTIONS 375, 403 (Ronald R. Yager & Liping Liu
eds., 2008) (rejecting the application of "arguments deriving from the study of statistical
experiments"); Susan Haack, The Embedded Epistemologist: Dispatches from the Legal
Front, 25 RATIO JURIS 206, 217-18 (2012) (arguing comparably that her "degrees of warrant"
do not follow the product rule of traditional probability); John MacFarlane, Fuzzy
Epistemicism 12-22 (Oct. 9, 2008), http://johnmacfarlane.net/fuzzy-epistemicism.pdf
(arguing against the product rule and in favor of the MIN rule).

8 D. Michael Risinger, Leveraging Surprise: What Standards of Proof Imply That We
Want from Jurors, and What We Should Say to Them to Get It, 48 SETON HALL L. REv. 965

[Vol. 48:10571060
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his article, I shall sketch an alternative to traditional probabilities that is
similar to his. I shall then go a step farther to show how the conjunction
paradox reveals more professorial misunderstandings. Although my prior
writings provided formal proofs and long explanations on the nonexistence
of any paradox as to conjunction, they have unfortunately convinced
virtually no one in the legal academy. I keep running into the wall of
"common sense." So now I want to take another stab at a short,
commonsensical explanation of standards of proof.

The pivotal point of my common-sense explanation entails the
realization that factfinders do not announce the odds of an element being
true, that is, of its existing in an external and potentially discernible real
world.9 Factfinders instead give their degree of belief in the element's truth
based on actual proof-based knowledge. Odds and beliefs are different
quantities, subject to different rules for conjunction. Beliefs are not some
sort of squishy personal feelings. Instead, factfinders form their beliefs
based on the available evidence. Those beliefs express a degree of certainty
about the state of the real world.'0 Factfinders might believe a fact to a
greater degree than they believe its opposite, even if they would not be
willing to bet on it assuming the truth were somehow going to be revealed.
The reason is that the factfinders' allocation between belief and disbelief
might leave most of their belief uncommitted, while the bettor must commit
total belief between yes and no.

II. SINGLE ELEMENT

We first need a word of orientation. I am talking about applying a
standard of proof to find a fact. I refer to factfinding in its broad sense, as
covering anything that a court or any institution subjects to a proof process
in order to establish what the system will treat as truth. The subject includes
not only yes-or-no facts but also vague and normative terms like "negligent,"
as well as many other nonbinary opinions and applications of law to fact.
But let me focus mainly on the task of finding a historical fact that constitutes
a single element of a claim or defense.

I am not talking here about the factfinder's initial processing of the
evidence to form a belief of some strength. We do not know exactly how
this processing task is performed, although introspection, logic, and
psychology suggest that the factfinder takes into account the weight and
credibility of the evidence and then applies some intuitive techniques in
nonquantitative and approximate fashion to form the belief. The precise path

(2018).
9 See D. Michael Risinger, Searching for Truth in the American Law of Evidence and

Proof 47 GA. L. REV. 801 (2013) (treating the necessary philosophical assumptions).
10 See NANCE, supra note 1, at 42-57 (discussing "epistemic probability").
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does not matter for present purposes. Instead, my interest is in the
subsequent evaluation of the processed evidence against the standard of
proof, the required measure of sureness in an uncertain world, that the law
has specified for the particular element."

I am talking about logic in connection with the standard of proof We
tend to forget that every logic system rests on a series of naked assumptions.
The way a logician begins to work is to assume a basic representation of the
world, and then to specify a small group of operators, like conjunction, that
suffice to generate an internally sound and complete logic system. The
logician finally tests the system to see if it makes sense of our world and
hence can be useful. All thinkers accept that there are multiple valid logic
systems. For any task, we have to choose the most appropriate logical
system. 12

A. Bivalence

One thing is clear: the confused law professors are using classical
bivalent logic, which posits that all propositions in the world are either true
or false.'3 Their usage is proven by their turn to traditional probability for
treatment of random uncertainty as to bivalent outcomes. In particular, their
usage is proven by their intuitive application of the probabilist's product rule,
which governs in a bivalent world. Their use of bivalent logic is perfectly
natural because such logic is dominant in our received manner of thinking.
Its use is quite helpful in picturing the factfinding process. But it will get
one in trouble if used for more than an image, as when one starts using it as
a basis for calculations.

If one wants to go farther than simple imaging of the factfinding
process, one needs to think more about what factfinding produces. We
would love to know if a fact happened or did not happen, but the fact being
the subject of trial means we cannot know for sure what really happened.
The factfinder will never be able to know a historical fact as being absolutely
true or false. Thus, the hypothetical odds of the fact being completely true
rather than completely false is a measure of little usefulness to legal actors.

See CLERMONT, supra note 2, at 124-27.
12 See THEODORE SIDER, LOGIC FOR PHILOSOPHY 1-2, 6-11, 72-73 (2010).
1 The semantic principle of bivalence holds that a proposition P is either true or false.

Thus, not-P is not divided into further sets, but constitutes a single set called false. This
principle underlies two-valued logic. It is indeed the intended (although not necessary)
semantic of all classical logic, so that classical logic tends to induce bivalent thinking.
Classical logic's slightly different, syntactic law of the excluded middle holds merely that a
proposition P is either true or not true. Bivalence implies the law of the excluded middle, but
the converse is not true. See Peter Suber, Non-Contradiction and Excluded Middle (1997),
http://www.earlham.edu/-peters/courses/logsys/pnc-pem.htm.

1062 [Vol. 48:1057



2018] COMMON SENSE ON STANDARDS OF PROOF

What legal actors need is a way to represent their state of knowledge as
to the fact. They need the best evidence-based estimate of truth in a world
where uncertainties will persist. They need to move on with life while
making the best decisions about what happened in the past. In establishing
facts in the courtroom we will never know the full truth, because all we can
ever find is a degree of truth. We are not concerned with whether something
is fully true-whether a truth value of 1.00 will turn up-but whether it
seems to have a sufficient truth value to support liability. Thus, the factfinder
should form a belief in how true it is. The belief does not assert the fact to
be completely either true or false, but rather holds it to be partly true and
partly false. This measure of belief in a is useful, while the percentage
chance of a = 1.00 in a bivalent world is not.

Let us say that our knowledge of the world, and rather our justified
belief as to a and to b, is that a = 0.70 and b = 0.60, speaking unrealistically
but just for the moment in terms of decimals. These numbers represent our
degree of beliefs in a and b, not of the odds that somehow a will turn out to
be 1.00 or b will turn out to be 1.00. The beliefs depend on what was proven,
not the probability of divining the unknowable. The beliefs are all that one
can say about the past, and therefore acting on that state of our knowledge is
our best course.

There are a variety of routes to systematizing this insight.14 But the
least steep route is multivalent logic, including its most familiar variant
called fuzzy logic, which expresses propositions as true to a degree between
0 and 1. Here is a logician's neat anecdote that expresses how multivalent
logic fulfills the factfinder's needs:

Consider Albert Einstein. As the great physicist lay dying,
he uttered a sentence just before he passed away. Einstein had
dying words. He spoke them in his native tongue, German, the
language in which he was by far the most comfortable expressing
himself.Unfortunately, he passed away in New Jersey and the only
person who heard him was a nurse who spoke no German. So, we
will never know what Einstein's last words were.But there is a fact
of the matter. There is a sentence which is the last one ever spoken
by Einstein. That's a truth of the world; it's just a truth we're
unable to know. What was Einstein's final thought on Earth? Any
claim that it was some particular sentence is either true or false.
But there is a difference between what it is and what we know
about it. [Multivalent] logic does not seem apt for describing what
is, but it does seem appropriate for talking about our knowledge-

14 The most systematic alternatives, which lead to the same results as mine, are Cohen's
inductive probabilities (see COHEN, supra note 7), and Shafer's belief functions (see GLENN
SHAFER, A MATHEMATICAL THEORY OF EVIDENCE (1976)).
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and our lack thereof.15

B. Multivalence

Thus, another thing is perfectly clear: we need not invent a system for
thinking about beliefs in multivalent terms, because the accepted non-
classical system called multivalent logic already exists. Often it is deployed
to handle vague terms, like "tall." But it extends to degrees of truth.

The distinction between bivalence and multivalence appears through
the distinction between crisp and fuzzy sets.16 If a classical probabilist says,
"There is a 30% chance that Tom Cruise is tall," the speaker supposes that
Tom is either tall or short in a world with just two crisp sets, and on the
available evidence he thinks that it is only 30% likely that upon accurate
measurement Tom would end up in the tall category rather than the short
category. But when a multivalent logician says, "Tom's degree of
membership within the set of tall men is 0.30," the speaker means that Tom
is not very tall at all. Both statements can be accurate and informative when
appropriately deployed. But the difference between them is real and
considerable. It derives from the fact that the probabilist is assuming
bivalence, so that one is tall or short, while the multivalent logician is
speaking of a world where one can be more or less tall.

Within its realm, nobody contests how multivalent logic should
operate, at least in general terms. Multivalent logic nicely handles the
meaning of vague and even normative terms. The sticking point is law
professors' resistance to choosing multivalent logic for measuring and
manipulating likelihood of past facts.'7

Nonetheless, one can express a sort of multivalent likelihood of truth,
just as one can multivalently express tallness. Even the purest past facts,
ones that look to something like whether an event occurred, are more
complicated than they appear. One begins to unpack them by recognizing
that past facts most often appear to us not as true or false, but instead as
something falling between completely true and completely false, which we
can call a partial truth. A partial truth can be expressed in terms of its degree
of membership in the fuzzy set of true facts. Such expression is not
predicting the probability of absolute truth, but instead is measuring a
factfinder's judgment, based on the evidence available, about how likely true
a particular proposition is. It represents not a percentage chance, but a partial
truth. A 60% belief in an act's occurrence, when we have no way of
discovering the absolute truth about the one-shot past event, is epistemically

15 STEVEN GIMBEL, AN INTRODUCTION TO FORMAL LOGIC 530-31 (2016).
16 See SIDER, supra note 12, at 12-23 (introducing set theory). Fuzzy set theory is a

common way to represent and work with fuzzy logic.
1 See, e.g., Schwartz & Sober, supra note 1, at 637.
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indistinguishable from a 0.60 membership in the set of true occurrences, or
for that matter a 0.60 membership in the set of tall men.

The law reveals its acceptance of multivalence's partial truths in its
instructions to factfinders. It makes no distinctions among kinds of facts, but
instead treats historical facts just as it treats vague or normative findings. It
treats random uncertainty just as it treats imprecision. This approach-
evaluating all facts in the same manner regardless of their nature and
regardless of which of the various kinds of uncertainty the law faces-makes
sense only if the law has accepted multivalent logic.

The law must eventually act on the partial truths it accepts. To facilitate
this step, there exists a compatible mathematical system for handling
multivalent beliefs, called belief function theory.'9 Its imagery nicely
captures and expresses in an easy and comprehensible way the uncertainty
resulting from scarce or conflicting evidence concerning the likelihood of
past facts. It also captures and expresses the uncertainty that flows from
conceptual imprecision. The degree of membership in a fuzzy set expresses
some of all that uncertainty, but fuzzy set theory treats second-order
uncertainty, that is, uncertainty about the actual estimate of degree of
membership, in the third dimension of a so-called ultra-fuzzy set.20 Belief
functions instead bring second-order uncertainty front and center into a
single measure of indeterminacy, just as legal factfinders intuitively do. One
could say for belief functions, "same theoretical basis, better image for legal
factfinding."

Under belief function theory, a belief in a can range anywhere between
0 and 1. Likewise, belief in not-a, which is disbelief of a, or equivalently
active belief in a's contradiction, falls between 0 and 1. Defects in evidence

18 See CLERMONT, supra note 2, at 163-64 ("The inclusiveness of fuzzy logic suggests
its use for each fact and for combining evaluations of different facts. Indeed, it can effortlessly
express even a traditional probability as membership in a set, that is, probability is the degree
to which the imagined universe of all tests would belong to the set of positive results. This
compatibility is essential. It allows easy combination of a randomly uncertain set with an
imprecise set, in accordance with fuzzy logical operators." (internal citation omitted));
Clermont, supra note 2, at 42-48; Nicholas J.J. Smith, Degree of Belief Is Expected Truth
Value, in CUTS AND CLOUDS: VAGUENESS, ITS NATURE, AND ITS LOGIC 491, 494 (Richard
Dietz & Sebastiano Moruzzi eds., 2010) (contending that "uncertainty-based degrees of belief
and vagueness-based degrees of belief' must be treated as equivalents).

19 See Clermont, supra note 4, at 362-69. The mathematics of belief functions are
basically compatible with the set theory underlying multivalent logic, as some have shown by
use of so-called possibility theory. See CLERMONT, supra note 2, at 202-03; Franz Huber,
Belief and Degrees of Belief in DEGREES OF BELIEF 1, 10-15 (Franz Huber & Christoph
Schmidt-Petri eds., 2009); cf Alessandro Safflotti, A Belief-Function Logic, in AAAI
PROCEEDINGS OF THE TENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE 642, 644

n.3 (1992), https://www.aaai.org/Papers/AAAI/1 992/AAAI92-099.pdf (constructing a hybrid
logic that attaches a quantified notion of belief to classical first-order logic).

20 See CLERMONT, supra note 2, at 162-63.
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or its absence will affect the degree of belief in a and in not-a. Also, on the
basis of incomplete, inconclusive, ambiguous, dissonant, or untrustworthy
evidence, some of the factfinders' belief should remain indeterminate. Thus,
in factfinding, we ask how much we believe a to be a real-world truth based
on the evidence, as well as how much we believe not-a-while remaining
conscious of indeterminacy and so recognizing that part of our belief will
remain uncommitted. In other words, a belief and a belief in its contradiction
will normally add to less than one, making belief function theory a so-called

21nonadditive system.

Possibility of a

uncommitted Bel(not-o)

0 1

Let a be an element of the claim. The zone between Bel(a) and
Bel(not-a) represents the uncommitted belief. Indeed, any case starts with
the whole range of belief standing as uncommitted. The proper
representation of lack of proof is zero belief in the plaintiffs position-but
also zero belief in the defendant's position. As the plaintiff introduces proof,
some of the factfinder's uncommitted belief should start to convert into a
degree of belief in a's existence, and almost inevitably the plaintiffs proof
will also have the inadvertent effect of generating an active belief in at least
the slightest possibility of its nonexistence. If the defendant introduces proof,
whether in the form of negation or as part of an alternative and inconsistent
account, the degree of active belief in a's nonexistence would presumably
grow. Indeed, the very clash of beliefs could diminish the degrees of belief
in a and not-a.

When we say at the end of the evidence that Bel(a) = 0.40, we are
not saying that the belief in not-a = 0.60. We are saying only that the proof
is such that to a degree of 0.60, a has not been proven to be true, which could
represent uncommitted belief. Imperfect evidence means that part of our
belief will remain uncommitted, with only the remainder divided between
Bel(a) and Bel(not-a). So, the belief in a's falsity would usually be smaller
than 0.60. In the diagram, Bel(not-a) = 0.20. It does not equal 1-Bel(a), a
measure that expresses only the maximal possibility, or plausibility, of not-
a.

21 See CLERMONT, supra note 2, at 151, 187, 203; Rolf Haenni, Non-Additive Degrees of
Belief in DEGREES OF BELIEF 121, 121-27 (Franz Huber & Christoph Schmidt-Petri eds.,
2009); Ron A. Shapira, Economic Analysis of the Law of Evidence: A Caveat, 19 CARDOZO

L. REV. 1607, 1613-16 (1998) (distinguishing additive from nonadditive).
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If you wanted to get the odds for betting on a, you would somehow
have to allocate the uncommitted belief to a and not-a. You can bet with
very little information in hand, but you nevertheless must allocate all belief
between the two possible outcomes, in order to place your bet accordingly.
You would do so by performing what is called a pignistic (or betting)
transform from the credal (or belief) stage.

A step that looks like a pignistic transform is to normalize the
beliefs, by scaling the quantified Bel(a) and Bel(not-a) up proportionately so
that together they equal 1, and thereby moving the uncommitted belief back
into another dimension. The partial truths are then expressed as normalized
likelihoods. In the diagram, normalizing Bel(a) = 0.40 and Bel(not-a) = 0.20
would yield a = 0.67 and a's complement = 0.33. Although these numbers
look like odds, they are not odds. They are an expression of the beliefs in
fuzzy terms. That is, 0.67 is the best first-order estimate of the provability
of a, with the second-order uncertainty relegated to a different dimension.
Thus, fuzzy logic is still a nonadditive system.22

As I shall show in the next section, one need not quantify beliefs in
order to work with them, and indeed usually should not. But if one desired
to quantify a particular proposition, one could express a belief as its degree
of membership in the set of true facts. Given humans' limited ability to
evaluate likelihood, one should express the belief in words drawn from a
coarsely gradated scale of likelihood, rather than speaking in
misrepresentative terms of decimals. Here is an appropriately gradated scale
that utilizes natural language and captures the fuzzy imprecision of beliefs:
(1) slightest possibility, (2) reasonable possibility, (3) substantial possibility,
(4) equipoise, (5) probability, (6) high probability, and (7) almost certainty.23

Indeed, the intuitive normalizing process explains how we law
people can so easily speak in percentage terms and translate the standard of
proof into a form such asp > 50%. Resort to the nonnumerical scale would
make people sound even more lawyerly. The bottom line is belief function
theory adapts itself easily to imaging proof in just the way that law professors
have traditionally done. Nothing too radical so far!

The reason for the air of familiarity is that multivalent logic in any
of its forms can be made to look much like bivalence plus probability.
Multivalent logic has this capacity because it is the more general system. It
includes bivalent logic as a special case. That is, a world of things having to
be either black or white is merely a special and extreme case of worlds
actually shaded in grays.

22 See supra note 21.
23 See CLERMONT, supra note 2, at 166-68.
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C. Standard ofProof

The discussion of belief functions leads naturally to a discussion of
standards of proof. Belief functions enable us to restate the accepted view of
the standards with a precision that heightens understanding. In a civil case,
rather than misleadingly asking whether a fact is more likely than not true,
the preponderance standard is more precisely asking whether the factfinder
believes the fact is true more than the factfinder believes that the fact is
false.24

This approach does not differ radically from traditional conceptions
of proof. Nor is it telling the factfinder to think a new way. It instead tries
to represent how a factfinder actually thinks, which is the way that current
law seems to call for thinking and is, moreover, a good way to think. So, my
more-likely-than-not restatement conveys an important point: compare
belief and disbelief, rather than speaking in terms of an abstract possibility
that the allegation might not be true. The factfinder should ask the natural
question that the law seems to pose: do you believe the burdened party's
allegation more than you disbelieve it?

Moreover, this approach to the civil standard of proof does not
require the non-burdened party to formulate a competing version of the truth,
other than negation through denial. My restatement here conforms to the
law too. The law, of course, says that the non-burdened party need not
produce any proof or any story. That party can let develop or make develop

24 See Clermont, supra note 4, at 373-75. Clear-and-convincing would be Bel(a) >>
Bel(not-a). See id. at 375-76. This standard is easy to apply because we are used to the idea

of being clearly convinced of something, in law and in life. If one wanted to be more explicit,
one could say that the factfinder needs to be more convinced than believing that the likelihood
of a exceeds the likelihood of not-a on the scale of seven gross categories of likelihood

described in the text, believing that it is at least two categories higher. Proof beyond a

reasonable doubt seems different in kind in its demandingness. See id. at 376-77. My
conjectured formulation requires both (1) that the likelihood of guilt exceed the plausibility

of innocence, so that Bel(a) > 1-Bel(a), and (2) that there be no reasonable possibility of
innocence, so that no reasonable person could hold that Bel(not-a) exceeds the lowest

category. The first requirement ensures that the proof of guilt is strong enough that the

factfinder is not swimming in uncommitted belief, thus requiring a completeness of evidence
not required on the civil side. The second requirement expresses the idea implicit in the
criminal standard that the factfinder cannot retain a reasonable belief in innocence or,
equivalently, a reasonable doubt as to guilt. See CLERMONT, supra note 2, at 36-38
(explaining the meaning of equivalent standards as the burden shifts). Maybe the two
requirements satisfy Professor Risinger's contention that the criminal standard "is intended to

make even the juror who thinks that the defendant 'did it,' in everyday terms, think twice."
Harold A. Ashford & D. Michael Risinger, Presumptions, Assumptions, and Due Process in
Criminal Cases: A Theoretical Overview, 79 YALE L.J. 165, 199 (1969). In any event,
recognizing this difference in kind of the criminal standard refutes those who would treat it

as an ordinary but very high standard and then argue that the standard is much too demanding
to be optimal. E.g., Ronald J. Allen & Larry Laudan, Deadly Dilemmas, 41 TEX. TECH. L.

REv. 65, 68 (2008).
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a belief in the falsity of the burdened party's version of the truth in the course
of trial.

More specifically, the restated standard calls for constructing
separate beliefs for a and not-a, while leaving some belief uncommitted, and
then comparing the beliefs in a's truth and falsity. That is, a preponderance
of the evidence means that Bel(a) > Bel(not-a), not that Bel(a) > 0.50.
Indeed, finding an element to exist will sometimes entail a smallish belief
found to exceed an even smaller belief in its contradiction. To continue my
example, the factfinder should find a if Bel(a) = 0.40 when Bel(not-a) =
0.20, with the uncommitted belief equaling 0.40.

Actually, the factfinder need not quantify the likelihoods. Because
all the factfinder needs to do is compare the strengths of belief and disbelief,
the factfinder need never place the belief on a scale. But if sometime
motivated to specify a fact's likelihood, the factfinder should express it in
the coarsely gradated terms of slightest possibility, reasonable possibility,
substantial possibility, equipoise, probability, high probability, and almost
certainty. Thus, the factfinder in my running example might say that Bel(a)
> Bel(not-a) because the substantial possibility of a exceeds the reasonable
possibility of not-a. That phrasing reveals that the factfinder is not drawing
a fine line or making a close call, but saying that belief in the partial truth
palpably exceeds belief in its falsity, that is, it is at least a whole step upward
in likelihood.

This reformulation in terms of belief functions has considerable
advantages over the usual p > 50% formulation.25 First, the reformulated
burden of persuasion does not require the always troublesome task of
quantification.26 Second, the civil standard invokes the factfinder's
considerable powers of relative judgment, rather than the weak powers of
absolute judgment on some scale of likelihood.27 Third, it does not require
the completeness of proof that would be necessary for the burdened party to
get belief above 50%, but instead is willing to follow the law by resting
decisions on the evidence presented.28 Fourth, the burdened party need not

25 See Clermont, supra note 4, at 355-56.
26 There are the routine objections to speaking of proof in numerical terms, such as that

percentages of likelihood are not how people normally think about legal cases and that use of
numbers can mislead the factfinder and produce imagined conundrums such as the
conjunction paradox. See CLERMONT, supra note 2, at 75-78, 113-14.

27 See CLERMONT, supra note 2, at 62-66.
28 See Larry Laudan, Strange Bedfellows: Inference to the Best Explanation and the

Criminal Standard of Proof 11 INT'L J. EVIDENCE & PROOF 292, 304-05 (2007) ("The trier
of fact cannot say, 'Although plaintiffs case is stronger than defendant's, I will reach no
verdict since neither party has a frightfully good story to tell'. Under current rules, if the
plaintiff has a better story than the defendant, he must win the suit, even when his theory of
the case fails to satisfy the strictures required to qualify his theory as the best explanation.").
On how to justify disregarding the uncommitted belief when the proof of both the fact's
existence and nonexistence is weak, see Clermont, supra note 4, at 374, 381-82.
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fight imaginary fights, trying to disprove every alternative possibility, but
instead can focus on elevating a and depressing not-a. Fifth, this
reformulation of the civil standard of proof conforms to the law by saying
that the non-burdened party does not need to develop a competing version of
the truth, but can rely on negation of any essential fact. Sixth, the non-
burdened party benefits from a tangible burden of production, because the
burdened party must produce evidence sufficient to generate a belief of
reasonable possibility. Seventh, the reformulated standard better achieves
preponderance's goal of minimizing error costs, while it gives the parties
mainly equal treatment.29

Conversely, a traditionally probabilistic approach with its absolute
numerical scale is undesirable and unworkable. It also does not conform to
the way the law works. On the one hand, a probabilistic civil standard would
seem impossibly difficult, as the plaintiff must rise above 50% while
disproving a virtually unlimited number of alternative states of the world.30

On the other hand, a probabilistic civil standard simultaneously would seem
improperly easy, in that the plaintiff, starting with a 50/50 chance, could
claim victory with a feather's weight of evidence."

Professor Risinger's Symposium article delivers a convincing
rejection of such probabilism.32 Speaking only of yes-or-no past facts, which

interestingly are the kind of facts that American law professors instinctively
feel are most suited to traditional probability theory, he develops an approach
similar to mine. He focuses on the surprise that the factfinder would feel if
the found fact hypothetically were revealed to be false, while I stress the
factfinder's beliefs in truth and falsity. He states: "My central claim is that
people believe something to be true to the extent that they would be surprised

29 See Clermont, supra note 4, at 375. Nevertheless, Professor Nance has criticized my
reformulation. See NANCE, supra note 1, at 175-78. His principal criticism of my
preponderance standard was that expressing the test as Bel(a) > Bel(not-a), or equivalently as
Bel(a) /Bel(not-a) > 1, is not superior to his expressing the test in terms of probability, p, as
p- / (1-p) > 1. See id at 176 n.188. But that criticism misses the points of the textual
paragraph. His test entails the difficult task of quantifying p, and it also entails the six other
theoretical shortcomings of factfinders' having to speak in terms of traditional probabilistic
odds. But through his more recent study of possibility theory, Professor Nance seems to be
coming around to a comparative belief-based standard. See Nance, supra note 1, at 17 & n.42.

30 See Michael S. Pardo, Second-Order ProofRules, 61 FLA. L. REV. 1083, 1093 (2009).
31 A huge difficulty for traditional probability is fixing the starting point for factfinding.

See CLERMONT, supra note 2, at 204. The probabilist might assume that when you know
nothing, the rational starting point is 50%. Then, if the plaintiff offers a feather's weight of
evidence, he in theory would thereby carry not only his burden of production, but also his
burden of persuasion. The real-life judge, however, hands only defeat to the plaintiff with
nothing more than a feather's weight of evidence, and does so by summary means. Why is
that? The reason is that the well-behaved factfinder starts not at 50% but at 0. Then, to get
past the judge and reach the factfinder requires more than a feather's weight. It requires a
showing not of slightest possibility, but one of reasonable possibility. That insight makes
sense of the notions of the burden of production and the burden of persuasion.

32 See Risinger, supra note 8.
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to find out it was false."33 He calls for the factfinder's "mental experiment-
not by asking what one would bet on the truth of a belief, but asking directly
how surprised one would be to find out that the thing believed was false."34

He would then formulate the standard of proof as a measurement of that
surprise against an "inherently imprecise scale," albeit one perhaps too finely
gradated: "such as mildly surprised, surprised, quite surprised, greatly
surprised, astonished, shocked, etc."35 He explains: "One interesting thing
about such scales is that they can be easily understood as rank-ordered, and
therefore having the transitive property of numbers, but as not having any of
the other properties of mathematization such as additivity."3 6 In other words,
standards of proof should focus on nonnumerical, nonadditive beliefs as to
the facts rather than on hypothetical bets.

III. MULTIPLE ELEMENTS

In describing factfinding on a single element, the difference between
dealing in probabilities and dealing in beliefs was rather subtle. I have
maintained that multivalent beliefs are a sounder representation, because
they do not rest on the faulty assumption of bivalence. But as one switches
to factfinding on multiple elements, one must choose definitively whether to
combine probabilities or beliefs. They calculate very differently.

Even if one accepts beliefs as the sounder representation, one must
seriously resolve to keep thinking in multivalent terms when combining
multiple factual elements. One has to maintain a great mental effort not to
slip back into the binary thinking that we are so used to employing. When
one faces uncertainty as to whether Tom was the perpetrator and as to
whether a tort was committed, one will find it almost irresistible to start
multiplying odds. Here is the vaccine, again: odds and beliefs are
fundamentally different measures.

As for odds, which assume bivalence, the complement of the chance
of a's being revealed as true is the chance of a's being revealed as false. The
chance of a's being revealed as false interacts with the chance of b's being
revealed as false, so that the chance of a or b being revealed as false goes up
by a multiplicative amount.

To resist reversion to bivalent thinking, focus on what a belief is. In
a sea of uncertainty, it is an island of credence. A belief is not a probabilistic
prediction of a complete truth or complete falsity being revealed, but instead
is a measure of how well proven a proposition is. It in no way suggests that
its complement is the belief's falsity. That Tom is a 0.70 member of the set
of tall men does not imply to any degree that he is short. That any a has been

3 See Risinger, supra note 8, at 981.
34 See Risinger, supra note 8, at 981.
35 See Risinger, supra note 8, at 982.
36 See Risinger, supra note 8, at 982.
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proven to a 0.70 belief does not imply that there is any belief in not-a.
Instead, the complement of the degree proven is the degree not proven, an
uncertainty that could very well eventually resolve in a way that strengthens
the belief.

So, when one combines beliefs, one does not combine the
complements as the product rule does. The degree of a's not being proven
does not have any effect on or interaction with the degree of b's not being
proven. If one believes a and one believes b, then one believes a and b
together, although, of course, not more than one believes a or b separately.
In other words, conjoining knowledge is fundamentally different from
placing a bet.

Recall that past facts unknowable with certainty are epistemically
the same as vague concepts.37 Imagine ten or more historical facts each
believed to 0.90, which link as necessary elements to form a story. Should
you accept that story? Yes, if you are a historian, even though the product
rule would put the odds at 35% or less. Rejecting that path, and instead
accepting the product rule, would lead to such idiocies as Holocaust denial:
the denier would wonder how anyone could think that so many events
conjoined to produce the Holocaust?38 Every accepted story from history
consists of linked, not multiplied, beliefs. A legal factfinder should follow
the historians' lead in accepting multivalent logic's lesson to treat beliefs
differently from odds.

To sum up, if you believe Tom was the perpetrator and you believe
a tort was committed, then logically you believe that Tom committed the
tort. As I shall next explain, when you want to know how well a and b are
proven on the current proof-and so whether you should proceed with belief
in the conjunction-you should look to how well proven the weaker element
is.

A. Product Rule

The product rule says that the odds of independent events occurring
together is the product of their individual odds.3 9 As I have argued, truth
exists as to past facts, but it is unknowable with certainty; and this reality
generates no reason for the law to pay attention to the odds of something
happening that will never happen-the truth of an unknowable fact revealed.
Then, why should the law use the product rule to find out the odds of repeated

3 See supra text accompanying note 18.
38 See Michael Salter, Countering Holocaust Denial in Relation to the Nuremberg Trials,

in HOLOCAUST AND GENOCIDE DENIAL: A CONTEXTUAL PERSPECTIVE 21, 22 (Paul Behrens et
al. eds., 2017). See generally EVIDENCE AND INFERENCE IN HISTORY AND LAW:

INTERDISCIPLINARY DIALOGUES 2-62 (William Twining & lain Hampsher-Monk eds., 2003);
WILLIAM TWINING, RETHINKING EVIDENCE: EXPLORATORY ESSAYS 352-53 (2d ed. 2006).

3 For interdependent events, the probability operation for conjunction isp(a) multiplied
by p(bIa), so it is still multiplicative.
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miraculous revelations of truth? Instead, the law should work with the
knowledge we have, which comes in the form of beliefs.

Mathematically, the reason that the product rule is inappropriate for
factfinding is that it is premised on a bivalent world with fully committed
belief. In that world, a probability gives the additive odds of a being
somehow revealed to be true rather than false. The product rule assumes that
saying a = 0.70 means not-a = 0.30. If b = 0.60, then not-b = 0.40. When
asked the odds of (a AND b), the result is 0.42, while (not-a OR not-b) is
0.58.

However, beliefs in facts do not work that way. Beliefs are nonadditive,
so that a plus not-a does not necessarily equal 1 or, in other words, a belief
in a fact does not imply a certain belief in its falsity. In technical terms,
nonadditivity makes the product rule inappropriate mathematically.40

Multivalent logic provides the appropriate mathematical rule, to be
described in the next section. It is easiest to comprehend in an example
involving vague terms. Think of the sets of tall men and of smart men. Let
A be the set of tallness among men and B be the perhaps independent set of
smartness among men. Tom is a 0.30 member of A and a 0.60 member of B,
which means something like "Tom is not so tall" and "Tom is fairly smart."
To what degree is Tom a member of the set of (tallness AND smartness)?
One can resolve this question as a matter of intersection of sets. The question
becomes how much does Tom belong to the set of tall and smart men.

On the one hand, Tom does not get to carry over the higher set-
membership number, because his lack of height drags him down. On the
other hand, no one would ever think of multiplying vague measures. There
is no reason that the product rule should apply, dragging his membership all
the way down to 0.18. This probabilistic result is lower than both his tallness
level and his smartness level. It seems to yield, "Because Tom is not so tall
and Tom is fairly smart, Tom is very likely a very short and/or very dumb
man." Mere application of the product rule seems to have made him very
short and dumb. The reason that it calculates the conjunction so low is that
multiplication of probabilities gives the irrelevant chance that Tom is both
completely tall and completely smart. It does not tell us the degree to which
he is both tall and smart.

Instead, Tom's degree of membership in the intersecting set should
not decrease below the lower of his tallness and smartness levels. Tom
seems a 0.30 member of the set of tall and smart men. The conjunction of
tall and smart says, "Because Tom is not so tall and Tom is fairly smart, Tom
is not such a tall, smart man."

Perhaps this will appear even more clearly if tallness is 0.70 and
smartness is 0.70, so that Tom seems obviously a 0.70 member of the set of
(tallness AND smartness). And, if his smartness is only 0.60, Tom's

40 See Clermont, supra note 2, at 60-64.
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membership in the set of (tallness AND smartness) drops toward 0.60, not
precipitously to 0.42.

The inappropriateness of the product rule will become still more
obvious as one combines more and more elements in the calculation. The
product calculation will approach 0.00, even if all of the values are high.
What is Tom's membership in the set of tall, smart, rich, famous, and strange
men? The product rule implausibly suggests well under 0.05. Instead, the
intersection of sets suggests that the membership should go no lower than
the minimum membership around 0.30.41

My argument still holds when one switches from combining vague
characteristics to combining beliefs.4 2 A historical fact unknowable with
certainty can be expressed only as a partial truth. The partial truth is saying
how strongly we believe it, often leaving a lot of belief uncommitted. It
expresses how true we will treat a fact to be. The fact is partially true and
partially not true. It says nothing about the odds that it will be revealed as
true, because any such statement would require committing that
uncommitted belief. So, how do you combine partial truths? It would be
bizarre that you could just apply the product rule that was developed for
odds. It would be especially bizarre to bring over the product rule when a
whole field of logic developed to deal with partial truths and when that field
rejects the product rule. For conjunction of beliefs a and b as partial truths,
it is not appropriate to think of multiplication of odds.43

41 The product rule would lead to other silliness, such as the aggregation paradox. See

Alon Harel & Ariel Porat, Aggregating Probabilities Across Cases: Criminal Responsibility

for Unspecified Offenses, 94 MINN. L. REV. 261 (2009) (building on the aggregation paradox);
Ariel Porat & Eric A. Posner, Aggregation andLaw, 122 YALE L.J. 2 (2012) (same). Theorists
would have us convict defendants on the basis of a series of almost proven crimes. But see

Kevin M. Clermont, Aggregation of Probabilities and Illogic, 47 GA. L. REV. 165 (2012)
(dismantling the aggregation paradox).

42 See supra text accompanying note 18.
43 The basic difference between beliefs and odds and the applicability of multivalent

theory even to pure yes/no factfinding are the two biggest things that Professor Allen misses
in his End-of-History-entitled conception of the conjunction paradox as "a feature of the
world." Ronald J. Allen, The Declining Utility ofAnalyzing Burdens ofPersuasion, 48 SETON
HALL L. REV. 995, 2 (2018) (page citations and quotations are drawn from the draft of Sept.

28, 2017, on file with author). In it, he references our earlier e-mail exchange that I failed to

heed. Id. at 1003 n.3 1. In that exchange, he announced: "So, my advice to you is to scrap the

grand ambitions to explain to people like me why we've missed the boat for the last 30 or so
years notwithstanding prodigious effort, including effort to understand precisely what you're

discussing here-because I think you're just wrong about that. . . ." E-mail from Ronald J.
Allen to author (Dec. 22, 2011, 19:02 EST) (on file with author). He is now sticking to his
guns, proclaiming and re-proclaiming that I am "simply wrong." Allen, supra, at 1003, 1007.

1. He gets off to a rocky start by misconceiving my whole project. I do not maintain

that "changing one's views of probability will change the external world." Id. at 996. Instead,
I am proceeding from the sound premise that for any particular task in treating the external
world, one must choose the appropriate probability tools.

2. He then attacks my tools. He takes particular delight in my water-bottle example,
which was designed to demonstrate the difference between crisp sets and fuzzy sets. It
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B. MTN Rule

When combining beliefs in the legal elements of claim or defense,
the sound route is to focus on first-order estimates of how well-proven each
belief is, while ignoring second-order uncertainties. The mathematical

involves two bottles marked as having either a 91% probability of being nonpoisonous or "a
.91 membership in the fuzzy set of potable liquids." CLERMONT, supra note 2, at 165. But he
misunderstands the example, being misled by his conviction that I want to change the external
world by methodological commitment. Incredibly, he believes I am saying that if you think
of a bottle in fuzzy logic terms, you can magically make "the contents of the bottle change."
Allen, supra, at 1005. No. I am saying that the two bottle labels are describing two different
contents. The parched person crawling in the desert would be smart to attend to that
difference.

3. He next opens his "technical" discussion by accusing me of having "conflated
(contorted, perhaps) the distinct ideas of probabilistic conjunction in mathematics and set
intersection in set theory." Id. at 1005. Given that my central point is that these two ideas are
fundamentally different, it is no surprise that his technical discussion is muddled, drawing
false distinctions between multivalent logic and belief functions, fuzzy logic and fuzzy set
theory, and propositional logic's conjunction and set theory's intersection. His excursion by
string-cite to the subject of fuzzy numbers, which is but an old extension of multivalent logic
for sophisticated calculations, can have no other purpose than to spread fog. His introduction
of fuzzy probability theory as proving me wrong is harder to explain, because I was in fact
trying to use fuzzy probability theory in my dealing "with mixed probabilistic/non-
probabilistic uncertainty." Michael Beer, Fuzzy Probability Theory, in ENCYCLOPEDIA OF
COMPLEXITY AND SYSTEMS SCIENCE 4047, 4048 (Robert A. Meyers ed., 2009) ("The
significance of fuzzy probability theory lies in the treatment of the elements of a population
not as crisp quantities but as set-valued quantities or granules in an uncertain fashion, which
largely complies with reality in most everyday situations."). Although relying almost
exclusively on Beer, Professor Allen ignores Beer's embrace of the MIN rule coming from
so-called imprecise probability theory. See id. at 4053.

4. He takes comfort in the loneliness of my position among law professors. See Allen,
supra, at 1013. But I am not all alone. Bertrand Russell is a good ally. Yet Russell might
not impress someone who treats disagreement by dismissing the late, great Oxford logician
Jonathan Cohen's work as "idiosyncratic." Id. at 1004 n.35. But see CLERMONT, supra note
2, at 180 (discussing "Cohen's almost impenetrably brilliant book").

5. After misstating vagueness theory, multivalent logic, and my position in a number
of ways, he comes to a glimmer of realization that we are not so far apart. See Allen, supra,
at 1014 ("If Clermont would just drop his fallacious argument about the magical qualities of
multivalent logic and set theory, we would welcome him into our camp."). Here is the irony.
My approach and his relative plausibility theory both call for comparing the plaintiffs and
defendant's positions, without concern for the conjunction paradox. I try to show by logic
that the law, with its element-by-element standard of proof, is correct in ignoring the supposed
conjunction paradox-and that the law's element-by-element approach is equivalent to
comparing the plaintiffs overall account to the defendant's contradictory position. He gets
to the same point by fiat, running roughshod over law and logic to decree that henceforth the
factfinder should ignore judicial instructions, repeal probability theory, and just compare best
stories. See supra note 4 (criticizing his relative plausibility theory). He resorts to fiat because
he has failed to realize that when applied to standards of proof, every variety of inference to
the best explanation, including his theory, implicitly accepts the MIN rule to show that the
best explanatory story's conjunction is superior to all competing accounts.

In sum, I am not saying that Professor Allen "missed the boat." In fact, his prodigious
rowing has brought us all a long way. It is just that, like Columbus, he does not know where
he landed.
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sophistication of belief function theory, which results from accounting for
second-order uncertainties, is unnecessarily complicated for the law's
purposes. It is simpler to return to fuzzy logic and to partial truths expressed
as normalized degrees of likelihood.44 We can then readily prove how to
conjoin the partial truths. The conjunction operator for fuzzy logic systems,
its alternative to the product rule, is the so-called MIN rule:

truth(a AND b) = minimum(truth(a), truth(b))

The appropriateness of this operator can be formally proven.45 But the
accompanying figure may help at least to visualize this operator for
conjunction.46 It indicates the shaded intersection of the two sets A and B,
where p gives the degree of membership of a point along the x-axis. Let the
x-axis represent some ordering of conceivable states of proof in a particular
case. Let z, being some point along the x-axis, represent the proof actually
admitted in some case. If z falls within the intersection, the degree of
membership therein will be the degree of membership in A or in B, whichever
has the lower membership line at that point z. As you can see, at z the
membership in (A AND B) is MTN(A, B), which in the figure would be less
than 0.50.

B
A

0 x

44 See supra text accompanying note 22; Clermont, supra note 4, at 387-89.
45 See Clermont, supra note 2, at 51 n.32.
46 The figure comes from Timothy J. Ross & W. Jerry Parkinson, Fuzzy Set Theory,

Fuzzy Logic, and Fuzzy Systems, in Fuzzy LOGIC AND PROBABILITY APPLICATIONS 33
(Timothy J. Ross et al. eds., 2002); see also id. at 34-36 (extending the MIN rule from a
common element's membership in multiple fuzzy sets to the relationship of a's and b's
memberships in different fuzzy sets, which would change the image into a mapping by
Cartesian product of the multiple memberships onto the same interval of [0,1]).
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If after proof in a different case the membership in A is 0.70 and the
membership in B is 0.60, then by fuzzy logic the membership in the
intersection would be 0.60. Thinking of intersection of sets might not be that
helpful, though. A better image is the links of a chain.47 The proof tells a
story consisting of elements, which can be strung element-by-element as
links. The strength of the chain is the strength of its weakest link. In other
words, the conjunction of many fairly true propositions is fairly true, not
almost completely untrue. If truth(a) = 0.70 and truth(b) = 0.60, then truth(a
AND b) = 0.60.

Accepting this MIN rule for routine use in law makes everything
simpler. The same MIN rule applies whether the elements are independent
or interdependent. The MIN rule works the same on facts within elements
as between elements, making any particular division of a claim or defense
into elements nondeterminative.4

8 If the standard of proof were applied to
the whole case, the standard of proof would be satisfied if and only if each
element meets the standard of proof. If the factfinder in actual practice
approaches the case holistically by constructing an overall story, the outcome
will equate to the outcome from applying the standard element-by-element.
Therefore, the conjunction paradox disappears, whichever of the leading
rational or psychological models for processing evidence that one accepts.

This is not to suggest there is no role for the product rule. It remains
appropriate for many sorts of situations, including some legal situations. If
the event in question is not vague, and thus readily distinguishable from its
opposite, and its expected occurrence is subject only to random uncertainty,
then traditional probability might be the appropriate vehicle to generate odds.

For a probability example from a non-legal setting: will I twice pick
a black ball from an urn containing only pure white and pure black balls?
However, if the fact is vague, and most facts in the world are vague,
multivalent logic is the way to go. For a contrasting example that calls for
multivalence: how black are these grayish balls?

In the legal arena, even after accepting the MIN rule in general, the
factfinder will find uses for the product rule, either consciously or intuitively.
A judge deciding on a preliminary injunction will need to calculate the odds
of multiple future events, a task for which the judge would find the product

47 See Clermont, supra note 2, at 64-66.
48 Within elements, see supra note 2, the factfinder uses the usual intuitive techniques in

nonquantitative and approximate fashion to find facts. But the process of combining facts
within elements is not dissimilar to the proof process between elements. To join separate
facts within the elements (as opposed to reinforcing or contradicting evidence), the factfinder
uses the same multivalent operator for conjunction. See CLERMONT, supra note 2, at 158-59,
191-92; cf Branion v. Gramly, 855 F.2d 1256 (7th Cir. 1988) (rejecting multiplication of
odds). The apparent criticality of the number of elements thus melts away. The law splits the
case into parts that it calls elements and tells its factfinder to proceed element-by-element, but
does so only to make the factfinder's path to decision more comprehensible and careful.
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rule to be appropriate. Or a jury might have to make predictions in
connection with remedial issues. Another kind of example would arise when
the factfinder needs to manipulate and evaluate statistical evidence. Or if
one had to determine whether Einstein's actual deathbed statement was a
particular q, the multitude of possible things he might have said would

probabilistically cause Bel(not-q) to balloon while the uncommitted belief
remains considerable.

Nonetheless, our lawmakers have explicitly chosen multivalent
logic to provide the default operator for combining facts. By phrasing the
instruction to factfinders so as to require applying the standard of proof
element-by-element, the law reveals that it has adopted the MIN rule.4 9 That
instruction does not ask the factfinder any overall question. It does not ask

what the overall likelihood is. It does not give instructions on how to
combine independent or interdependent findings, which would otherwise be
necessary. Instead, a rule of law tells the factfinder to determine whether an

element is likely enough and, if so, to proceed afresh to the next element. It
is a rule of law, and not the factfinder's function, that says the plaintiff shall
recover once the factfinder finds each element to exist under the standard of
proof.

C. Multivalent Conjunction

Multivalent logic, then, calls for the MIN rule to calculate
conjunctive likelihood. And the law has heard that call. This legal move has
brought the benefits of simplicity. But the question remains whether the
law's approach produces the "right" answers.

The right answer depends on the purpose of standards of proof.
They could serve a moral end, enhance public acceptance of outcomes, or
further some other process value. But I accept the dominant view that the
standards aim at the appropriate error distribution. In particular, the civil

49 See, e.g., In re Corrugated Container Antitrust Litig., 756 F.2d 411, 416-17 (5th Cir.
1985); 3 KEVIN F. O'MALLEY, JAY E. GRENIG & WILLIAM C. LEE, FEDERAL JURY PRACTICE

AND INSTRUCTIONS: CIVIL § 104.01 (6th ed. 2011):

Plaintiff has the burden in a civil action, such as this, to prove every
essential element of plaintiffs claim by a preponderance of the
evidence. If plaintiff should fail to establish any essential element of
plaintiff s claim by a preponderance of the evidence, you should find
for defendant as to that claim.

See also Allen & Jehl, supra note 1, at 897-904 (criticizing Dale A. Nance, Commentary, A
Comment on the Supposed Paradoxes ofa Mathematical Interpretation ofthe Logic of Trials,
66 B.U. L. REv. 947, 949-51 (1986) (finding the pattern jury instruction ambiguous)). Of
course, the pattern jury instruction also verbalizes the process implicitly imposed on the judge
when acting as factfinder.
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standard of preponderance aims at minimizing errors and error costs through
the pursuit of accuracy.so

Using the MIN rule yields the most accurate story, indeed, the story
more likely than all the other possible stories combined. That is, the
conjoined story is as likely as the weakest element, which has already
satisfied the standard of proof if each element is more likely true than false.
Moreover, the disjunction of the falsities that combines all other possible
stories is only as likely as the most plausible of the falsities, which has
already failed the standard of proof.5 '

This resolution may sound like magic. But it follows ineluctably
from the realization that linking the elements in a chain tells a story that is as
likely as its weakest link, and so all we have to do is ensure that each link is
more true than false. Multivalent logic instructs that this is the way to
proceed if you want to make the most accurate decision in accord with our
best knowledge of the facts.

Getting the most accurate answer gives the most efficient answer,
and hence the "right" answer. If instead the standard of proof asked on
whom the factfinder would bet to win if only we were somehow to stumble
upon perfect bivalent knowledge, the factfinder should employ the product
rule. But there is no reason whatsoever that society should have interest in
that question. Basing decisions on the product rule would mean that
plaintiffs will lose some strong cases that they should have won. Moreover,
defendants at fault would not be receiving enough corrective messages. The
product rule would lead to more errors. These errors would detrimentally
affect economic efficiency.

Understandably, because society wants to act upon the most accurate
view of the facts given the knowledge we have, its legal system has chosen
to go with the MIN rule.

CONCLUSION

What the law mandates on standards of decision, if clearly understood
and followed, will produce optimal results. First, the standard of proof on
an element of a claim or defense should call for a comparison of the
factfinder's belief in its truth and belief in its falsity. Second, the standard
should be applied separately to each element.
Indeed, one does not have to carry a lot of multivalent theory around in one's
head. Once one has stopped worrying about the conjunction paradox, one

50 See Clermont, supra note 2, at 64-66.
51 Disjunction is calculated by the so-called MAX rule: truth(a OR b)

maximum(truth(a), truth(b)). Thus, if truth(a) = 0.70 and truth(b) = 0.60, the membership in
the union would be 0.70. Just as intersection of sets does not cause likelihood to plummet
wildly, union does not wildly increase likelihood. The degree of a's not being proven does
not have any effect on, or interaction with, the degree of b's not being proven.
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no longer needs to master or apply fuzzy logic. Although belief functions,
with their uncommitted belief, define the standards of proof, one can
understand the resultant standards without flights of theoretical fancy. The
civil-case standard asks merely whether the factfinder believes that the fact
is true more than the factfinder believes that the fact is false.

In any event, nowhere in the analysis of standards does traditional
probability theory lend a helpful hand. Instead, the law here is, more or less,
a matter of common sense.
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