
Fermi National Accelerator Laboratory

FNAL/C--91 - 3,16

DE92 004807 16

Software Development Tools for the CDF MX Scanner

W. Stuermer, K Turner and S. Littleton-Ses_* !

Fermi National Accelerator Laboratory _ _iC '_ C,__o',
P.O. Box 500, Batavia, Illinois 60510

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any age.ey thereof.

November 1991

* Presented at the IEEE Nuclear Science Symposium, Santa Fe, New Mexico, November 2-9, 1991.

DISTRIBUTION OF THIS DOL;U!vIE:NTIS UNL.I',V_,;"L'_,U.

I_11 OINm_INI I}!1I,l_i_li_ Rmmwdll ._li,_llon Im_,uMlu' C_llr_l I_, IIE-.&CI__31_I wllh the I,Init_l Slal_ _l el

.....

,+h

SOFTWARE DEVELOPMENT TOOLS FOR

THE CDF MX SCANNER

W. Stuermer,K+J. Turner,S. E. Littleton-Sestini,

Fermi National Accelerator Laboratory 1

fourth memory, in a single. 120ns instruction
Abstract

I--"---'l

This paper discusses the design of the high level assembler _ _ _'_ I m= [
and diagnostic control program developed for the MX, a high

speed, custom designed computer used in the CDF data ara_ti- _ __/)--_'W'_u I IThiopro. ovidoamnd ,
productive environment for the development of software on ___ __.f__._,,.
the MX. Details of their implementation and special features, -- L_..'-_.J-'-w" I m I

and some of the lessons learned dm'ins their development are _

included. __AU' I " I
I. INTRODUCTION

processor called the MX in its data acquisition system, u_ EM _ _e _c --_._TA
Because of the custom design of the MX, off the shelf sofl- ,,,,:+NI,

ware could not be used for program development, software [k.,e_, I _Fe=
debugging or hardware diagnostic functions. Writing these _. s_ _ s_ LAST_RESULT

utililies afforded sn opportunity to incorporate some new and __ ,_Ln'_ _om

u_ Ps_l
interesting features, as well as learning the degree of effort re- _ m:m
quired to develop custom software to support a machine like .murea pe_Ol

um izl.tq
the MX. _ _ ,. ,. tat 1,._oILm i=.tq

v V

III
A. MXArchitecture

ALU
!

The design of the MX has several unique or unusual
features. These features are of interest here because they are _ le
reflected in the design of the tools developed to support the

MX. As shown in fignre 1 the MX has 5 internal memories in _[_ _.__'_
addition to the instruction memory (IM). The Ewe Memory _ Rx

(UM) is used to store a fist of specially encoded words which
tell the ADC card (called a "Ewe") how to convert analog mseuceo,0U)_Tnm
channels and to read (digital) PROM data. There are three in- e3e:meo,, s7s+56u 53_ s+so4,,s ,, +s45. ,+42. _ i3s= 3_3e_ 3+33-
dependent data memories called DMA, DMB and DMC, "A'd,a _'o_,_ _"d,* Td, m
whose data is used to perform arithmetic corrections on the "A'_,a _'_ _'_l _'_'_
ADC data and such housekeepin_ functions as counting loops. "A'o_ _ dm _-o_
The Event Memory (EM) is where the MX writes its outpuL

i+,+o,.= = ._I_+=I==i2o,,II'"I. 1.-I-'=I"1o'I' ' 'I' I' .=,o
Much of the power of the MX comes from the fact that it can i -',:d. I "l * ! " I * / " I " I " I'1 "_"
fetch an operaud from three different memories, perform a
three way operation such as A+B*C and store the result in a Figure 1 - Architectureof the MX Computer

The MX also has a set of 13 registers, but only the index
l Fermilab is operated by the University Research Association, registers will be discussed here. Memory addresses in the MX
inc, under contract with the U.S. Department of Energy. This
work was supported by the U.S. Department of Energy under are formed by adding the contents of a 16-bit index register
contract No. DE-AC02-76CHO3000. with an 8-bit offset encoded in the instruction word. The in-

struction format allows for 4 independent addresses (3 in the EM. It starts this process when a start scan message is
operands and 1 result), but there are some restrictions on written to its FBCR (Fastbus vontrol register) register by a
which index registers can access a given memory. The "A" Fastbus broadcast, and signals completion by setting the
and "C" addresses are used to read operands from the DMA DONE bit in the SR (status register). When ali of the MXs and
and DMC memories respectively, and can use the XI, X2 or other '%canners" have finished, the Event Builder reads the
X3 index registers. The "B" address is used to read an operand data from each one and builds "event record". The "Level 3"

from the UM, EM, or DMB memories, and can use the full set trigger uses physics analysis programs to reconstruct the event
of index registers (X1, X2, X3, AX1, AX2). The "R" address and apply a final cut to which events are written to tape.
is used for writing an arithmetic result and can also use any Each MX controls two ADC cards, called Ewes; and each

index register. The result can bfs written to any memory except Ewe converts approximately 500 analog channels coming
the IM. from the CDF detectors. The MX tells each Ewe what to do by

sending it specially encoded 24-bit words which are written to
B. Role of the _in the the UM at the same time that the MX program is downloaded

CDF Data Acquisition System to the IM. After starting each conversion, the MX polls the

Ewe status until DONE goes high. Then, the digital data is
Figure 2 shows a simplified view of the CDF data ac- read from the Ewe.

qu_sition system. When the CDF experiment is running, there If the MX is running the data acquisition code, a pedestal
is a proton-antiproton "bunch crossing" every 3.5 rts. Some of value is subtracted from the data, it is muRiplied by a linear
these crossings result in high-energy collisions. The result of a correction, and it is compared to a threshold value. If the MX
collision is called an "event". The purpose of the data aequisi- is running the pedestal calibration code, 256 values are coi-
tion system is to digitize, process and collect the signals com- lected for each channel Each value has a base value subtracted
ing from the electronic detectors used to instrument the CDF (to prevent overflow) and is added to a 32 bit sum(x) and
experiment, and write the data to tape for further analysis of- sum(x^2). Later, these sums are used to calculate the mean and
fline, siRma for each channel pedestal.

The triRger system uses special "fast out" signals from the The resulting data is written to the Event Memory in a
front-end electronics to determine if the event is interestin 8. If format which is organized by detector component, and logical
the event satisfies the level 1 and level 2 triggers, a start scan channel ID, called"scanner bank format."

message is broadoast to the MXs. Currently, there are 60I MXs used in the CDF data
acquisition system and about one half of the data from the

I _ I CDF detectors are processed by these MXs. The rest of the
[data is processed by other devices in the data acquisition

I _,v*3T_w [system.

I III. HIGH LEVEL ASSEMBLER
Level 2 Triggem I

I I

I] F,tI_ I Arguably, a processor's assembly language is the most im-

/ ' portant interface between the hardware and the intended users.This was especially true in the case of the MX, since the de-

(_ velopment of a high level programming language such as
Pascal or C was not anticipated. A custom assembler language
incorporating features from high level languages such as do
while loops, if/then/else structure, local storage and branch
symbols has been designed and implemented to serve as a ve-
hicle for software development on the MX.

There are several possible pitfalls in the design of an as-
sembler for a device such as the MX. For example, an arith-
merle expression for the MX may involve 4 operands includ-
ing the result. Does LDAM A,B,C,D mean A - B + C'D, or D
= A + B'C, or does it mean A = B*C + D 7 The MX assem*

bier (called ASM/MX) borrows it's syntax for such arithmetic
expressions from more familiar grammars like Fortran. It is

Figure 2 - Simplified Diagramof the hoped that the meaning of a statement in ASM/MX like
CDF Data Acquisition System LOAD A = B + C*D require no explanation (the rules of

precedence are the same as those in Fortran). In this example

The purpose of the MX is to digitize a set of analog chart- A, B, C and D could be any memory or register, limited only
nels, perform certain local processing on the data and format it by the architecture of the MX.

r For example, the first 256 locations in each of the memo-
. A. Familiar Cast of Characters ties are treated as a special "s_atch memory" by MX pro-

grammers. The reason that this is so is that these locations can
ASM/MX refers to the MX registers by the same names as be accessed without the use of an unused index register, which

those found on the original schematics and engineering docu- can be a scarce commodity. In ASM/MX, the programmer can
mentation used in the development of the MX (and shown in assign symbolic names, like a.module_no, to one or more con-

figure 1). This is important because a significant group of secutive memory locations. These names can be used alone
users of the assembler are the engineers and technicians who like a 16 bit integer in Fortran, or in combination with au in-
developed the MX and keep it tutoring today. The same is dex register, like an array of 16 bit integers. In some situa-
true of the MX memories, except the DMA is referred to as fions, it is convenient to specify an explicit offset in addition
"A", DMB as "B" and DMC as ``C", for the sake of brevity. In to the offset implied by the symbolic name. The syntax for di-

this way, the memories and registers of the MX form a famil- rezt (no index register) and indirect (w/index register) are
iar cast of characters for those being introduced to MX pro- shown in figures 3 and 4, respectively. Notice that ali

grammin_ for the first time. symbolic names begin with the name of the memory in which
it resides.

B. Memory References
C. Program Structure

As stated above, MX memory references are formed by
addin$ the contents of a 16-bit resister to an 8 bit offset and An ASM/MX program consists of a list of functions and
such references may apply to the DMA,DMB,DMC,EM or "storage sections." A storage section declares a related set of
UM memories. The MX assembler provides several distinct symbols like those just described and fulfill much the same

representations for such references, in order to facilitate the purpose as common blocks in Fortran. One storage section
simplest and most easily tmde_tood stru_lare for eaGhuse. may be designated as the "GLOBAL STORAGE" section

Storage symbols declared in this storage section are automati-

e_i cally imported by every function. Every other storage se_ion
is given a name and functions that need to refer to the storage

_.neme A(ommnt) declared there need to import them by referring to the name of
dnb B.nmm B(constant)
an= c.,eme c(eo,m,t) the storage section. Storage sections differ from Fortran com-
an _tnme _ _nt) mon blocks in that the symbols (variables) are only declared in

u._2_16] UM_H,3t_name UM_H_3_constant) one piace and it is impossible to accidently overlay symbols
un_lS:O6] UM_LOW.nffirw UM_LOW(consUvt) have different names or associated storage.

dme A.nmm(cor_ant)
dnb B.mme(oomemnt) Wnt=x e=mpW...... ,

dm= C.nmm(mmWt)
em EM.rmme(mmemnt) GLOaALSTORAOE STORAGE=mmr_
umi23:1e] UM_HIGH.rmme(oomtam) <=ton__decmatk=_ ,,con= : 8w=_ = 0,1.2,3.
um(15:00] UM LOW.name (cofltdlMlt) <=bxage_deckirabo_ 4,5,6,7- • • . a.comtMop : 1word = 128

..... END 8.COmlt_rd : 1word = 64
b.hex FFFF : 1word = (hsx) FFFF
b.hex_8000 : 1word = (hex) 8000

Figure 3 - Dh-ectAddressingMode in ASM/MX STORAGE <secOon_name> b.flag_error : 1word = 1
<stomge_de¢laredion> c.con=t 16 : 1word : 16
qtomgede¢larstion> ¢.conat_32 : 1word = 32

• • = c.heX_4000 : lwl:xrd = (hex) 4000
memory syntax ENo F.NO

alma A (xe) A.name (xa)
drab B(xb) B.name(xb)
drr¢ C (xe) C.name(xc) Figure 5 - Storage Sections in ASM/MX
em EM(xb) EM.name(xb)
um[2_ 16] UM HK3H(xb) UM_HIGH.name(xb)

um[1,_O0] UM-LOW(xb) UM_LOWna_e(xb) Functions are the basic executableunit of an MX program.
One function is designated the "MAIN FUNCTION" and

_name(xa,=x_tant) serves as the primary entry point for the program. An
a.name(xb+oona_mt) ASM/MX function is divided into two parts. The first is used

amt c.name(xc, cormta_) to declare local symbols for storage and importin8 storase
em EM.r_xm(xb, constant) symbols from storage sections. The second part contains ali ofum[23:. 16] UM_HIGH.narne(xb + constant)
um[15:00] UU_LOW.name(xb, oonmnt) the executablecodein the function.

Figure 4 - Indirect Addressing Mode in ASM/MX

.!
the program to resume execution where it left off in the origi-

wn=x e_ffi._ nal function. The only provision for passing arguments to the
called function or returning results is by the use of storage

tUdN_NC_ON symbols which are shared by both "functions. This is consistent
_axt atoraOotrom

M_NFUNCTION ce,mn= with the requirement for MX programs to operate as fast as
IMPORTSTORAGEFROM storage possible.

<uc_o_namo>, catack '2(;clop_stack 0 ,_ords
<secbonname>,

o • • BEGIN syntax examples
STORAGE loadSR= &sr.done '

qmmOo_dooara_> mdxi =ack_tcO_=ack)
<__decleratS_ /_ Maine_entloop."'1 %WHILE<condition> P Loadewefornextchann_."1<mecu=Ue_mte_nt>

• • O %10(8) <e0alc_al:de_llMtenw_ %whh a.cofl___ltandum_hlgh(axl)= 0
BEGIN l* Waltfora mrt4can "l • • • Ioedumbr=urn(exl),axl++,a_obo

<e3wcu=l__aal]m_mnt> %un_l,m %ENDWHILE %endwhile
<exleu=ide_lmmmm> p Wall "1

• • o aNmnduntil

END P Savethestartscanmeuagoend %L_c_=l_e_o=tm_nt > P Freerunningcounter."I
theEOSbitinthemtu_ mgimr."1 <eoeecu=lde_mtmmnt> %loop

load&flax =fao • • • load&count=a.count- 1

FUNCTION<func0on_nam_ load="=a.sr_start %END LOOP %endloop
IMPORTSTORAGEFROM P Rndoutwhattypeofelart-ecan.'l

<o_l_on namo>, ev=l=Lttx:rand(hex)(3(::00
qedlon name>, loedX2 =le_ remitChigh)c.(:on__64 %UNTIL<aondltlon> P Waitfort_eewetofinishwith_, channel"I

<e_utal_e_am_nent>
• • • %case)(2of <e_e_u=bie_s=tmrnent> %untildone(bottom)

STORAGE 0:.Calldotmm • o o loadubr
<_lo__d_ 1:P donoUdng"1 %ENDUNTIL %enduntil
<stomgodo(:lmlUon_ 2:cellinilN

e o • Calllet_dm(bl
BEG_N 3:P do no_ing"1

%ondcmo
<exect__etatemenl> %CASE<bdex..reg>OF P

P Set E_ (end-of4can)b£in O: <e_ stmnt> 3 caoo_
<ex__l=tBrn_ theetatuareg.. "1 oBothI_ andbottomlira aroempty.

o • • <O)_U=I_O gtatlmlont> 0 Ofllytopli_tisempty.END Ioader:srora.sr_done • o •
%ondloop 1: __=rnont> oOnlyI:x_omIi_ leempty..................... _ • I

END <e)eecutal__statement> loadx2 =e.,s=t_

n-l: <ex_ml_e_statement> %case)<2of
<e)mautableetatement_ 0: gotoend_loop

• • • l:call_tats_a
Figure 6 - Functions inASM/MX %ENoCASE > c_ ==mb

3: callaa__c

This separation between declarative and executable state- _ ,-,.=o
ments is unusual for an assembly lanm,age, but introduces an _e _,dmm.- meN r' Mov_toen evenwo_Iboune_ly.*l

element ofpredictabifity for the programmer. Like any reason- <e_m__,tmr_t> e_ x_a,d,,=._1)
able progrmmning language, ASM/MX will flag the use of any <_mme__mummt>• * • %iflmutreouRl:0then

storage symbol which has not been explicitly declared as a %ELSEIF_THHq Ioa_m00)=O, x3++
<execu=ble_e=tement> e_ if

syntax error. This behavior helps prevent simple spelling er- <exec_,__mtement>
rots from introducing bugs in the program. By putting ali of * " "%ELSEIF <con_> THEN
the storage declarations at the be_nnin E of the fimcUon, the <e_c,=ue_Q_mt>
programmer knows where to lock to see if a storage symbol <exeom__Itme,_,etl

has already been defined and, if so, how it is spelled. %ENDnF
Transfer of control within an ASM/MX function is accom-

plished by the "GOTO" statement. Every GOTO statement Figure 7 - Meta Statements in ASM/MX
must have a branch label as its target. Branch labels lock like
those found in PASCAL and consist of an alphabetic charac-

ter, one or more alphanumeric characters and a colon. Ali D. Meta-statements
branch labels are local to the function in which they are de-

clare& so jumping into the middle of another function is not One of the most important goals of ASM/MX program-
possible. This feature is intended to discourage the unstruc- min8 is for the resultin 8 program to execute as efficiently as
tured, "spaghetti code" often found in assembly language pro- possible. This is because, in the case of the data acquisition
grams. Branch labels are not required at all in most cases, be- code, the execution time of the MX adds directly to the "front-
cause of the availability of structured, "meta-statements." end deadtime" of the system. During this time, the data ac-
(Please refer to section D, Meta-Statements.) quisition system is blind to the proton-antiproton collisions

Transfer of program control from one function to another that are occurring ew'ry 3.5p.s. Since operation the accelerator
is done with a conventional "CALL" statement that enters the

function at the top, and "RETURN" statement which causes

at Fermilab costs many thousands of dollars per hour, these vivwport and a workspace. The menu viowport gives the user a
, lost collisions have a significant value, list of verbs, the user types one and Moxi presents the user

For this reason, ASM/MX maintains a one-to-oue relation- with a different menu, until there are no more options and the
ship between executable statements and generated machine in- command is executed. This mode can be useful for people who
stmctions. This gives the programmer the control he/she needs are just becoming familiar with Moxi's commands, but leaves
to write the fastest possible program within the available in- a relatively small part of the screen available for the work
strue,,. _ set. space, where the user types in a command and reviews the re-

There are certain constructs of these atomic statements, sponse. As the user becomes more proficient in using Moxi,
however, which are repeated time and again in MX programs, the user can dismiss the menu viewport with the "SET
These constructs correspond to the classical elements of VIEWPORT/NOMENU" command. This makes Moxi more
stm©tured proRlmnmin$, including 3 types of loop, chained responsive because it no longer has to change the menu, and
if/then/else and the case statement. Sp_ial "meta-statements" leaves more room to review the results of a command which
have been added to ASM/MX which implement these dumps more thau a few lines of data, and to review the results
constructs by generating several MX machine instructions, of more than one command. This can be quite useful when
Each of these constructs begin with a keyword with a percent tracking down a bug in hardware or software.
sign, like %WHILE, in order to distinguish between meta- A verb-noun syntax is used to organize the commands in
statements and the ordinary, atomic statements. The syntax of Moxi and make them easier to remember. There are currently
the available meta-statements is listed in figure 7. over 100 commands in Moxi. Rather than attempt to assign a

unique verb to each one, Moxi uses a Verb-Noun combination
IV. MX ONLINE EXECUTIVE INTERFACE wherever possible. Because the same verbs and nouns are used

in many commands, the user only has to remember M+N
The MX functions as sn embedded processor, in that it has items rather than M*N items. For example, the DECODE v_b

no controls or displays on its front panel and has no direct can be applied to the command register in the Ewe (called
terminal connection. All communication between it and the EWE/COMMAND), or the FBCR ("Fastbus Control

outside world is done over the Fastbus local area network. A Register"), or a word in the instruction memory. Similarly, the
program has been written to serve as a combination control noun FBCR can be used in the READ and WRITE, as well as
panel, software development debugger and hardware diagnos- the DECODE, commands.
tic utility. This program is called the MX Online Executive
Interface, or "Moxi." Moxi implements several features which coo,sue ,o_,(Fec_ _-r _ S.OWLO_,Le
may be useful for applications written to support custom pro- .ecooe°cLME ,o_,rms_._w_ u_'sr°_ m,x_°w"°_
cessors besides the MX. ow_ ese,_ ,oct:Pc sAvE _cwm_c_OECOOElM llkOOl_ umrr SCAN/D_MOOE _5HOWTRAP

OECOOEM_ QUIT
oe_e..,_,,,, ._e_T __ _s"°wv_
I_C:OOE mOblm" READCAI_ 8CANR/ff STEP

• MAINMENU STATUS _ C:8 RInD CSR_SPACE 8CANffI_M STOP
Om:_AY READC_m:c_i SE'TBREAK TEm'ONE

2 _ s,,c_ _ uox,=,,,_. _ o.oo _ _L,_ sL.'r_ "_w_
3 _m_ _,..oxl....._....._. umo,. ,xrr mo_ ssrm, Tm...w

F..dlnt _lh LSE_r EI)T. _ NONE HISTOGRAM AI:C READMm_y sLrrLOOP TEST miRMr
O {HELPJ I_qa_l I_lp m m _mmand. 1418TOGRM__t REN) MEP SLrI"M(X_/NACK VI_IFY
7 il)¢L] Exl_ull VM8 (x_mmd(i). NT BAT REN) li_ _ MOOE/SPY V_ff
II [QUIT] Ed MOXL leg le: DISABLED INIT I_N_ REN) Rellltlr SL=TMOOE/b'TEP IA_ITE BAT
0 [READ] RmKI II_m IdXer oll'm'dm_u nm_ retail: ENABLED INITI_, READTMXD 8E_"MOOE NERIFY V_ITE _
10 _-CODE"] R,mdrlgllm" _ _ q_/me4e: DISABLED LCI_O RESET BREAK SETMX WRITE EWE
11 [WRITE] Wrltl to MXor odin"dlvk:m, v_lly m_le: ENABLEI) LOOP RESET DISPt.AY SETTRACE IM_ITE Memory
12 [MODIFYI Modll_MX or EWEr_lil_'. _1_11me_:. OlSABLED _ RESET EV_ SETTRAP V_ITE MEP
Prim RETURN Iorn_l Pige MOOIFYEV_JCHADRS RESET LOGFILE SETVII_M=ORT IMilTE k_(

EWrdC(:MIM.ND RESET LOOP SHOWBREAK WRITE RegiMIr
MOXl _, MOOIFY_AL RESETMX SHOW15XT(_

IdOOIFY_NEMMITE RESLrrTRACE SHOWEWE

Figure 9 - Summary of Commands in Moxi

Another principle in Moxi's design is to avoid "command
Figure 8 - Menu and StatusViewports in Moxi modes", where a command is only available in some restricted

context, or the same command._ have different meaning in
different modes. This is a common problem with menu driven

A. User Interface Issues programs, which can make them tedious to use. All of Moxi's

commands are always available, unless they require a device
Every useful program has a user interface and Moxi is no which has not been selected, and the user can escape any input

exception. A significant effort has been devoted to developing prompt (for the WRITE PC command, for example) by enter-
a consis*,_nt, powerful and easy to use tool in8 CNTRL-Z.

Moxi features a "dual user interface" and can be operated Positive feedback is used to let the user know what state

as a menu driven or command driven program. When Moxi Moxi is in and to put the d_ta displayed in the workspace in a
starts up, it presents the user with a menu viewport, a status meaningful context. The status viewport tells the user what

version of Moxi is currently executing, what devices (such as The basic commands for controlling the execution of an
the MX) have been selected, and what modes (ie, is there an MX program are RUN, STOP, and STEP. As the name lm-
open log file, is Moxi currently reporting NACK errors) are plies, the STEP command uses the single-instruction feature of
active, the MX to execute one instruction. It can only be used when

The standard names are used for the memories and regis- the MX clock is in a halted state. The RUN command either

ters in the MX. PC and DMA, for example. Registers located releases the MX clock, or causes the MX program to execute
in other devices, such as the Mep, Ewe, and Bat, use names in a series of single-instruction steps. This is contrclled by the
like MEP/SCID and EWE/COMMAND. state of"step mode" in Moxi.

Moxi provides quick INIT commands for the Mep, Ewe, Breakpoints are lM addresses defined by the user and kept
Bat and MX; and quick TEST commands for the MX and on a list by Moxi. The PC is read and checked against this list
Ewe. For example, TEST EWE reads out the Ewe's ID prom, whenever the user executes the STEP command, or after every
reads certain reference voltages on the Ewe, performs a instruction is executed in step mode. If the current PC is a
"barber pole" bit test for ali the registers on the Ewe, and tests breakpoint, program execution is stopped, a list of read/write
the Ewe's "autodec" feature of the channel address register. ¢_mmands calledthe display list is executed, and Moxi returns
The INIT command sets the specified device to some prede- control to the user via the command prompt. Because break-
fined state, then reports to the user what state that is. points require reading the PC after every instruction is exe-

The Mep, Ewe, Bat and MX can also be used as the target cuted, they are inactive when the MX clock is running (non-
for the READ and DECODE command. For example, READ step mode).
EWE displays the contents of ali of the registers of the cur- Trappoints are user defmed addresses where a special
rently selected Ewe. This is a let easier than typing 7 com- jump-to-self instruction has been written to the lM by Moxi.
mands to read these registers out one at a time. Trappoints behave like breakpoints, except they will stop

program execution regardless of whether Moxi is in step mode
B. General Facilities or non-step mode. Because the PC is not read out after every

instruction is executed, the display list is not automatically ex-
The READ command provides a mechanism for displaying ecuted, but the user can use the WAIT command to poll the

the contents of any register or memory in the MX, Mep or PC and execute the display list when the MX program reaches
Ewe. The output of the READ command can be directed to a one of the trappoints. When the user sets a trappoint, Moxi
file with the/OUTPUT qualifier. The DECODE command reads the original contents of specified address, so the trap-
provides roughly the same function as READ, except the tar- point can be reset and the original instruction restored just as
get of the command (a memory, register, or device) decoded easi;v as it was set.
into fields, like the module and submodule addresses ha the A special "CONTINUE" command is provided in Moxi to
EWE/CHADRS register, or disassembled into the ASM/MX allow the user to "step through" a trappoint. When the user en-

syntax, in the case of the IR (instruction register) and IM ters this command, Moxi first stops the MX clock and checks
(instruction memory), that the cmrent PC is on the trappoint list. Assuming we are at

Similarly, the WRITE command provides a mechanism to a trappoir,,L,Moxi temporarily restores the o"nginal instruction
change the value of any writable memory or register in the and executes a single step. The breakpoint is restored and the
MX, Mep or Ewe. (Some registers are read-only.) Moxi will clock restarted.

perform a readback and verify operation if "verify mode" is Moxi allows the user to build a "display list" consisting of
enabled. The MODIFY command allows the user to modify a list of read/write commands. The display list can be executed

one or more fields in a register by performing read-modify- explicitly, with the DISPLAY command, or implicitly, after
write operation. Naturally, the register fields are specified by one instruction has been executed with the STEP command, or

name. when the MX program hits a user defined breakpoint.
Even with the menu and status viewports disabled, the user Rather than defining a set of commands to add and remove

only has 24 lines for the workspace on a standard ASCH ter- operations from the display list, Moxi uses the LSE or EDT
minaL Moxi allows the user to get around this by opening up a editor on the host machine (a Vax) for the user interface.

log file. Everything written to the workspace: command When the user enters "SET DISPLAY", Moxi opens a tempo-
prompts, user responses, data, and any error messages, are rary file using the editor's callable interface. Once the user is
written to the log file. This can be particularly useful in two in the editor, he/she can use the familiar keypad commands to
situations. In the first, someone is nnmin_ an overnight hard- insert, remove or modify read/write operations. The same syn-
ware test and wants to be able to review the results even if the tax is used as the READ and WRITE commands. When the

terminal is accidently turned off. The second situation is where user is satisfied, the editor is exited in the normal way and
the user is executing a program trace, where the output may control returns to Moxi. Moxi opens the temporary file, parses
potentially be thousands of lines long. its contents and finally deletes it. This method provides the

user with a familiar and flexible interface, and may be of use
C. Software Facilities in other control programs like Moxi.

Alternatively, if the user specifies a fde name with the SET

DISPLAY command, Moxi will look for an existing file and

.........

m

build thz display list with the commands in this file. In this assembly level languages can be implemented using a simple,
• case, th_ file is not deleted. This allows the user to build a set recursivo-desecnt approach.

of predefined display fists. Towards this end, Moxi first looks Moxi demonstrates the concept of providing the user with
for the display list in the current directory, then in a special di- complementary user interfaces, in this case, menu driven and

rectory defined by a logical name. command driven interfaces; it shows one way a consistent
command language can be dvsigned, by adopting a verb-noun

D. Hardware Facilities framework;and uses an interesting user interface for creating
a command list, by using the callable interface to an editor..

Facilitating the job of tracking down and repairing MX But these capabilities were not achieved without cost.
failures is an important function in Moxi. One tool Moxi pro- ASM/MX and Moxi are large programs, with almost 12k and

rides for this is the "scope loop." A scope loop is a list of read 53k fines of code respectively, and took approximately 6 pro-
and write commands which are executed to generate some grammer-years to develop. Off the shelf software could not be

signal in the MX hardware. A oscilloscope or logic analyzer used because of the custom design of the MX, so this cost may
can then be used to look at the behavior of the MX's logic un- be viewed as a consequence of choosing a custom design for
der this stimulus, the MX. This investment was justified in the case of CDF

Moxi uses the same user interface for setting up a scope since there were no processors available in 1981, when the
loop and setting up a display list. When the user enters the CDF data acquisition system was designed, to match the MX's
"SET DISPLAY" command, he/she is put into the LSE or capabilities.

EDT editor (this is a user defined option), where the desired Developing custom software will always be a costly
read and write commands can be added, removed, or modified, proposition, and must be taken into account when custom de-

When the user starts the scope loop (via the "LOOP" signed hardware is being considered as part of a system's de-
command), the commands on the scope loop are executed sign.
again and again, until the user presses CNTRL-C. Unlike the
display list, the read commands on the scope loop do not dis- VI. ACKNOWLEDGEMENTS
play any data. This is in order to maximize the speed with

which the loop executes We wish to gratefully acknowledge the efforts of Greg
Another command which is useful in maintaining the MX Sehuweiler, who is currently maintaining Moxi; and of Steve

hardware is the "TEST" command. The TEST command Hahn and Daniel Frei, who have made major contributions to
works with any of the memories and registers in the MX; or Amanda, the MX data acquisition and calibration code.
any of the registers in the Ewe; or all of the registers and
memories in the MX; or ali of the registers in the Ewe. VII. REFERENCES

Which test is performed depends upon the memory or reg-
ister under examination. For example, the registers in the Ewe [1] F. Abe, et al., "The CDF Detector. An Overview," Nuclear
are checked using a barber-pole pattern that looks like 1, 10, /natrumenta_on and Methods, vol A271, pp. 387-403, 1988.
100, 1000.. First, the pattern is written to ali of the registers, [2] G. Drake,et al., "The RABBIT System," Nuclear Instrumentation"" andblethoda, col A269, pp. 68-81, 1988.
then the registers are read back and compared with the original [3] T. F. Droege, I. Gaines, andIC J. Turner,"TheM7- A High Speed
data. Then the whole pattern is rotated with a circular shift op- Digital Processor For Second Level Trigger Selections," IEEE
eration and it is written to the registers again. This process Transactions on Nuclear Science, Vol. NS-25.
only requires 16 I/O operations on the Vax and since a differ- The name of the MX was derived from the Magnificent Multi-
ent value is written to each register, problems with the register Muon Mass and Momentum Monitoring Machine, or MT. M7was promoted to MB, translated to MIG (octal), and
decoding in the Ewe are checked at the same time. mmsliteratedto MX (Romannumerals).

Although some hardware failures may show themselves [4] A.J.T. Davie and R. Morrison, Recursive Descent Compiling.
every time it is tested, others happen only intermittently. The New York:John Wiley andSons
OVERNIGHT command repeats one or more tests over and
over again in a loop until the user terminates the test by press-
ing CNTRL-C. The overnight command accepts the same tar-
gets as TEST and, in fact, calls the same test functions.

V. CONCLUSIONS

The ASM/MX assembler and Moxi are sophisticated pro-
grams which provide a good environment for software devel-
opment and hardware maintenance. These programs demon-

strate certain features which may be applicable in the design of
programsofrelatedfunction.ASM/MX demonstratesthatan

assembler featuring good, context dependent error messages
and combining some of the best features from high level and

05 ql

