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We consider quenched QCD on a 16s x 40 lattice at _ = 6.0 . We give preliminary numerical results for the
lattice gluon propagator evaluated both in coordinate and momentum space. Out findinp sre compared with
earlier results in the literature at sero momentum. In addition, by consider/ns nonsero moments we attempt to
extract the form of the propssator and compare it to continuum predictions formulated by Gribov and others.

I. INTRODUCTION definite. The positivity requirement in (I) can be
seen ssa recipe to get rid (although not com-

The possibility of studying nonperturbatively pletely, see for example[6]) of Gribov copies[II.
on the lattice gauge-dependent quantities pro- In the gauge (I), the (transverse) gluon propaga-
rides in principle a unique tool to test QCD st tor in momentum space hsa been argued to be of
the level of the basic fields entering the contin- the form[l, 4]
uum Lagrangian. From this point of view, the

k=
gluon propagator in the quenched approximation Gari,_,(k) _ _ (2)
is perhsps the simplest qusntity. From its study k4 + b4

one expects to obtain among other things a bet- where b is a dynamically generated msss scale.
ter understanding of the infrared behaviour of the The form (2) for the propsgator in momentum
theory and of the mechanism of gluon confine- space implies that in the continuum

( 5)"The nonperturbative behaviour of the Eu- c°s(¢2t)-'in(
(3)

clidean gluon propagator has been investigated
in the continuum by many authors with different Remarkably, the same predictions were also ob-

ta/ned in the study of Schwinger-Dyson equa-
methods and in different gauges[l-li]. In partic- tions{3].ul_r, a very peculiar momentum dependence has

been predicted as a consequence of a modification
of the standard path integral Fsddeev-Popov for- 2. THE LATTICE PROPAGATOR
mula in the Landau gauge by the introduction

The lattice gluon field can be defined as[7]:
of a nonperturbatively correct gauge-fixing pro-

U_,(n)-U_(n) ltr(U_,(n)-Ul_(n))
cedure[l, 4]. Such improved implementation of A_,(n) =_ - (4)the Landau gauge is expressed by the equations 2ia 3 2la

/9. A = 0 and FP[A] > 0 (I) where a is the lattice spacing. Thus the lattice

where FP[A] is the Fsddeev-Popov operator in gluon propagator in z-space is the expectation
the Landau gauge, which in general is not positive value of:

°C.P. scknowledllesfinanciLisupport from C.N.R. G,_,(Z, I/) = Tr (A_,(z) Av(l/)) (Ii)



An important p6int is that on the lattice one On the other hand, such quantities turn out to be
can define and implement the analogue of the very sensitive to the numerical accuracy of gauge
gauge condition (1) and reobtsin from analyti- fixing. Empirically, it turns out that when the
cal arguments the predictions for the propagator minimization of Fu[g] has reached an accuracy
mentioned in the above section[4 ]. _ .05% the signal for the propagators is sum-

In fact, given any link configuration {U), one ciently stable against additional gauge fixing.
can define a function of the gauge transformations
g on {U} 3.2. Results

We report results for a set of 25 configurations

Fu[g]---_1 E ReT, (U_(n)+U_'(n-li)),(6) on a 16s × 40 lattice at _- 6.0. As a first step
,_,_, we have evaluated G(/_ = 0, t); our results con-

where V is the lattice volume and U f in- firm that the propagator exhibits a massive de-

dicates the gauge-transformed link U_(n) = cay in time with sn effective mass a. ro(t) =_

g(n)U_,(n)gt(n 4-/2). A,t iterative minimization /n(o(£=0,,)_(f,=o,,+,)" that increases with t. In Fig.l) we
of Fu[g] obtained by performing suitable gauge plot a • ro(t) versus t in lattice units with jack-
transformations generates a configuration {Uw) knife errors. Assuming the value of the inverse
that satisfies the lattice version of (I), defined in

terms of a lattice Faddeev-Popov operator. Then 0.46 _ , , , ,
it is natural to try and test numerically predic- |
tions like (2) and (3). 04 FNumerical studies have been performed in 0.35 T ]
the put years for the zero spatial momentum / l
Fourier transform of (5), nsmely G(/_ = 0, t) = 03 ! _ I

A

_=t G,(/_ = 0, t)[7-9}. These studies reported 025 I I
some evidence of sn effective gluon mass that in- 0.2 _- z

creases with the time separation. This feature, I =

which would be unacceptable for the propags- 0 15

tor of a reed physical particle since it violates the 0 1
Kallen-Lehmsnn representation, is in qualitative

agreement with the continuum prediction (3) and 0 05 i i i i0 2 4 6 8 10
msy be in principle acceptable for a confined par-

ticle[3, 7]. Figure 1. Effective gluon mass in lattice units
Our work aims to test st a more quantitative

level continuum predictions and to extend the

above results through the study of the gluon prop-
agator at nonzero momenta. By requiring consis- lattice spacing a-t _ 2.0GEV at _ : 6.0, the
tency between zero and nonzero momentum re- effective gluon mass that we measure ranges ap-
suits, one has a better chance to determine the proximately between 200 and 800 MeV.

propagator's analytical form. We first attempt a 2-parameter least-squares
fit of our data to the continuum form (3) without

3. NUMERICAL RESULTS taking into account the correlations in the data.
The parameters are sn overall normalization fsc-

3.1. Technical Remarks tor and the mass scale b. The results sre given in

lt is perhaps worth remarking that, unlike slm- Fig. 2 and show a very good agreement between
ulations involving quenched quark propagators, the data and the fitting points. For a -t = 2
evaluations of purely gluonic correlation functions GeV one obtains b = 225 ± 5 MeV, where the
can take full advantage of the translational sym- quoted error comes from the covsriance matrix of
metry of the theory in order to improve statistics, the fitting parameters and does not include the
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systematic error on a-_. related in t. Consequently, when we perform X2
Good agreement is also obtained by using fits taking into account the full covsriance ma-

the form commonly referred to as particle + trix, the fits sre not well controlled because the
ghost, that is G(k = 0, t) _ Cxezp(-Mx¢) + correlation matrix is nearly singular. However,
C2ezp(-M2t), where C_ is constrained to be neg- we still find that Ga,_b_,(h = 0, t) fits the data
ative, better than other forms. There is also qualitative

On the other hand, one cannot get good agree- agreement between our results for G(k : 0, t) and
merit if one uses a conventional 4-parameter doa- previous ones from other groups[7-0].

hie exponential form, that is if one constrains C2 In spite of the difRculties in the statistical anal-
in the above formula to take positive values. In- ysis, our interpretation of the results for G(/_ =
deed, in this case the effective mass would always 0, t) receives a strong support from the analy-
decrease with t, in contrast to what is observed, sis of the momentum space propagator G(k) -

_(,=1G_,_,(h). It turns out that such a quantity
is very well determined in s significant interval

30 , 1 , , , ' _ _ -i of physical momenta, ranging from the lattice in-
i frsred cutoff ho = _ to k _ 3k, (see Fig. 3).

25 - _ q "'"
In this range we fit the data to the continuum

! formula (2) and, for a comparison, to a standard20 - _ ,4
® i massive propagator G_..,(h) _ i-ig-g'r.

J An interesting point is that the covsrisnce ma-15- ,_
trix associated with G(h) turns out to be much

I0 _
¢ more "diagonal" than the one for G(/, = 0, t); in

5 _ -, other words, the data points are mach less corre-
lated in momentum space than they are in I. As

0 _ ' ) ' , L .._. ' ' ' a consequence we have been able to obtain good

0 I 2 3 4 5 6 7 8 fits for G(k) with or without taking into account
correlations. We show in Fig. 4 a fit of G(k)

to the form Ga,(,,_,(h). With the full covariance
Figure 2. G(h : 0, t) (error bars shown) and fit
to the form Ga,.,,,,, (diamond points)

lt is well known that the data points obtained 80 _'"_ .... , .... , .... , .... , .... "_'.... _ " i
from a Monte Carlo simulation are in general 70
statistically correlated; in the present case, the 60
correlated data are the values of the propagator

G(k : 0, ¢) at different timeslices. 50 -

The standard way to take into account this el- 40
feet when performing Xa fits is to use the defini- I

tion of Xa that involves the full covariance ma- 30 z
trix{10]. Such a definition reduces to the stun- _
dard one when the covarisnce matrix is diagonal, 20 - z

which would happen if the data points were un- 10 .... i .... J.... , .... _.... . .... t .... _.....
correlated. 0.3 0.4 0.5 06 0.7 0.8 0.9 1 11

By inspection of the covariance matrix for

G(/_ = 0, t) it turns out that the off-diagonal ma-
trix elements are typically of the same size as the Figure 3. momentum space propagator vs. Jhl in

GeV (assumes 1/a - 2.0 GeV)diagonal ones, i.e. our data points are highly eor-



matrix,we getforthefitinFig.4 X_e,: 1.5and dictedby (2).Of coursesuchastudycallsforvery
b = 322 ± 8 MeV, assumingagaina-t = 2 GeV biglattices.

and neglectingsystematicerrors. The work inprogressaimstoobtainfirstabet-
We compare this result to the best fit that one tar understanding of systematic and statistical er-

can obtain from the standard massive propaga- rots. After that, a study of the scaling properties

tor, for which we obtain X_p = 2.9. On the other of the mass scale associated to the gluon props-
gator is in order and, in a later stage, the issue of

80 1_.,._ .... , .... ', .... , .... , .... i.,. _ the gauge dependence of the propagator will be
T __ addressed.70 -

60 - _ C.P. wishes to thank D. Zwansiger for many
illuminating discussions. C.B. was partially

SO - -J supported by the DOE under grant number
_ DE2FG02-91ER40628, and C.P. and A.S. were40 -

partially supported under USDOE contract num-
30 - - ber DE-AC02-76CH00016 . The computing for

' this project was done at the National Energy Re-
20 -

_ : search Supercomputer Center in part under the
10 .... t ..... l ..... J.... .' .... , .... , ..... _..... "Grand Challenge" program and at the San Diego

0.3 0.4 0.5 0.6 0.7 0.0 09 I I I Supercomputer Center.

REFERENCES
Figure 4. G(k) (error bars shown) and fit to the

form GG,_bo, (diamond points) 1 V.N. Gribov, Nucl. Phys. B 139, 1 (1978).
2 J. M. Cornwall, Phys. Rev. D 26, 1453

(1982).

hand,theb valuesthatone obtainsfrom thefits 3 M. Stingl,Phys.Ray.D 34, 3863 (1986).

incoordinateand momentum spacediffersignif- 4 D. Zwsnsiger,Nucl.Phys.B378, 525 (1992).
icantly,sincetheyare respectivelyb = 225+ 5 5 J. M. Naislowski,Invitedtalkat the First

and b = 322+ 8 MeV. Sincesn appreciablediffer- German-PolishSymposium on Particlesand

encealsooccursforthemass parameterrnwhen Fields.Rydsyna, April28 -May 1,1992.

we compare momentum and z-space fitsto a 6 M.L. Psciello,etsl.,Phys.Lett.B 276, 163

simple massive propagator, we think that such (1992).
discrepancies may be related to the different role 7 J.E. Mandula, M. Ogilvie, Phys. Lett. B 185,
that finite-sise effects play in the two calculations. 127 (1987).
Further investigation of this issue is in progress. 8 R. Gupta, G. Guralnik, G. Kilcup, A. Patel,

S. Sharpe, T. Warnock, Phys. Ray. D 30,

2s13(1987).
4. CONCLUSIONS 9 C. Bernard, A. Soni, K. Yee, Nucl. Phys. B

We think that our results provide a significant 20 (Proc. Suppl.), 410 (1991).
(although preliminary) check of the continuum 10 D. Toussaint, in Proceedings of the TASI-
predictions (2) and (3). In particular, the study 89 Summer School, Boulder, Colo., Jun 4-30,
of the propagator in momentum space appears 1989.
very promising since the data for such quantity
turn out to be statistically rather clean.

Recalling (2) it is clear that a conclusive test
requires the study of the propagator at very low
momenta, in order to observe the suppression pre-






	DE93005529_BNL48258
	DE93005529_BNL48258-2
	DE93005529_BNL48258-3
	DE93005529_BNL48258-4
	DE93005529_BNL48258-5
	DE93005529_BNL48258-6


