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1. Introduction

This paper defines the beta function and the other linear orbit parameters using the

exact equations of motion. The usual treatment 1 of the linear orbit parameters is based

on the approximate equation of motion

d2x

ds--7 -t- K(s)x = 0 (1.1)

Approximations are made in obtaining Eq. (1.1) which are usually valid for large acceler-
ators.

The exact linearized equations of motion can be written as

dx

= Allx + A12p_
(1.2)

dp_
= A21x + A22pxds

x and px are the canonical coordinates in a curvilinear coordinate system based on a

reference orbit and the Aij(s) are periodic in s with period L. The approximate Eq. (1.1)

assumes that All = A22 = 0, A12 = 1 and A21 = -K(s). The exact values of the Aij are

given in section 2.

A treatment of the linear orbit parameters based on the exact equations, Eqs. (1.2),

rather than the approximate Eq. (1.1) may be desirable in the following situations:

(1) Symplectic long term tracking using a procedtre where the magnets are replaced by

a sequence of point magnets and drift spaces. For the tracking to be symplectic, one

has to use the solutions of the exact equations of ration. The linearized equations of

motion then have the form of Eq. (1.2).

(2) Small accelerators where the approximations made in (teriving Eq. (1.1) may not be
valid.

Many of the results found using the approximate equations carry over for the exact



equations. A few ,::fthe changed results are the following:

a = A12 --2 d--s+ Al13

¢ = A12 ds- (1.3)

v = 2---_ dsA123

where C is the circumference of the accelerator.

Some unchanged results are

t5 -- "IX 2 -Jff 2aTp + tip2

M(s+L,s)=(cos#+asin# flsin# )-3' sin # cos/t - a sin # (1.4)

_=(1+_)/_
#=¢(s+L)-¢(s)

L is the period of the Aij(s). More detailed results are given below. Because of Eqs.

(1.4), the usual procedure used in tracking programs to compute v, 3, a, 7 and ¢, from the
transfer matrix is still valid.

2. Equations of Motion

The exact equations of motion can be written 1'2 a_s

dz 1 + zip
-- qx

ds qs

1[
dq__ q___+ (1+ x/p)B_- q_(1+x/p)B_d-V- p _ q_
dy 1 + x/p (2.1)
d---s= qs qY

d_ - B---_ (_+ x/p)B_- (1+ x/p)B_,

q_=(1-q_-q_)'/_, _p=p_l_

In Eq. (2.1), x, s, y are the particle coordinates in a curvilinear coordinate system based

on a reference orbit with the radius curvature p(s). p_,p,,,p,_ are the components of the

momentum and

qz = P_/P, qy = P_/P, (1_= Ps/P (2.2)



For large accelerators, qz "-"x _ and qv "" Y"

To find the linearized equations for the betatron oscillations, one expands Eq. (2.1)

around the closed orbit for a particular momentum, p. This gives the set of linear equations

=
J

where _i are the 4 coordinates relative to the closed orbit. The Aij are given by

0

dij = -oxz fi i,j = 1,4 (2.35)

evaluated on the closed orbit and Eqs. (2.1) have been written as

dxi

ds = fi i = 1,4 (2.3c)

For the case where Bs = 0, qy = 0, y = 0 on the closed orbit, the Aij are given by

lq_ (l+_/p) 0 0
P qs qs

_q_ a___B] _q_ 0 0
Aij = _--PP[ + (1 + x/p) o_, --P q' (2.3d)

0 0 0 l+x/p
qs

o o + x/p) o

For large accelerators where q_. << 1, qy 4.< 1, x/p << 1 one has

All = A22 = 0, A12 = 1
(2.4)

A34 -- 1.

For the exact equations, All and A22 are not zero, and one does not have A12 = 1, A34 = 1.

In particular,
All= -A22 = (1/p)(qx/q.,)

A12 = (1 + x/p)/q_ (2.5)

A34 = (1 + x/p)/q_



3. Eigenfunctions of the Exact Linear Equations of Motion and the Linear Orbit Parameters

The problem now is, given the exact linear equations of motion, Eqs. (2.3), how

does one define the linear orbit parameters fl, ol, 7, ¢, u and the emittance e, and what are

the relationships that hold between them. To do this, one has to repeat the well known

treatment of the linear orbit parameters, and see where the definitions and relationships

change for the exact equations. The treatment given below is believed to reduce the amount

i of algebraic manipulation required, and makes few assumptions about the Aij coefficientst
in the linear equations.

For the x motion, the linear equations are written as

dx

d--s= Allx + A12p, (3.1)
dp_ = A21px + A22xds

The Aij are given by Eqs. (2.3).

The transfer matrix M(s, so) obeys

x = M(s, So)xo

= (3.2)P_
d

(TsM = AM

One may note that the symbol x is used in 2 different ways. The meaning of x should

be clear from the context. The matrix M is symplectic as the equations of motions are

derived from a hamiltonian. ]'2 Tlms

MM=I
_.o N

M =SM S (3.3)

0)-1 0 ' 0 1

S is the transverse of S. Also IM] = 1; IM I is the determin_u_t of M.

The one period transfer matrix is defined by

]t:/(._) = M(._ + L, ._) (3.4a)

where L is the period of the A/y in Eq. (3.1). One can show that ._/(,q) and f_(s0) arc

related by

_hT/(,s)= M(s, so)f/I(so)M(.so,_q) (3.41))



The eigenfunctions and eigenvalues of 2tT/(s) are defined by

_/(s)37= ,_37,

IM - _Zl= 0, (3.5)

A2 - (mll + m22)A + 1 = 0

where mii are the elements of )t?/, and using I_rI- 1.

Eqs. (3.5) shows that the two eigenvalues A1, A2 obey

_1_2 = 1, (3.6a)

and for stable motion, I_l= 1 and _2 = _, and we can write

_1 = exp(i#) (3.6b)

Given the eigenfunction at s0,371 (30) one can find the eigenflmction or any other point

s using

371(s) = M(s, So)Xl(So), (3.7a)

and 371(s) has the same eigenvalue A,. This follows from Eq. (3.5), using Eq. (3.4b) to

relate .Q(s) and ._r(s0). Also xl(s) obeys the linear equations of motion,

d

-'_8Xl : Axl, (3.7b)

which follows from Eq. (3.7a) and Eq. (3.2). One can show that

z,(s)/X_/L -- f,(s), (3.8a)

where f_(s + L) = fl(s). This follows from

fl(s + L)= 37,(s + L)/£_/L+'

= _/(s)z,(._)/._/L+'= :r,(_)l._IL

Thus, one Call write

xl(s) = exp(i#s/L)fl(s) (3.8b)
fl(s + L)= f,(s)

Eq. (3.8b) can be rewritten as

Xl(S) --" _(S) l/t2 exp(i¢)

'¢(s) = #s/L + 9,(s) (3.9)

gl(S "3t-L) = gl(s), fl(s + L)=/3(._)



Eq. (3.9) defines the beta functions, fl(s), except for a normalization multiplyer, for the

eigenfunetion xl (s). The normalization multiplyer will be defined below. It will be shown

first that ¢ and fl are related. To find this relation, one uses the Lagrange invariant 1

W =x2 Sxl (3.10)

where xl, x2 are two solutions of the equations of motion. Eq. (3.10) corresponds to the

Wronskian in the treatment of the approximate equations of motion. For xl and x2, we

use the two eigenfunctions xl and x2 = x_.

x, = (3.11)
Pzl

For xl one uses Eq. (3.9) and for pxl one finds from the equations of motion

1 (dx, )P_I = A,2 \ ds A, IZ (3.12)

W = x2p_l -p_2xl

[W = x2 ds ds A,2 (3.13)

2i fl_W- A12

The beta function/_ is normalized by normalizing the eigenfunctions so that

W =x 1 Sxl = 2i (3.14)

which gives

d_¢¢= A,2 (3.15)
ds

Eq. (3.15) replaces the familiar result d¢/ds = 1//_ which is obtained when A12 = 1. From

Eq. (3.15) one can find a result for the tune. Using 27ru = ¢(C)- _/_(0)where C is the

circumference of the accelerator, one finds

2---_1fc --z--A'2 (3.16)

From Eq. (3.12) we now find for p_l,

1

P_' - /_,/2 (i - c_)exp(i¢) (3.17a)

1 ( ld/3 )ct = A12 2 ds + A,:/_ (3.171))
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Eqs. (3.17) provide the new definition for the a parmneter, which replaces the familiar

1dfl/ds. At this point the definition of a may seem arbitrary. It will be seenresult a = -7

to be the convenient definition of a when the emittance and transfer matrix are considered

below.

The eigenfunctions can now be written as, using Eq. (3.9) and Eq. (3.17),

x,=[ fl½ ] exp(i¢)fl-½ (-a + i) (3.18)

X2 "-- Xl

4. The Transfer Matrix, the Emittance and the Linear Orbit Parameters

The particle motion can be written as a linear combination of the eigenflmction given

by Eq. (3.18)
Z "-- axl -4- e.c

x - 2lalfl '/2 cos(¢ + 5)

ax 21aIsin(¢ + 5) (4.1)

p_ = 5 5_/_
a = lal exp(iS)

Eqs. (4.1) suggest the new variables rl,p, 1

'1) =G(p x )(P,s (4.2)

01.//_-_ /_-_

for then

'1 = 2131cos(¢ + 5) (4.3)
p,, = -21a I sin(¢ + 5)

one obtains the emittance invariant from Eq. (4.3)

712 -_-p,2I = e

21a I = e'/2 (4.4)

rI=e ll2cos(, b+5), p,, =-e 1/2sin(C+5)

Replacing rl,p,_, by,x,px using Eq. (4.2), one gets

e = 7x 2 + 2axpz-k tip2
(4.5)

= (1+ _)//_
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It will be shown below that e is the phase space area, divided by 7r, inside the ellipse

defined by Eq. (4.5).

Since [GI = 1, G is a symplectic matrix and r#, po are symplected variables with the

transfer matrix U(s, so ) and

Po

u = C(s)M(s,,o)a(_o)

_=a_, ( #', 0 )_a/#l/2 #-1/2

_J = U(s + L,s) has the same eigenvalues as 217/,and the eigenflmction of U, r/, and

U2 = rlt are related to the eigenfunctions of Jlaf,zl and x2 = x_, by

where Eq. (3.18) was used for xl.

One sees from Eqs. (4.3) that p, = dTl/d ¢ and thus nq. (4.3) can be rewritten as

71= 770cos(¢ - ¢o) + p,osin(¢ - ¢o) (4.8)
p, = -,/o sin(¢ - ¢o)+ p,ocos(_b- ¢o)

Eq. (4.8)givesa resultfor U(s,so)

[ _os(¢- ¢o) sin(¢- V,o)] (4.9)V(s,so)= _sin(¢_¢o) cos(,/,-¢o) "

One can then find M(s, so) using M = G(s)UG(so),

[ (_)"i_os(+- ,/,o)+oo,_o(+-+o)1 (.o)'.,_,_(<,-+o)
M(s, so ) = 1/2

COS( t/)-- 1/)0 ) (-_) i_os(+-+o)-°s_n(+-+o)1-(1 + ._0) _"(+-¢°)- (_ - -o) (_o)(##o)i/2 1/2
(4.10)

One then finds

._ = M(s + L,s) _ [cos# + asin# flsin# ]-7 sin # cos/L - a sin # (4.11 )

t' = g,(s + L)- g,(s)



The results for M and/V/are unchanged from those found for the approximate equations of

motion. These results and the result for the emittance Eq. (4.5) justify the new definition

for a, Eq. (3.17).

The connection between the emittance, defined by Eq. (4.5), and the phase space area

inside the ellipse area defined by Eq. (4.5), is given by

f dxdp_= f drldp,l=Tr_ (4.12)

where we have used Ial = 1 and Eq. (4.4) for the ellipse in 7/,p_ space.

The relationship between the parameters fl, a, 7 at s aald/_, a, 3' at so is unchanged.

To see this, write
= I cos u + J sin u

j._(c__7 -_fl ) (4.13)

Using Eq. (3.45) that connects _h_/(s)and 2t_/(s0) one finds

J = M(s,so)J(so)M-l(s, so) (4.14)

Eq. (4.13) gives the desired result

= -m21mll l+2m12m21 -m12m22 so (4.15)
"/ 11121 --2m22m21 m22 3'0

5. Differential Equations for the Linear Orbit Parameter

This section finds differential equations for/3, 71and fl, a, 3'.

5.1 Second Order Differential Equation for x

From the first order differential equation for x,p,, Eq. (3.1), one can eliminate p, to

find a second order equation for x. From Eq. (3.1)

P- A12 _ -- AllZ

dp d [ 1 _dx )] A22 (dx )d--_= d---__ \ds A_x = A2_x + _ _ A_x (5.1)

d (1 dx) ( d _A,I_ A_,): 0d--_ A12 ds + x -A21- _ \ _ j Ale

9



It has been assumed that All "-" -A22.

5.2 Differential Equation for fl

To find a differential equation for fl, into Eq. (5.1) for x put the eigenfunction

x = b exp(i¢)

b =/31/2 (5.2)

We find then,

dx ( db iA12 )d-'_= d-b + "--if-- exp(i¢) (5.3)

using d¢/ds = A,2/b 2, Eq. (3.15)

d--_ 2 ds = -_s A12 ds b2 _ exp(i¢)

[ db iA,2 ] 1 iA,2+ _ss + _ A,2 b2 exp(i¢) (5.4)

= -_s At_..ds b3 exp(i¢)

Putting Eq. (5.4)into Eq. (5.1), one gets

d_ a,_ N b_ + b -A_, - _ kA,_ A,_

Eq. (5.5) is a second order differential equation for b =//1/2. It can be compared to

the result found when Aa2 = 1 and All = 0,

d2b A12
=0 (5.6)ds 2 b3

5.3 Differential Equation for 7/

71and x are related by Eq. (4.2) which can be written as

x = b r/, b =/31/2 (5.7)

In the differential equation for 7/the independent variable is _por 0 which are related to s

by
ds

de = A12 --_
d_ (5.s)

dO = A12--

10



We find dx/ds and d(A_21dx/ds)/ds which are then substituted into Eq. (5.1) to get the

equation for r/, using Eq. (5.5) to eliminate derivatives of b.

db dq A12

dx=-_sTlq de b

d ( 1 dx) d ( 1 db) I db&7A,2d--_ A12 ds = -_s A12 ds 71+ A12 ds d¢ b2

d2q AI_ dr/ 1 db

+ d_ b3 - d_b _ ds (5.9)

= _+b A2,+-_s\Aa2j+-_12j 71

d2_ A]2t
d¢2 b3

Thus the equation for 7/is
d27/

+ 7/=0
(5.10)

d2_7 i_u2
dO---_ - _7= 0

The differential equation for _1is unchmlged.

5.4 Differential Equations for fl, a, 3,

The differential equation for fl, a, 7, 7 = (1 + c_2)//3 can be found starting from Eq.

(4.13) m._d (4.14) which we write _s

1(4 =/cos# +sin# (5.11a)

j=(a_7 -a/3) (5.11b)

J(s) = M(s, so)J(so)M(so,s)

Wc note that
d

ds M(s, .so) = A(s)M(s,so )
d

d-_M(so, s) = -M(s0, s)A(.s)

The last equation follows from M(s, .so).hi(so,s) = I. Thus we find that

dJ
= AJ- JA (5.13)

d,s

11



Replacing J using Eq. (5.11b) in Eq. (5.13) we find

d___fl= (All - A22)fl - 2A12otds
d_

d-_ = -A2_fl - A_27 (5.14)
d7
d--_= -2A21°z - (All -- A22)7

6. Perturbation Theory Using the Differential Equation for 7/

The equation for r/, Eq. (5.10) is often used as a starting point in finding the effects

of a perturbing field. The particle coordinates are measured relative to a reference orbit

which is the particle motion in a known magnetic field with components Bi. The exact

equations of motion can then be written as

dx_.__{_
-- E Aijxj + fi i = 1,4,j = 1,4 (6.1a)ds

J

where the fi includes all the terms not included in _ Aijxj. These include terms due to

fields not included in the reference field Bi, which may be referred as ABi, and nonlinear

terms due to the terms in the exact equations of motion that do not depend on Bi.

One can see from the exact equations of motion, Eqs. (2.1) that the contribution to

fi which depend explicitly on ABi, when AB, = O, are given by

1
= -- +

Bp
1 (6.1b)

Bp

Repeating the above derivation of Eq. (5.10) for r/, including the fi terms, one finds the 7/

equation for the x-motion

d271 2_._/2
dO--_ + u2_71= v_p..__5._AI2 fz

A_x d (fl) (6.2)
ds

dO = A_2_
b_x _ x

12



A similar equation caal be found for the y motion,

d2r/+ v2r/= uv f_dOs A3_
(6.3)

:,,= :_+-_:_+_

For the case of a gradient perturbation

ABv = -Gx (6.4)

one can use Eq. (6.2) to find the change in v,, Av,. One finds

:,._= ! f d_ a (6.5)47r B p

This well known result for Av, is not changed by using the exact linear equations.
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