

OAK RIDGE NATIONAL LABORATORY

MARTIN MARIETTA

Nuclear Medicine Program Progress Report for Quarter Ending September 30, 1992

F. F. Knapp, Jr., Group Leader

K. R. Ambrose

S. Mirzadeh

A. L. Beets

A. Hasan

A. P. Callahan

C. R. Lambert

D. W. McPherson

Received by OSTI UNG 1 0 792

a real plan of a prima excludibite of the affection of

MANAGED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Contract No. DE-AC05-84OR21400

Health and Safety Research Division

NUCLEAR MEDICINE PROGRAM PROGRESS REPORT FOR QUARTER ENDING SEPTEMBER 30, 1992

F. F. Knapp, Jr., Group Leader

K. R. Ambrose
A. L. Beets
A. Hasan
C. R. Lambert
D. W. McPherson

NOTICE This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

Work sponsored by DOE Office of Health and Environmental Research

Date Published: December 1992

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
managed by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY

24

Previous reports in this series:

ORNL/TM-5809
ORNL/TM-5936
ORNL/TM-6044
ORNL/TM-6181
ORNL/TM-6371
ORNL/TM-6410
ORNL/TM-6638
ORNL/TM-6639
ORNL/TM-6771
ORNL/TM-6916
ORNL/TM-6958
ORNL/TM-7072
ORNL/TM-7223
ORNL/TM-7411
ORNL/TM-7482
ORNL/TM-7605
ORNL/TM-7685
ORNL/TM-7775
ORNL/TM-7918
ORNL/TM-8123
ORNL/TM-8186
ORNL/TM-8363
ORNL/TM-8428
ORNL/TM-8533
ORNL/TM-8619
ORNL/TM-8746
ORNL/TM-8827
ORNL/TM-8966
ORNL/TM-9037
ORNL/TM-9124
ORNL/TM-9343
ORNL/TM-9394
ORNL/TM-9480
ORNL/TM-9609
ORNL/TM-9707
ORNL/TM-9784
ORNL/TM-9937
ORNL/TM-10082
ORNL/TM-10082 ORNL/TM-10238
ORNL/TM-10294
ORNL/TM-10294 ORNL/TM-10377
ORNL/TM-10441
ORNL/TM-10618
ORNL/TM-10711
ORNL/TM-10839

ORNL/TM-11014

ORNL/TM-11043 ORNL/TM-11145 ORNL/TM-11224 ORNL/TM-11304 ORNL/TM-11377 ORNL/TM-11427 ORNL/TM-11550 ORNL/TM-11570 ORNL/TM-11721 ORNL/TM-11755 ORNL/TM-11830 ORNL/TM-11881 ORNL/TM-11992 ORNL/TM-12054 ORNL/TM-12110 ORNL/TM-12159

CONTENTS

Summary	1
Evaluation of Radioiodinated Caramiphen as a Potential Muscarinic Receptor-Specific Agent	2
Reactor Capabilities for Production of Tungsten-188 for the Tungsten-188/Rhenium-188 Generator System	6
Agents for Medical Cooperatives	9
Other Nuclear Medicine Group Activities	10

SUMMARY

In this report the radioiodination and *in vivo* evaluation of p-iodocaramiphen are described. p-Iodocaramiphen is a muscarinic antagonist which binds with high affinity to the M₁ receptor subtype *in vitro* and therefore is a promising candidate for radioiodination and *in vivo* evaluation. Biodistribution studies in female Fischer rats demonstrated that [¹²⁵I]-p-iodocaramiphen had significant cerebral localization, but the uptake did not demonstrate specific uptake in those cerebral regions rich in muscarinic receptors, and radioactivity washed out rapidly from the brain. In addition there was no significant blockage of activity when the rats were preinjected with quinuclidinyl benzilate (QNB) (5 mg/kg). These results suggest that p-iodocaramiphen is not a good candidate for the *in vivo* study of M₁ muscarinic receptor populations by SPECT.

Because of the widespread interest and expected importance of the availability of large amounts of tungsten-188 required for the tungsten-188/rhenium-188 generator systems, we have investigated the large-scale production of tungsten-188 in the ORNL HFIR. We have also compared our production data with the theoretical production values and with experimental data available in the literature from other reactors. Tungsten-188 is produced in a fission nuclear reactor by double neutron capture of tungsten-186. The experimental yield of tungsten-188 is approximately 4 mCi/mg of tungsten-186 at the end of bombardment (EOB) in the HFIR operating at 85 MWt power for a one cycle irradiation (~21 days) at a thermal neutron flux of $2x10^{15}$ n.s⁻¹cm⁻². We also report the yield of rhenium-187 (the intermediate radionuclide) at EOB from several of our targets.

Also during this period, several ORNL agents were supplied to collaborators for further preclinical and clinical studies. Iodine-125 and iodine-131-labeled samples of the new "IQNP" muscarinic-specific receptor agent were supplied to Brookhaven National Laboratory collaborators for autoradiographic studies. In addition, iodine-125 and iodine-131-labeled supplies of the BMIPP cardiac imaging agent were supplied to study the effects of cocaine on myocardial metabolism. A large clinical-scale tungsten-188/rhenium-188 generator was supplied to the Center for Molecular Medicine and Immunology (CMMI) in Newark, New Jersey, for initiating of patient studies with rhenium-188-labeled antibodies.

EVALUATION OF RADIOIODINATED CARAMIPHEN AS A POTENTIAL MUSCARINIC RECEPTOR-SPECIFIC AGENT

The loss of muscarinic receptor activity in patients with Alzheimer's disease has been observed in post mortem studies and in *in vivo* by Single Photon Emission Computed Tomographic (SPECT) images using the iodine-123-labeled muscarinic antagonist, 3-quinuclidinyl 4-iodobenzilate (4-IQNB). Three distinct muscarinic subtypes, M_1 , M_2 , and M_3 have been identified using both functional and binding assays. While the M_1 subtype appears to be postsynaptic, the M_2 subtype predominately involve presynaptic muscarinic receptors. Para-iodocaramiphen (1), an analogue of caramiphen, has been shown to be a selective M_1 muscarinic agent (M_1 , $K_i = 2.11$ nM; M_2 , $K_i = 123$ nM) as compared to the M_1 prototype agent, pirenzephine (M_1 $K_i = 5.21$ nM). We report the preparation of iodine-125-labeled p-iodocaraminphen ([^{125}I]-1) via a tributylstannyl intermediate (2) and the biodistribution studies in rats to evaluate its potential use as a M_1 selective muscarinic ligand for SPECT studies.

p-Iodocaramiphen (1) was initially prepared via the triazine decomposition method. Although this method has been successfully used in the preparation of a variety of radioiodinated compounds, we decided not to pursue this method due to the low radiochemical yields often reported. Iododemetallation reactions involving the tributylstannyl group are well known methods which are easily conducted under mild conditions and result in the high yield incorporation of radioactive iodine into molecules of biological interest. This method was therefore investigated for the preparation of [125I]-p-iodocaramiphen ([125I]-1). Initially, p-(tributylstannyl)-caraminphen (2) was prepared by reacting 1 with bistributyltin in the presence of palladium (II) acetate and tetrakis(triphenylphosphine)palladium (0) in triethylamine (Scheme I). Flash column chromatography afforded 2, free of the substrate 1, as determined by thin layer chromatography (TLC) and nuclear magnetic resonance (NMR) analyses. The reaction of 2 with sodium iodide-125 utilizing hydrogen peroxide as the oxidant afforded [125I]-p-iodocaramiphen ([125I]-1, Scheme II) in 50% radiochemical yield with a specific activity greater than 1500 mCi/µg as determined by HPLC analysis. The [125I]-1 had chromatographic properties analogous with 1 when analyzed by TLC and HPLC.

$$\begin{array}{c|c} & & Sn(Bu)_3 \\ \hline CO_2CH_2CH_2NEt_2 & & CO_2CH_2CH_2NEt_2 \\ \hline Pd(PPh_3)_4 & Pd(OAc)_2 & & \\ \hline \end{array}$$

Scheme I

Biodistribution studies were performed using female Fisher VAF rats ($^{\sim}$ 125 g) which were allowed food and water *ad libitum* prior to and during the course of the experiment. The [^{125}I]-1 was dissolved in 100 μ l of ethanol followed by the addition of 50 μ l or 0.1 N HCl and dilution to 10 ml with a 10% saline:ethanol solution. Following intravenous injection of [^{125}I]-1 into a lateral tail vein, the metophane-anesthetized rats. The animals were anesthetized and killed by cervical fracture at the designated time points. In addition to the removal of the organs, the brains were stored over dry ice prior to dissection. For the QNB blocking experiment, one group of animals was injected with QNB (5 mg/kg) 1 h prior to injection of [^{125}I]-1. Two hours after the injection of [^{125}I]-1, the animals were killed and the various tissues (striatum, cortex, cerebellum, rest of brain, heart and blood) removed and analyzed.

Scheme II

The *in vivo* biodistribution results of [125I]-p-iodocaraminphen ([125I]-1) are shown in Table 1. The brain and heart, organs of high muscarinic receptor concentrations, demonstrated high levels of activity 1 h postinjection of [125I]-1. The brain to blood and heart to blood ratios after 1 h were observed to be approximately 4:1 and 2:1, respectively. It was also observed that the thyroid activity level was low, demonstrating the *in vivo* stability of the radioiodine label.

Table 1. Biodistribution of $[^{125}I]$ -p-iodocaramiphen ($[^{125}I]$ -1) in female Fisher rats (n = 5).

	Percent dose/gram	
_	Time (min)	
Organ	15	60
Blood	0.26 ± 0.02	0.22 ± 0.03
Liver	3.44 ± 0.41	3.10 ± 0.30
Kidney	2.73 ± 0.33	1.51 ± 0.03
Heart	0.87 ± 0.08	0.41 ± 0.03
Lung	4.45 ± 0.32	1.97 ± 0.02
Thyroid ^a	0.14 ± 0.03	0.11 ± 0.01
Brain	1.37 ± 0.10	0.87 ± 0.04

²% Dose/organ

The cerebral distribution of [125I]-1 was then evaluated over a 4 h time period, and these results are shown in Table 2. The maximum uptake of activity occurred 1 h post injection but by 4 h the activity had washed out to approximately 85% of its maximum level. In addition, the levels of activity were the same in areas of the brain rich in muscarinic receptors (cortex and striatum) as compared to regions low in receptors (cerebellum) over the time course of the experiment. Blockage of muscarinic receptor sites by the preinjection of 3-quinuclidinyl benzilate (QNB), a potent muscarinic antagonist, resulted in a slight decrease in the uptake of activity as compared to the non-treated animals.

These results demonstrate that the significant activity observed in the brain after 1 h, washes out relatively rapidly, and that [125I]-1 demonstrated no selectivity toward muscarinic

receptors in both the heart and brain. These results indicate that $[^{125}I]$ -p-iodocaramiphen ($[^{125}I]$ -1) is not a good candidate for the *in vivo* detection and imaging of M_1 subtype muscarinic receptors. The reason for the difference *in vitro* and *in vivo* are not known but may result from the *in vivo* metabolism of 1 or its unfavorable lipid solubility.

Table 2. Cerebral distribution of $[^{125}I]$ -p-iodocaramiphen ($[^{125}I]$ -1) in female Fischer rats (n = 5).

	Percent dose/gram						
	Time (min)						
Organ	15	30	60	120	120*	240	
Blood	0.88 ± 0.29	0.63 ± 0.20	0.43 ± 0.02	0.36 ± 0.03	0.20 ± 0.03	0.39 ± 0.02	
Heart	0.55 ± 0.20	0.36 ± 0.12	0.44 ± 0.03	0.35 ± 0.02	0.25 ± 0.02	0.21 ± 0.01	
Cortex	0.47 ± 0.18	0.35 ± 0.13	0.79 ± 0.06	0.43 ± 0.02	0.31 ± 0.02	0.10 ± 0.01	
Striatum	0.45 ± 0.15	0.31 ± 0.11	0.70 ± 0.03	0.38 ± 0.03	0.29 ± 0.03	0.08 ± 0.04	
Cerebellum	0.40 ± 0.17	0.32 ± 0.13	0.72 ± 0.08	0.40 ± 0.04	0.33 ± 0.03	0.11 ± 0.02	
Rest of Brain	0.42 ± 0.17	0.33 ± 0.13	0.77 ± 0.07	0.48 ± 0.04	0.37 ± 0.03	0.14 ± 0.01	

^{*}Pretreatment with QNB (5 mg/kg).

REACTOR CAPABILITIES FOR PRODUCTION OF TUNGSTEN-188 FOR THE TUNGSTEN-188/RHENIUM-188 GENERATOR SYSTEM

Current widespread interest in the W-188/Re-188 biomedical generator has prompted us to compile and evaluate the data for large-scale production of W-188, which is produced in a fission nuclear reactor by double neutron capture of W-186. The corresponding radiative capture cross-sections for both reactions are summarized in Table 3. As seen, the reported value of the resonance integrals (I₀) for W-187 is very high (2760±550), ¹⁻³ which means that the contribution of epithermal neutrons to the reaction rate of W-188 is significant, especially in the irradiation facilities where the epithermal neutron component of the neutron spectrum is substantial. In addition, the large decay constant of the W-187 intermediate nuclide further limits the number of W-187 atoms present at any time during irradiation for t_{irr} ≥6 d (saturation point of W-187). Furthermore, target depletion and neutron attenuation or selfshielding are two additional factors contributing to the lower yields of W-188. In this work, we report the large-scale production yields of W-188 in the ORNL HFIR Hydraulic Tube Irradiation Facility (HT) and compare our data with experimental data available from other institutions and our theoretical calculations. Theoretical calculations are performed using LAURA4 which is a generalized program for calculation of the activity of any member of a radioactivity chain undergoing spontaneous decay and/or induced neutron transformation in a nuclear reactor. In addition to the contribution from the resonance integrals (requiring a knowledge of ϕ_{th}/ϕ_{epi}), the effects of target depletion are also included in our theoretical calculation of the reaction rates. Provisions for self-shielding corrections are not, however, yet included in the current version of LAURA.

The experimental yields of W-188 from six reactors (HFIR, Savannah River, HFBR, ORR, MURR, and FFTF) and the corresponding neutron fluxes are given in Table 2. The large-scale production yields of W-188 at EOB from the HFIR (hydraulic tube) at the current power level of 85 MWt for a one-cycle irradiation (~ 21 days) at a thermal neutron flux of $2x10^{15}$ n.s⁻¹cm⁻² is 4 mCi/mg of W-186, which is lower than the theoretical value by almost a factor of ten. As shown in Table 3, the ratio of the theoretical to experimental yields (R_{theo/exp}) of W-188 for all the data from different reactors range from 1.5 to 14.8 (excluding

the results from FFTF), with an average value of 8.1±4.5. The extent of discrepancy between the theoretical and experimental values cannot be totally attributed to the neutron self-shielding in the target material since the effect was found to be insignificant in the HFBR experiment in which two targets of 5 and 8 mg were irradiated together and the induced activities of W-188 were found to vary within 2% (Table 2).

Recent calculations by Schenter et al.,⁵ indicated that the self-shielding factor for a 100 mg target of $^{186}WO_3$ could be as large as 30%. In spite of these data, the close agreement between the theoretical and experimental yields of W-187, $R_{theo/exp}=1.5\pm0.3$, lead us to speculate that the actual radiative capture cross-sections of W-187 is somewhat lower than the reported values. The radiative capture cross-section of W-187 thus warrants further evaluation. As indicated in Table 4, the yield of W-187 at EOB is about 850 times higher than W-188 for a 21-d irradiation in the HFIR.

Table 3. Cross-sections for production of W-187 and W-188

	Cross-se		
Measurements	Thermal (σ _{th})	Resonance Integrals (I _o)	I _o /σ _{th}
Tungsten-187			
Recommended ⁷ Van Der Linden et al. ^b	37.9 ± 0.6 36 ± 1	485 ± 15 410 ± 47	12.8 ± 0.5 11.4 ± 1.3
Tungsten-188			
Gillette (1966) ⁶	64 ± 10	2760 ± 550	43.1

b) Reference 3, Thetis reactor, Belgium $[(\phi_{th}/\phi_{epi})=23.8\pm0.3, 18.3\pm0.2, 144\pm1; n=20, Au]$

Table 4. Large scale production of tungsten-188.

•			Target mass (mg)	ng)		Yield (mCi/mg at FOR)	no at EC	JR)
Irradiation	•	(ϕ_{th}/ϕ_{epi})	as WO ₃	H 6	W-187	1. 1		W-188
position	(n.s ⁻¹ cm ⁻²)	•	$\overline{}$	(p)	Exp.	Riheo/exp	Exp.	R _{theo/exp} References
HFIR-ORNL	1							
RB (100)		10	10.0 (97.3)	82	•	•	5.5	1.511
HT (100) #5	$2.5x10^{15}$	25		21		•	4.19	14.812
HT (85) #5	$2.0x10^{15}$	25	49.2 (96.07)		•	1	3.94	11.1This work
#3	$1.7x10^{15}$		50.2 (%01)	21.1	3.25x10 ³	1.74	388	9.1"
#2	$2.0x10^{15}$		50.2 (96.07)		•		6.22	.66 60
#4	1.9x10 ¹⁵		49.3 (%.07)	4 6L	1.75x10 ³	1.23	5.28	11.0"
Savannah River	er							
	$1.40x10^{15}$	10	24.9 (97.2)	25	•	•	8.13	8.511
	1.25x10 ¹⁵	10	100 (97.3)	99		ı	14.4	5.311
HFBR-BNL (60), V-14	60), V-14							
(core-edge)	8.25x10'	20		24.0 h	•	1	2.62x10	2.62x10 ⁻² b 8.013
ORR-ORNL				74.0 II		1	- 01x/ C.2	1
(2-W-B)	2.8x10 ¹⁴	15	(97.2)	19.3	1	•	0.703	2.611
	3.2x10 ¹⁴	15		9.79	•	ı	4.15	1.511
MURR (10)	•							
Flux Trap	4.5x10 ¹⁴	20	92.i (%.07)	63.4	•	•	~ 0.3	13.912
FFTF-Hanford(291)	4(291) (2-3)x10 ¹³	0.15-	14.0 (867)	10	•	•	3 80~10	3 80~10-2 42014
			12.7 (%.07)	10	ı		3.81x10 ⁻²	2 1301.4

^{a)} Several short and a 3-d shut down period. ^{b)} Two 3-d shut down period. ^{c)}HFIR = High Flux Isotope Reactor, Oak Ridge National Laboratory (ORNL); ORR = Oak Ridge Reactor, ORNL; HFBR = High Flux Beam Reactor, Brookhaven National Laboratory; MURR = Missouri University Research Reactor; FFIF = Fast Flux Test Facility, Westinghouse Hanford Co.

LITERATURE CITED

- 1. Gillette et al. Report ORNL-4013,5 (1966).
- 2. <u>Neutron Cross Sections</u>, (Mughabghab, S. F., Divadeenam, M. and Holden, N. E.), Vol. 1, part A&B, Academic Press (1981).
- 3. R. Van Der Linden, F. De Corte, and J. Hoste, "A Compilation of Infinite Dilution Resonance Integrals, II," J. Radioanalyt. Chem., 20, 695-706 (1974).
- 4. L. D. McGinn and S. Mirzadeh, "A Generalized Computer Code "LAURA" for Calculation of the Production of Medical Radioisotope" (1991) Unpublished.
- 5. Report WHC-SP-0632 (1990) (Schenter, R. E. et al. Hanford & C.) and Report OSU-NE-MED-9004 (Binney, S. E. et al. Oregon State University), Analysis of ¹⁸⁸W/¹⁸⁸Re from MIP Test (1990).

AGENTS FOR MEDICAL COOPERATIVES

In a continuation of collaborative studies to evaluate the regional uptake in cerebral structures by high resolution autoradiography (ARG), samples of I-125- and I-131-labeled "IQNP" were supplied to the Brookhaven National Laboratory (P. Som, D.V.M.). In addition, samples of the I-131- and I-125-labeled BMIPP cardiac imaging agent were supplied for continuing ARG studies to determine the effects of cocaine on myocardial metabolism. One shipment of the ORNL tungsten-188/rhenium-188 generator was supplied for clinical studies in a collaborative program with the Center for Molecular Medicine and Immunology (D. M. Goldenberg, M.D.).

OTHER NUCLEAR MEDICINE GROUP ACTIVITIES

Publications

Callahan, A. P., Rice, D. E., McPherson, D. W., Mirzadeh, S., and Knapp, F. F., Jr. "The Use of Alumina "SepPaks®" as a Simple Method for the Removal and Determination of Tungsten-188 Breakthrough from Tungsten-188/Rhenium-188 Generators," J. Appl. Radiat. Isot., 43, 801-804 (1992).

Mausner, L. F., Mirzadeh, S., and Srivastava, S. C. "Improved Specific Activity of Reactor Produced ¹¹⁷mSn with the Szilard-Chalmers Process," Appl. Radiat. Isot., 43, 1117-1122 (1992).

Proceedings

Members of the ORNL Nuclear Medicine Group authored two papers in a recent book entitled, "Nuclear Data for Science and Technology" (S. M. Quaim, editor), published by Springer Verlag, which were the Proceedings of papers presented at the International Conference on Nuclear Data for Basic and Applied Sciences held at the KFA in Julich, Germany, on May 12-17, 1991.

Mirzadeh, S. and Chu, Y. Y. "Production of Gallium-66, A Positron Emitting Nuclide for Radioimmunotherapy."

Mirzadeh, S., Knapp, F. F., Jr., and Callahan, A. P. "Production of Tungsten-188 and Osmium-194 in a Nuclear Reactor for New Clinical Generators."

New Patent Granted

A second set of new claims has been allowed by the U.S. Patent Office for the patent describing the ORNL tungsten-188/rhenium-188 radionuclide generator system which provides the carrier-free rhenium-188 as perrhenic acid for therapeutic applications.

Knapp, F. F., Jr., Lisic, E. C., Mirzadeh, S., and Callahan, A. P. "Tungsten-188/Carrier-Free Rhenium-188 Perrhenic Acid Generator System."

Book Chapter

Members of the Nuclear Medicine Group co-authored a chapter in a recent book on current methods of cardiac imaging for the clinical diagnosis of heart disease.

Visser, F. C., Sloof, G. W., and Knapp, F. F., Jr. "Myocardial Metabolic Imaging with Iodine-123-Labeled Fatty Acids," In, *What's New In Cardiac Imaging?*, E. E. van der Wall, H. Sochor, A. Righetti and M. G. Niemeyer, editors, Kluwer Academic Publishers, The Netherlands, pp. 229-247 (1992).

Presentations

Members of the ORNL Nuclear Medicine Program co-authored two papers presented at the European Association of Nuclear Medicine (EANM) Congress in Lisbon, Portugal, on August 23-28, 1992, describing clinical studies with a new agent developed at ORNL. The work on the new pancreatic function test represents the results of recent patient testing of this new ORNL agent and was nominated for the prestigious "Marie Curie Award," which is awarded each year for the most outstanding paper at the EANM Meeting.

Kropp, J., Knapp, F. F., Jr., Weyenberg, A., Bergmann, K. and Biersack, H.-J. "Pancreatic Lipase Activity Tested by Urine Analysis After Oral Administration of a I-131-Triglyceride."

Kropp, J., Koehler, U., Zierz, St., Knapp, F. F., Jr., Briele, B., von Smekal, A. and Biersack, H.-J. "Oxidative Metabolism of the Myocardium in Patients with Systemic Myopathies."

Members of the ORNL Nuclear Medicine Program co-authored a paper describing collaborative studies which was presented at the recent "Fourth Conference on Radioimmunodetection and Radioimmunotherapy of Cancer" held in Princeton, New Jersey, on September 17-19, 1952. The paper described the first successful targeting of rhenium-188-labeled antibodies using rhenium-188 from the ORNL tungsten-188/rhenium-188 generator system to tumors of four patients at the Center for Molecular Medicine and Immunology, in Newark, New Jersey.

Sharkey, R. M., Varga, D., Vagg, R., Siegel, J. A., Goldenberg, D. M., Griffiths, G. L., Jones, A. L., Tejada, G., Ahmad, M., Hansen, H. J., Knapp, F. F., Jr. and Callahan, A. P. "Phase I Radioimmunotherapy Using Directly Labeled Rhenium-188-Labeled Murine Anti-Carcinoembryonic Antigen IgG: Preliminary Results."

ORNL Nuclear Medicine Program Staff Organize International Symposium

Saed Mirzadeh introduced and chaired the opening session of a symposium on "Radionuclide Generator Systems for Nuclear Medicine Applications," at the Annual Meeting of the American Chemical Society (ACS) recently held in Washington, D.C., on August 23-28, 1992. The symposium was organized by ORNL Nuclear Medicine Program members F. F. Knapp, Jr., S. Mirzadeh and A. P. Callahan under the auspices of the ACS "Division of Nuclear Chemistry and Technology." The symposium consisted of four half-day sessions focussing on current research in the development of radionuclide generator systems for diagnostic and therapeutic applications in nuclear medicine. A total of twenty one papers were presented by scientists from the U.S., Belgium, Switzerland, and Taiwan, who represented national laboratories, universities and commercial firms. Proceedings of the symposium will be published in the journal Radioactivity and Radiochemistry.

News Release Describes Initiation of Clinical Use of ORNL Generator

Two recent articles in *Science* (September 4, 1992, page 1348) and *Chemical and Engineering News* (September 7, 1992, page 33) have described the initiation of clinical studies

with rhenium-188-labeled antibodies for tumor therapy by Immunomedics, Inc., and CMMI in Newark, New Jersey, in a collaborative project with the ORNL Nuclear Medicine Program using the ORNL tungsten-188/rhenium-188 generator. The news articles resulted from a News Conference held by representatives of Immunomedics, Inc., a Nev/ark, New Jersey company, at the recent "Symposium on Radionuclide Generators for Nuclear Medicine Applications," organized by the ORNL Group at the American Chemical Society held in Washington, D. C., on August 24-28, 1992.

INTERNAL DISTRIBUTION

- 1. K. R. Ambrose
- 2. A. L. Beets
- 3. J. T. Bell
- 4. B. A. Berven
- 5. A. P. Callahan
- 6. E. D. Collins
- 7. K. F. Eckerman
- 8. R. K. Genung
- 9. G. D. Griffin
- 10. R. N. Hamm
- 11. A. Hasan
- 12. J. R. Hightower
- 13. S. V. Kaye
- 14.-18. F. F. Knapp, Jr.
 - 19. C. R. Lambert

- 20. E. C. Lisic (Consultant)
- 21. D. W. McPherson
- 22. J. C. Miller
- 23. S. Mirzadeh
- 24. B. Patton
- 25. G. Prosser
- 26. D. W. Ramey
- 27. D. E. Reichle
- 28. P. S. Rohwer
- 29. S. J. Wolfe
- 30-31. Central Research Libary
 - 32. Document Record Section
- 33-34. Laboratory Records Dept.
 - 35. Lab. Records, ORNL RC
 - 36. ORNL Patent Section

EXTERNAL DISTRIBUTION

- 37. H. L. Atkins, M.D., Radiology Dept., State Univ. of New York, Stony Brook, NY 11794-8460
- 38. H. J. Biersack, M.D., Director, Klinik fuer Nuklear Medizin, Der Universitat Bonn, Sigmund Freud Strasse 25, 5300 Bonn 1, West Germany
- 39. C. Brihaye, Centre de Recherches du Cyclotron, Universite de Liege, Belgium
- 40. A. B. Brill, M.D., Ph.D., Dept. of Nuclear Medicine, Univ. of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655
- 41. T. F. Budinger, M.D., zmd 55/121, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
- 42. J. G. Davis, M.D., Medical and Health Sciences Division, ORAU, Oak Ridge, TN 37831
- 43. S. J. DeNardo, M.D., Univ. California, Davis Medical Center, Sacramento, CA 95817
- 44. R. F. Dannals, Division of Nuclear Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205-2179
- 45. R. Dudczak, M.D., Dept. Nuclear Medicine, I. Medizinische Universitatsklinik, A-1090 Wien, Lazarettgasse 14, Vienna, Austria
- 46. D. R. Elmaleh, Physics Research Dept., Massachusetts General Hospital, Boston, MA 02114
- 47. L. Feinendegen, Institut fur Medizin, Forschungszentrum Julich GmbH, Postfach 1913, D-5170, Julich 1, Germany
- 48. A. Fritzberg, NeoRx Corporation, 410 West Harrison, Seattle, WA 98119
- 49. D. M. Goldenberg, M.D., Center of Molecular Medicine and Immunology, 1 Bruce Street, Newark, NJ 07103

- 50. M. M. Goodman, Nuclear Medicine Section, Department of Radiology, University of Tennessee Medical Center, 1924 Alcoa Highway, Knoxville, TN 37920-6999
- 51. M. Guillaume, Centre de Recherches du Cyclotron, Universite de Liege, Belgium
- 52. D. R. Hamilton, Director, Division of Technical Development, OTA/CDRH/FDA, 1901 Chapman Avenue, Rockville, MD 20857
- 53. J. Hiltunen, Technical Research Centre of Finland, Reactor Laboratory, Otakaari 3 A, SF-02150 Espoo, Finland
- 54. K. Hubner, M.D., Department of Radiology, UT Memorial Hospital, Knoxville, TN 37920
- 55. A. Jones, HMS Radiology Dept., Shields Warren Radiation Laboratory, 50 Binney Street, Boston, MA 02115
- 56. G. W. Kabalka Chemistry Department, University of Tennessee, Knoxville, TN 37996-1600
- 57. G. Kirsch, Department of Chemistry, Universite de Metz, Metz, France
- 58. J. Kropp, M.D., Klinik fuer Nuklear Medizin, Der Universitat Bonn, Sigmund Freud Strasse 25, 5300 Bonn 1, West Germany
- 59. D. E. Kuhl, M.D., Division of Nuclear Medicine, University of Michigan Hospitals, University Hospital BIG 412/0028, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0028
- 60. S. Larson, M.D., Sloan-Kettering Inst. for Cancer Research, New York, NY 10021
- 61. D. J. Maddalena, FRACI, Department of Pharmacology, Sydney University, NSW 2006, Sydney, Australia
- 62. H. J. Machulla, Eberhard-Karls-Universität Tübingen, Radiologische Universitätsklinik, Pet-Zentrum, Röntgenweg 11, 7400 Tübingen, Germany
- 63. Office of Assistant Manager for Energy Research and Development DOE-ORO, Oak Ridge, TN 37831
- 64. R. Patterson, M.D., Nuclear Cardiology, Crawford Long Hospital, 550 Peachtree Street, NE, Atlanta, GA 30365-2225
- 65. C. L. Partain, M.D., Professor and Vice Chairman, Dept. Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232
- 66. R. C. Reba, M.D., 5841 S. Maryland Ave., U.C. Hospital Box 429, Chicago, IL 60637
- 67. S. N. Reske, University Clinic, Dept. of Nuclear Medicine, Steinhoevelstrasse 9, D-7900, Ulm, Germany
- 68. M. Robbins, Mallinckrodt, Inc., 675 McDonnell Blvd., P.O. Box 5840, St. Louis, MO 63134
- 69. M. P. Sandler, M.D., Chief, Nuclear Medicine Section, Vanderbilt University Medical Center, Nashville, TN 37232
- 70. R. E. Schenter, HO-37, Westington Hanford Co., P.O. Box 1970, Richland, WA 99352
- 71. S. K. Shukla, Prof., Servizio Di Medicina Nucleare, Ospedale S. Eugenio, Piazzale Umanesimo, 10, Italy
- 72. F. Snyder, ORAU, Oak Ridge, TN 37831
- 73. A. Solomon, M.D., UT MRCH, 1924 Alcoa Highway, Knoxville, TN 37920-6999
- 74. P. Som, DVM, Medical Department, BNL, Upton, NY 11973
- 75. P. C. Srivastava, DOE-OHER, Washington, DC 20585
- 76. S. C. Srivastava, Bldg. 801, Medical Dept., BNL, Upton, NY 11973
- 77. H. W. Strauss, M.D., Vice President, Diagnostics, Pharmaceutical Research Institute, Bristol Meyers Squibb, Rt. 202 Provinceline Rd, PO Box 4000, Princeton, NJ 08543-4000

- 78-88. Office of Scientific and Technical Information, DOE, Oak Ridge, TN 37831
 - 89. F. Visser, M.D., Cardiology Dept., Free University Hospital, De Boelelaan 117, Amsterdam, The Netherlands
 - 90. H. N. Wagner, Jr., M.D., Div. of Nuclear Medicine, Johns Hopkins Medical Institutions, 615 N. Wolfe Street, Baltimore, MD 21205-2179
 - 91. A. P. Wolf, BNL, Upton, NY 11973
 - 92. R. Wolfangel, Mallinckrodt, Inc., 675 McDonnell Blvd., P.O. Box 5840, St. Louis, MO 63134
 - 93. D. V. Woo, Centocor, 244 Great Valley Parkway, Malvern, PA 19355
 - 94. R. W. Wood, Jr., DOE-OHER, Washington, DC 20585
- 95. S. Wynchank, Research Institute for Medical Biophysics (RIMB), Republic of South Africa
- 96. T. Yonekura, M.D., Kyoto Univ. Faculty of Medicine, Shogoin, Sakyo-kuy Kyoto 606-01, Japan

DATE FILMED 2124/93