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ABSTRACT 

We present a new algorithm for solving the neutron transport equation in its discrete-variable form. The new algo- 
rithm is based on computing the full matrix relating the scalar flux spatial moments in all cells to the fixed neutron 
source spatial moments, foregoing the need to compute the angular flux spatial moments, and thereby eliminating the 
need for sweeping the spatial mesh in each discrete-angular direction. The matrix equation is solved exactly in test 
cas&, producing a solution vector that is free from iteration convergence error, and subject only to truncation and roun- 
doff errors. Our algorithm is designed to provide method developers with a quick and simple solution scheme to test 
their new methods on difficult test problems without the need to develop sophisticated solution, e.g. acceleration, algo- 
rithms before establishing the worthiness of their innovation. We demonstrate the utility of the new algorithm by apply- 
ing it to the Arbitrarily High Order Transport Nodal (AHOT-N) method, and using it to solve Burre’s Test Problem, a 
suite of benchmark problems that covers a large region in parameter space. Our results provide highly accurate bench- 
mark solutions, that can be distributed electronically and used to verify the pointwise accuracy of other solution methods 
and algorithms. 

I. INTRODUCTION 

As computational resources advance, applications grow more sophisticated and demand deeper understanding of solu- 
tion methods, and the development of new methods to overcome deficiencies in existing ones. This inadvertently leads 
computational scientists to explore new ideas whose legitimacy must be established by comparing the accuracy of the 
resulting solution to benchmark solutions for one or more test problems. Thus it is important for the benefit of enriching 
a given field to facilitate the process of solving the equations corresponding to the new method, and verifying its accura- 
cy, expressed in several relevant ways, against highly accurate solutions to well established, challenging test problems. 
In this paper we attempt to provide the above described tools for computational scientists in the neutron transport area. 

Neutron transport problems are notorious for their heavy demand on computational resources, namely memory size 
and execution time. The reason is evident from the fact that in N-dimensional geometry the phase space for the steady 
state case has dimension 2N, implying a large number of dependent variables to be computed and stored. The classical 
Source Iteration (SI) algorithm commonly used for solving neutron transport problems eliminates the need for storing the 
angular flux spatial moments, instead iterating on, and storing, the scalar flux spatial moments thus reducing the demand 
on memory size. This is accomplished by computing the scattering source for every fteration using the previous iterate 
of the scalar flux moments (initial guess for the first iteration) then conducting mesh sweeps along each of the discrete 
ordinates and accumulating the contribution to the scalar flux spatial moments in aq, array. The simplicity of the SI algo- 
rithm is counterbalanced by its slow convergence in difficult problems, namely thick, highly scattering media, precisely 
the class of problems that poses the greatest challenge to method accuracy. Hence most production codes implement one 
or more acceleration schemes for the SI algorithm. In contrast, experimental codes and methods seldom implement ac- 
celeration schemes before their accuracy is carefully tested, because most acceleration methods are based on complicated 
formalisms and require additional programming. The computational scientist’s dilemma is now evident on the one hand 
establishing a new method‘s high accuracy in solving difficult problems via the SI is inadequate because it could con- 
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sume a large number of iterations to converge, possibly falsely, to a solution that is contaminated by convergence errors. 
On the other hand'implementing sophisticated acceleration schemes without apriori guarantee of the method's accuracy 
could prove disappointing and wasteful. Thus we propose a new solution algorithm that is easy to implement, and does 
not require performing iterations as an aid to the method developer. 

Another difficulty facing method developers and users alike is concerned with establishing and verifying a new 
method's accuracy. Usually this is based on solving one or two test problems and comparing a few results, mostly glo- 
bal features of the solution such as the fundamental eigenvalue, total power, region-averaged flux, etc, to well esta- 
blished, highly accurate benchmark'solutions. While such measures of accuracy may be sufficient in some applications, 
they are very course in nature, and do not satisfy the user interested in pointwise accuracy of the solution. In the past 
few years Arbitrarily High Order Transport (AHOT) methods of the Nodal (AHOT-N)' and Characteristic (AH0T-Q2 
types have been reported These methods provide highly accurate solutions to simple test problems, where the solution 
consists of arbitrarily high order (as specified by the user at run time) spatial moments of the solution that can be used to 
reconstruct the "pointwise" solution over the entire problem domain. Clearly the computational resources required by 
such methods to solve practical problems are prohibitive; nevertheless, they provide a powerful tool for determining 
highly accurate, pointwise, solutions to relatively small, but potentially difficult, test problems. These pointwise solu- 
tions, represented by the computed spatial moments of the scalar flux, can be used as benchmarks to evaluate the accura- 
cy of newly developed methods. 

. 

In this paper we combine our new algorithm for solving linear neutron transport methods to the AHOT-N in particu- 
lar, and we use the resulting approach to solve Burre's Test Problem3 using up to quartic (fourth) order spatial expan- 
sion; of the flux. Section I1 is dedicated to a brief review of the AHOT-N method, and its discrete-variable equations. 
In Sec. III we develop the new algorithm for solving linear transport methods by presenting two methods for constructing 
the full transport matrix that maps a fixed-neutron source distribution into the scalar flux spatial moments. This is fol- 
lowed in Sec. N by a discussion of pointwise reconstruction of the solution over the problem domain and related prob- 
lems. We bring all these ideas together in Sec. V where we describe the full suite of problems constituting Burre's Test 
Problem, and we use our new technique to study one of its cases. 

II. THE AHOT-N METHOD 

The MOT-N method has been derived in detail elsewhere.' For the sake of completeness, and to introduce the nota- 
tion and discrete-variable equations used in Sec. 111 we outline the method here. We note that while the original 
AHOT-N was derived for general dimensionality,' we restrict the following equations to the two-dimensional case. Ex- 
tension to general dimensionality is straightforward but lengthy. 

The set of discrete-variable unknowns solved for in the AHOT-N method are the Legendre spatial moments of the 
anguIar flux within, and on the edges of a computational cell, as defined by, 

*Io 

and an adogous definition for vkjynp(fb , ) ,  respectively. Here we use k, A, n 0- denote the angular, x-, and y- 
dimension indices, respectively; Pi(x) is the i' order Legendre polynomial, normalized over the interval [-a,,+a,]; a,,, 
and 26" are the x- ,  and y-dimensions of cell (m,n), respectively; and vk(X,y) is the continuum angular flux in discrete 
direction k. . 

In two-dimensional geometry there are three set of discrete-variable equations constituting the A'ader MOT-N 
method. The first is a set of (A+I)~ equations expressing the conservation of the angular flux spatial moments over a 
cell, and are obtained by taking the (ij)"-moment of the discrete ordinates equations, in the sense of JQ. (l), 
ij=O, - * - ,A. These can be written in terms of the cell-moments of the flux, Eq. (I), and the transversemoments 
evaluated on the incoming and outgoing edges-of the cell, by taking into account the sign of the x-  and ycomponents of 
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the angular direction cosines, pk and q k ,  respectively, in Eq. (2), 

where the o and i superscri$s on the flux transverse-moments denote the outgoing and incoming edges, respectively; sg 
is the signum function; i+l=o(i)(mod2), and C' is the summation operator with increment 2; 0:- and c&, are the total 
and isotropic scattering cross sections in cell ( m a ) ,  respectively; $i , jF ,n  and Sid , , , , ,  are the cell moments of the scalar 
flux and fixed neutron source, respectively; and 

with an analogous definition for EX,. We note here that the summation terms are different from the formula appearing in 
Ref. ( l ) ,  but it is trivial to show that the two forms are equivalent. 

The second set of equations is a weighted difference formula relating the the cell-, and x-edge-moments of the angu- 
lar flux, 

where the spatial weights, akn,,, are expressed exclusively in terms of E&,,/&, as shown in Ref. 1. The third set of 
equations analogously relates the cell-, and y-edge-moments of the flux. The weighted difference relations, e.g. Eq. (4), 
are obtained by taking the transverse-moments of the continuum transport equation separately in each dimension, then 
integrating the resulting ordinary differential equation exactly after locally expanding the scattering source in a h*-order 
Legendre series. 

In the SI algorithm the scalar flux, and hence the scattering source, moments are considered known in each inner 
iteration in terms of the previous iterate. By sweeping the mesh starting from edges on which the incoming-edge flux 
moments are also known, Eqs. ( l ) ,  (4), and its y-analogue are solved for the cell-, and outgoing-edge flux moments. 
This process can be formally represented by the matrix equation, 

[w~,m,n t vi,.z.m,n 9 ~ l t " y , m . n ~ ~  = rk,m,n [d ,n$i ,n  + sm,n 7 vi7,m.n 9 ~ i y , m , n ~ ~ ,  (5) 

where the subvectors on both sides are composed from all computed moments, hence we suppress the moment order 
indices i and j, and I' is a block matrix whose elements are computed from the balance and weighted difference equa- 
tions. In Eq. (5) we added a p superscript to to denote that it is carried over from the previous iteration. The mesh 
sweep proceeds by accumulating the just-computed cell-moments in the new iterate array of the scalar flux spatial 
moments, denoted by a v superscript, via, 

K 

k=l 
$:,n = mk \Ilk,m.n, (6) 

then setting the just-computed outgoing-edge flux moments to the incoming-edge flux moments in the down-flow- 
adjacent cells. .. 

The SI algorithm has been implemented for the MOT-N method in a test code, and used to compute highly accu- 
rate solutions to simple test problems.*s However, these test problems were confined to thin, absorbing media in order to 
economically obtain a well-converged solution, thus limiting the accuracy evaluation to the lessdifficult range in parame- 
ter space. Thick diffusive problems present the real challenge to method accuracy, and thus must be included in deter- 
mining a new method's accuracy. 
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III. THE NEW SOLUTION ALGORITHM 

The main idea in our new solution algorithm is to view the SI algorithm, i.e. Eqs. (5) and (6), as an iterative map of 
the scalar flux, 

$ ’ = A ( d  qP + S ) ,  (?I 
where we have suppressed the m,n cell indices to indicate the spatially global nature of this equation, and d is a diago- 
nal matrix whose elements correspond to the cell scamring cross section. It is possible to represent the SI scheme in this 
form because the discrete-variable Guations and the solution algorithm are linear, and we assume vacuum boundary con- 
ditions. [If the incoming flux on the external boundaries is anisotropic Eq. (7) must k modified to take into account this 
additional “fixed source” of neutrons.] The SI converges to the solution Qw which satisfies, 

Q W =  (I - aS A)-’ AS, (8) 
where I is the unit matrix. This matrix equation is of large dimension, MxNx(A+l)2, and in most applications it is 
impractical to consmct, let alone solve. Nevertheless, for simple test problems often used to evaluate the accuracy of a 
new method, or verify the correctness of a new code, the size of this marrix equation may be reasonably small thus pro- 
viding an easy and economical alternative to the SI algorithm. 

It is evident from the above discussion that our new algorithm is comprised of two steps: construct the A matrix and 
manipulate it in the form of Eq. (8), then solve the matrix equation. We will not dwell on the method of solving Eq. (8) 
since this can be accomplished easily using a standard mathematical library routine: in this case we employ LINPACK’s 
SS@A family of routines for real symmetric matrices! Constructing the A matrix can be accomplished with one of two 
methods as described below. 

A. Automatic Differentiation of a Mesh Sweep 

The fist approach recognizes that the A matrix is essentially the iteration Jacobian (divided by the scattering cross 
section matrix) of Eq. (7). 

Hence using an Automatic Differentiation (AD) system, such as GRESS? we preprocess the AHOT code2 declaring the 
old scalar flux spatial moments array as parameters, thus computing derivatives of all quantities with respect to its ele- 
ments. Since the iterations are linear, the iteration Jacobian is constant across iterations so that only a single iteration 
need be performed. At the conclusion of this single iteration, i.e. mesh sweep in all angular directions, the derivative of 
the new scalar flux spatial moments array with respect to all declared parameters is retrieved and printed out. The so- 
obtained Jacobian matrix is then read into a small program that constructs the matrix equation, Eq. (8), and uses the 
SSIFA family of routines: to solve for the solution vector. 

The primary advantage of the AD approach is its simplicity as it requires minimal user knowledge of the particular 
transport method involved (as long as it is linear), and little additional programming. Given a transport code and a test 
problem, the user first generates a GRESS-ready version of the code? essentially selecting options, specifying workspace, 
declaring parameters (old flux array), and retrieving and printing the derivatives. Second, the resulting code is prepro- 
cessed with GRESS to produce the enhanced source code, which is then compiled and linked with GRESS’ library rou- 
tines? Third, a single iteration is performed on the test problem to produce the ikration.Jacobian, and finally a small pro- 
gram constructs and solves the matrix equation, Eq. (8). 

On the other hand the main drawback of the AD approach is the strict limit i€ imposes on the size of the test prob- 
lem. This feature comprises one of the central research problems in AD techniques. However, since we propose our 
new algorithm as a means of producing highly accurate solutions for test problems only, in particular by employing 
coarse meshes and high approximation orders, this limitation is not too debilitating. Furthermore, if a test problem is too 
large to be differentiated in a single mesh sweep, i.e. memory size is not sufficient to declare all old scalar flux spatial 
moments as parameters, the Jacobian matrix can be constructed as follows. The derivative of all new scalar flux spatial 
moments with respect to all spatial moments of a particular cell old scalar flux comprises a (A+1)2-block of rows in the 
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Jacobian matrix whose elements are independent of the derivatives with respect to other cells' old scalar flux moments. 
Hence the mesh c b  be divided into subdomains and the enhanced code executed once declaring the old flux spatial 
moments in each subdomain as parameters, resulting in stripes of rows of the Jacobian matrix, that are then stacked 
together to form the full iteration Jacobian matrix. 

B. Computation of A from r in a Mesh Sweep 

It is apparent that the reduced level of user involvement in the AD approach is costly in terms of its limitation of 
problem size, which results,at least in part, from the general purpose nature of GRESS, or for that matter any AD pack- 
age. Alternatively, with more programming effort the Jacobian matrix can be accumulated explicitly via a single mesh 
sweep. In addition to serving the purpose of the work presented here as stated in the Introduction, this approach might 
be applicable to the development of new parallel algorithms of the neutron transport equation for massively parallel 
machines.6 

Consider the formal relation, Q. (5), for a given direction Ilk=. [Note that any linear method based on the 
integro-differential representation of the transport equation can be Writlen in this form.] The 3x3-block matrix r has 
[(A+1)2, (A+l), (A+1)] rows and columns comprising the submatrices Y!$,~ in the standard matrix notation. Let cell 
m,n be indexed so that for the present angular direction k, m=l=n denotes the cell at the mesh comer at which all 
incoming angular flux spatial moments are known from the boundary conditions; e.g. for p . k , q k  > 0 this would be the 
lower left comer cell. Since the mesh sweep in each angular direction proceeds completely independently from all other 
directions, we suppress reference to the k angular index, except where necessary, but the reader is reminded that all 
mat6x elements depend on k explicitly (via the direction cosines), and implicitly (via the m,n cell indices). For arbi- 
trary cell m ,n suppose the matrices, 

' 

(lO.a) 

(lO.b) 

are known. We derive a recursive relation for these two matrices that are updated throughout a mesh sweep, and used to 
compute the iteration Jacobian. 

For the special case of vacuum boundary conditions considered here, and according to the cell-indexing scheme 
described above yfj,l,land yfi,l,l = 0. It follows from Eq. (5) that, 

where we have used the continuity condition across cell edges of the angular flux moments. Equations (11) serve as ini- 
tialization formulas for the recursive relations derived below. 

To compute the iteration Jacobian, or the A, matrix we accumulate the derivative of the angular flux throughout a 
mesh sweep, in exact analogy to the AD approach, 

Equation (12) provides the (A+l)x(A+l) block located at (m,n),(m',n') of the A matrix:. Due to the hyperbolic nature of 
the transport operator the angular flux in a given cell depends only on the scattering source, hence the old scalar flux, in 
up-stream cells for each discrete direction, 

* 
-- - 0, m' > m,  or n' > n. W m , n  

a$$ ,n* 

Otherwise, the dependence of ymr on @ i n f i e  follows from its dependence on the incoming-edge flux moments as dis- 
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cussed shortly. 

The contribution to the Jacobian diagonal block is given by, 

The off-diagonal blocks are computed by differentiating Eq. (5)  separate.^ with respect to vjrn,, then y ~ j ~ , ~ ,  and using 
the angular flux spatial moments continuity across cell edges, 

Once this is computed, it is accumulated in the Jacobian matrix according to Eq. (12) for all valid m',n'. 

Before proceeding to the next cell in the mesh sweep we must update the X and Y matrices, via the continuity of 
the angular flux across cell edges, e.g., 

The update occurs in two ways. First, in each step of the mesh sweep a new block will be appended to each of these 
two matrices representing the present computational cell. Elements of these blocks are obtained by differentiating Eq. 

(17) 
Second, for all other m',n' the update is ac-complished by compounding the present X and Y matrices with the derivative 
of the outgoing-edge flux moments with respect to the incoming-edge flux moments as computed from Eq. (3, e.g., 

( 5 1 7  e.g.9 
S 

X(m,n+l),(m,n) = 0m.n YZ * 

It is common in transport calculations to sweep the mesh in the x-direction first, that is along rows, one row at a 
time. Therefore only one copy of the Y matrix needs to be stored and updated throughout the sweep because the outgo- 
ing, x=consr. , edge at which Y is updated coincides with the incoming edge where it is used in precisely the next cell in 
the sweep. In contrast, the X matrix is computed on a surface but not used until the entire row plus m cells in the next 
row are swept, that is to say after M cells in the sweep procedure. Hence it is necessary to store M different X arrays, 
one for each m=1, - - Jf, each of which is overwritten then used in the next, vertically adjacent computational cell. 
This highly taxes the memory, but in the case of small test problems, the focus of this work, is not unmanageable. One 
final remark concerns the y-block submatrices; in general these are not easily determined analytically for the AHOT-N, 
and are computed numerically using LINPACK's SSIFA family of routines! In other methods, e.g. AHOT-C, the 
discrete-variable equations, Eqs. (3) and (4), may be uncoupled enabling an analytic evaluation of r. 
IV. POINTWISE SOLUTION RECONSTRUCTION 

The solution of the AHOT-N method equations is comprised of three vectors representing the cell-moments of the 
scalar flux, MxNx(A+l)2, the x-moments of the flux evaluated on y=consr. edgv, Mx(N+l)x(A+l), and the y-moments 
of the flux evaluated on x=comt. edges, (M+l)xNx(A+l). Once a solution is obtained,.the pointwise flux can be recon- 
structed over the entire problem domain from the cell-moments on a pointwise basis, 

A 

ij=O 
N x y )  = +iij,mmp pi(%) pi@) t ( x , ~ )  in cell * 'c (19) 

Similarly, the flux along x or y=consr. surfaces can be reconstructed from the corresponding transverse moments, e.g., 
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where $xf.jnm,,, are accumulated from yr$,,,a and I+&,,,, using the angular weights as usual. 

Digital computations are "discrete" in nature, and the concept of pointwise solutions must be adjusted to conform 
with this property inherent in this work. First we note that a user interested in the solution at a specific set of points can 
reconstruct the solution at these points using Eqs. (19) and (20). More commonly though the reconstructed solution is 
desired over a range of points, for example a density plot of the flux over the problem domain, constituting a continuum 
of points. Hence we introduce a pixel mesh which is usually finer than the computational mesh (except for zeroorder 
methods where the two are identical) such that the latter is a subset of the former. The pixel mesh is defined by the user 
to resolve as fine a scale asdeemed adequate for a particular application, and the "pointwise" solution then is computed 
over the finite, discrete set of points constituting the pixel map. Since the solution reconstruction is performed 
aposteriori it can be performed using different pixel meshes using the same AHOT-N solution, for example if the first 
pixel mesh turns out to be inadequately coarse. 

Notice that the continuity of the angular, hence scalar, flux spatial moments across cell edges guarantees the unique- 
ness of the reconstructed edge flux, Eq. (20), whether we use the expansion coefficients, (I:~~,,, for the cell to the right 
or left of that edge. However, since the cell-, x- ,  and y-moment expansion coefficients are obtained, through the 

. AHOT-N formalism, via three independent expansions of the flux, they do not necessarily produce a unique value at 
common points. That is to say, the pointwise value of the flux along, for example, an x=comf. surface obtained from 
the y-moments of the solution, Eq. (20), may not coincide with that obtained by taking the limit of the cell-moments- 
constructed flux, Eq. (19), to the same surface. This discrepancy should diminish with increasing method order, and our 
numerical results seem to confirm this conjecture. However, it would be very desirable in the future to develop a blend- 
ing formula to reconstruct the pointwise flux from all three sets of expansion coefficients simultaneously in such a way 
that the pointwise reconstructed flux is unique everywhere, and exactly attains the computed edge values on cell boun- 
daries. 

Our new solution algorithm deals primarily with the scalar flux, and does not involve the angular flux explicitly. 
Nevertheless, for tests that require knowledge of the angular flux, or related quantities, such as leakage, the cell- and 
transverse-moments of the angular flux can be computed directly from the solution. This is accomplished by sweeping 
the mesh once in the discrete directions of interest with Eq. (5) using the scalar flux spatial moments obtained as 
described above for Cpg,. Since the solution computed with our new algorithm is mathematically equivalent to the SI 
converged solution, the angular flux spatial moments also are equal, within arithmetic and convergence precision. 
Clearly once the angular flux moments are available, the pointwise angular flux can be reconstructed over the entire 
problem domain, or on selected surfaces, using formulas analogous to Eqs. (19) and (20). 

Another utility of the work presented in this paper is performing numerical error analysis on multidimensional, com- 
plicated test problems. As observed earlier? the generally discontinuous first derivative of the angular flux has impeded 
the performance of analytical error analysis in multidimensional geometry, even for the simplest methods. The next best 
option after an analytical error analysis is a numerical error analysis with respect to high accuracy solutions to a set of 
challenging test problems. Such highly accurate solutions can be obtained by reconstructing the solution over a fine 
pixel mesh using three different method orders, e.g. A, A+l, and A+2, then extrapolating the solution at each pixel to 
infinite order. This produces a reference solution that is more accurate than each of the three solutions, and against 
which solutions to new methods can be compared in order to verify or estimate their accuracy on a "pointwise" level. 

V. APPLICATION TO BURRE'S TEST PROBLEM 

We demonstrate the ideas presented above by applying them to the solution of two'of the cases embodied in Burre's 
Test Problem? a suite of difficult test problems originally proposed as a challenge to acceleration methods. The problem 
configuration is depicted in Fig. 1. In its original form, the cross sections for the-two materials, 0: and 0; are varied 
independently over the set of values .01, .l, 1, and 10. Also the height of the cells denoted by dyl and dy2 are varied 
independently over the set of values .01, .l, and 1, thus producing a total of 144 test problems that cover a wide range in 
parameter space. The original mesh proposed for this suite of problems is 16~16;~ this mesh is inadequate for the pur- 
poses of the present study, though, due to the high order methods adopted here. Hence, in the examples presented in this 
section we use a 4x4 mesh for all high order methods, i.e. A > 0, and in order to retain spatial resolution for the zero 
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Fig. 1. Configuration of Burre’s Test Problem 
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order method we use a 64x64 mesh for this case. 
’. 

The usefulness of Burre’s Test Problem in its entirety to verify new method accuracy involves generating and pro- 
cessing a large volume of data. Even then, communicating the results is not an easy task, perhaps demanding the 
deveIopment of an interactive postprocessor that reads in the reference solutions to the entire suite, then allows the user 
to manipulate them to view, and compare various features of the solution across methods. However, since such tool is 
not available yet, we focus on two cases of interest 

The first case is characterized by dyl = 1 = dy2, c1 = 10, and 0 2  = .01. This problem involves an optically thick 
region surrounding an almost void, so that the outer region is approaching the thick diffusion limit, and the neutrons 
stream through very sharp discontinuities. We solve this problem using A = 0, land 2, and then reconstruct the scalar 
flux over the entire problem domain on a 64x64 pixel mesh for the zero order method, and an 80x80 pixel mesh for all 
higher order methods. Density plots of the resulting scalar flux are presented in Fig. 2. The solution for this problem 
displays a smooth two and a half orders decrease in the flux h m  the source region to the right and top boundaries, with 
a squurish mostly leveled area over Region 2 due to its small optical thickness. The linear method, A = 1, flux is 
significantly different from the fine-mesh, zero order method solution, even in the source region where one would expect 
the solution to be most accurate. The whire pixels at x = 2 = y indicate negative scalar flux values as they occur outside 
the source region and cannot have larger values than pints closer to the source region. In contrast, the quadratic 
method, A = 2, flux displays all the salient features of the fine-mesh solution, near and far from the source region, and 
does not produce negative flux values. 

The second case is characterized by dyl = 1 = dy2, bl = 1, and 0 2  = 10. This case is difficult because it involves 
the streaming of neutrons in the relatively thin Region 1, turning the lower-right and uppr-left corners around the very 
thick, slightly absorbing, Region 2. This causes the upper-right corner to be better‘illuminated than the upper-right 
comer of Region 2, even though the latter is closer to the some region. This feature is clearly displayed in Fig. 3 which 
depicts the density plots of the scalar flux for this case using the same spatial ana pixel meshes as before, with orders 
A = 0,2,6, and 7. Here also white pixels outside the source region imply negative scalar flux values. Evidently there 
are more negative scalar fluxes computed in this problem due to the sharp gradients in the scalar flux surface, over four 
orders of magnitude. However, it is clear that the the number of white pixels decreases significantly as the method order 
increases. Also, in spite of the negative scalar flux values, the solution possesses the proper general features of the fine- 
mesh solution, namely the sharp decrease in magnitude in the upper-right comer of Region 2, and the illumination of 
Region 1 behind Region 2, with some shadowing effect of the former by the latter. Perhaps the most interesting feature 
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Fig. 2. Density Plots of the Reconstructed Scalar Flux for Burre's Test Problem with dyl = 1 = dyz, q = 10, and 
0 2  = .01. 
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'. A=2. 4x4 M e s h  
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of this case is the resolution of the shadow of Region 2 on the part of Region 1 behind it because it demonstrates that 
discontinuous solutions can be represented by a finite series of continuous functions, Lkgendre polynomials in this case, 
thus justifying the M O T  approach. 
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Fig. 3. Density Plots of the Reconstructed Scalar Flux for Burre's Test Problem with dyl = 1 = dy2, q = 1, and o2 = 10. 
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