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We discuss the use of renormalization counterterms to restore the chiral gauge symmetry in& lattice theory
of Wilson fermions. We show that & laxge class of counterterms can be implemented autom&tically by making • "
simple modification to the fermion determinant.

Some time ago we presented a lattice method where PR/L = (1/2)(1 +Ts). The Feynman prop-
for chiral gauge theories that involves the intro- agator corresponding to the naive action is
duction of auxiliary Dirac species [1, 2]. Here
we elaborate on an alternative approach [2] sN (P.) = [(l/a) _ 7. sin(p_a)] -l, (3)
thatachievesthe effectsof the auxiliaryspecies _'

througha directmodificationofthe fermionde- which,inadditiontotheusualpoleatp - 0,has

terrninant.This alternativemethod has the ad- extrapoleswhen one ormore momentum compo-
vantagethatthecomputationalalgorithmisslm- nentsa_'eequalto=/a.ltcan beseenthathalfof

pler,involvingtwo determinantsinsteadofthree, thepoleshavepositivechiralchargeand halfhave

ltalsoeliminatesambiguous squarerootsofde- negativechiralcharge[4],so,contrarytoour ini-
terminantsthatariseinthe previousmethod, tim expectation,thisdoublingphenomenon leads

to gauge-fieldcouplingsto both left-and right-
1. BASIC STRATEGY handed species.

We followthestandardapproachofeliminating

Our approachissimilaringeneralphilosophy thedoublersby includinga Wilsonmass term [5]
to thatofthe Rome group [3].However,as we inthe action:

shallsee,itdifferssignificantlyindetail. 1

We begin by introducing a Dirac particle via Sw = a'_ _(Z)_a[_(z + a.)
the "naive" lattice action: =,_

_a +_(z - a.) - 2_(z)]. (4)SN = a_ _ _(z)7_ [_(z + a_) - _(z - a.)]. We can gauge the Wilson term by adding to the=,/Z
action

(1)

However, we couple the gauge field only to the SwI = a_-_ _(z)l[(u.(z)- 1)¢(z + au)
part of the Dirac field which, in the continuum ='"
limit of the action, would be the left-handed com- +(Ut(z - a.) - 1)_b(z - a_)]. (5)

ponent: (As we shall see, it may sometimes be convenient

= a4 _-"_(z)7_Pr'_[(_"(z) -_:-_ _a 1)_(z + a_) to drop this coupling of the Wilson term to thegauge field.) Now the propagator has a pole only
='_ at p = 0:
-(U#t(z- a,) - l)_(z - a_,)], (2)

S_ - {(I/a) _ 7. sin(p.a)
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which would seem to leave us, as desired, with a rent conservation for the Wilson action by adding
single Dirac particle with only left-handed con- to it local counterterms. If this procedure suc-
plings to the gauge field. Unfortunately, the Wil- ceeds, then the resulting theory is unique, up to
son terms Sw and SwI, having the Dirac struc- a coupling-constant renormalization. The rea.
tures of masses, break the chiral gauge invariance son is that one has freedom only to alter the
and couple the right-handed component of the coefficients of the gauge-invariant counterterms,
Dirac field back into the theory. Specifically, the and those counterterms correspond to coupling-
difficulty is that 3'5 commutes, rather than anti- constant renormalization.

commutes, with the (identity) Dirac matrices in

Sw and Swl. As a consequence, the chiral gauge 2. THE STREAMLINED METHOD
current is no longer conserved.

Such violations of chiral current conservation 2.1. General Considerations

are unacceptable in a chiral gauge theory since The counterterms of concern to us correspond
they jeopardize the decoupling of ghost fields and, to local parts of the divergent subgraphs involving
hence, unitarity. Furthermore, current conserv_ the fermion. In four dimensions, these subgraphs
tion is an important ingredient in the standard are the closed fermion loops with up to four ex-
renormalization program. Without it, there is ternal gauge bosons, the fermion self-energy cot-
an explosion of new counterterms, whose coef- rection, and the fermion-gauge-boson vertex cor-
ficients must each be tuned in order to obtain rection. In general, there are counterterms corte-
s satisfactory theory. For example, in the ab- sponding to every operator that is consistent with
sence of current conservation, the vacuum po- the symmetries of the lattice theory and has di-
larization can generate a quadratically divergent mension less than or equal to four. For the gauged
gauge-boson mass, the light-by-light graph re- Wilson theory, there are eleven such counterterms
quires counterterms, Lorentz-noncovariant coun- in the Abelian case and more in the non-Abelian
terterms can arise on the lattice, and, in non- case. Four of these can be absorbed into two ad-

Abelian theories, the fermion-gauge-boson con- ditional coupling constant renormalizations, but
piing can become different from the triple gauge- the rest must be dealt with separately.
boson coupling. Clearly it would be awkward to tune so many

A key idea in our proposal (and in that of the coefficients in'simulation. Therefore, we will try
Rome group), is that, by tuning a suitable set of to find rules for computation that automatically "-
counterterms, one can restore chiral current con- implement at least some of the counterterms. Our .,

servation in the continuum limit. A heuristic sr- approach will be to/xfiodify amplitudes in ways
gument in support of this idea is the following, that correspond/t6" adding local contributions,

We can regard the lattice formulation:_s a UV with the goal o/f_roducing a final expression that
regularisation of the theory. By definition, the respects con_rvation of the chiral gauge current./.
difference between the lattice regularization and /
any other UV regularization resides at large loop 2.2. _,_osed Loops
momentum (p_, -_ I/a). Because the Wilson term L_f us focus first on the divergent subgraphs
eliminates the poles at p_, = Tra, large Euclidean inv61ving closed fermion loops. We set aside for
loop momentum implies that propagators are far now the self-energy and vertex corrections.
off their mass shells. Then the corresponding sub- By examining the Feynman identity, we can see

diagram is equivalent to a local interaction. Thus, at the graphical level how the violations of cur-
if there exists a satisfactory UV regularization of rent conservation occur. For simplicity, we give
the chiral theory (that is, one that respects the only a schematic form, which exhibits the essen-

tial features of the full lattice expression:chiral gauge symmetry), then it is equivalent to

the Wilson lattice regularization plus local coun- _PL = (16+ _ + M)PL - PR(I_ + M) + MTs. (7)
terterms.

Therefore, we attempt to restore the chiral cur- On the right side of (7), the first term cancels a



propagator on the left and the second term can- re3ulting expression is vectorlike, so the gauge
eels a propagator on the right. If we were to up- field couples to a conserved current, as required.
ply the Feynman identity to a set of diagrams Because of the factor 1/2 on the right side of
containing ali permutations of the fermion-gauge- (8), such contributions correspond to the square
field vertices, then the contributions of the first roof of the determinant of the Wilson-Dirac op-
two terms on the right side of (7) would exhibit erator for a fermion with vector-like couplings
the usual pair-wise cancellations that appear in to the gauge field. (The action is given by
the textbook proofs of current conservation. (In SN + SNI + Sw + Swl with PL -'-*1.)
the case of the lattice theory, a few complications, We can implement this trick conveniently in
which are irrelevant for our purposes, arise be- simulations by noting that

cause of seagull vertices.) However, the contribu- {det _ + 4_PL + M]}* - del [i6+ _PR + M]lions corresponding to the last term of (7) would
remain and would correspond to a violation of (9)

chiral current conservation. That is, the part of the determinant that is odd in
The last term in (7) appears because 75 com- -rs is the phase, and the part that is even in 7s is

mutes with M. This suggests that we try to re- the magnitude. Consequently, in a simulation we
store lattice current conservation by modifying

can effect (8) by replacing the magnitude of the
the computational rules in such a way that "rs chiral Wilson-Dirac determinant with the square
effectively anticommutes with Mw. Such a rood- root of the determinant for Wilson-Dirac particle
ification would, of course, change the amplitude, with vector-like couplings to the gauge field.
However, the change would be proportional to For terms containing an odd number of Ts's,
Mw. Now Mw = _(2/a)[1 - eos(p_a)] van- there is clearly no way to use the preceding trick
ishes as a _ 0 unless p_ .., 1/a. Thus, such a to eliminate ali the 7s's, and, for such terms, the
change in the amplitude is a purely local contri- chiral gauge current is not conserved. This is not
bution in the continuum limit and corresponds to too surprising since, if we could have eliminated
the addition of a local counterterm to the action, ali of the violations of chiral current conservation,
Since loop momenta of order 1la can give impor- then we would have found a counterterm that

tant contributions only in divergent subdiagrams, eliminates the Adler-Bardeen-Jackiw anomaly,
this modification would leave the continuum lim-

contrary to the proof of Adler and Bardeen [7].
its of convergent subdiagrams unchanged. A slm- Fortunately, it turns out that ali of the viola,
ilar procedure is often used in the continuum in lions of current conservation are proportional to
dealing with dimensionally regulated graphs in- the anomaly. Thus, the violations cancel if the
volving "rs. There the prescription is to anticom- fermion species in the theory satisfy the anomaly-
mute -rs's before continuing away from d - 4. cancellation condition Tr As{Ab, _c} = 0, where

We can exploit this anticommutation trick in the A's are the flavor matrices (or charges) asso-
order to eliminate the -rs's in closed fermion loops elated with the fermion species.
in ali terms containing an even number of 75's.
We anti-commute the -rs's through ali gamma ma- 2.3. Self-energy and Vertex Corrections

trices and through the Wilson mass. Schemati- In general, the graphs associated with the
cally, we have fermion self-energy correction and fermion-

[ %,pL, 1 ] gauge-boson vertex correction lead to six court-1 M"r.pr " 1 "rpPL terterms: (Z_ - 1)_#(Pi_, 5rai_Pi_, and (Z_-
"'" + /_2 + M even no. 1)_((-i_)Pi_/, where the index i stands for L or

of 7s's R.

--_ "" %'/_1+ i_2 + M -rp . (8) In computing the phase of the chiral determi-nant (that is, the terms containing an odd num-

(Vertices arising from (5) complicate the analysis ber of "rs's), we can choose to drop the part of
slightly, but do not change the conclusions.) The the action Sw1 that corresponds to the gauging
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of the Wilson term. (This does not upset the left-handed couplings to the gauge field.
preceding anomaly-cancellation argument.) Then
there is a shift symmetry, discussed by Golterman 2. Fix to a renormalizable gauge.

and Petcher [6], which guarantees that (Z_ - 1), 3. Compute the determinant of each Dirac op-
(Z_- 1), 6m/', and 5m R vanish. However, it erator, including in the Dirac action the
turns out that Z_ _ Z_, so we need a court- naive terms SN and S/vz, an ungauged
terterm (Z_ - 1)SNI, where Z_ = Z_/Z_, or, Wilson mass term Sw, and a counterterm

equivalently, a counterterm (Z_ - 1)SN, where (Z_ - 1)SNI (or (_2/" -- 1)SN).
= ZlZ .

In a simulation, Z_ (or Z_) must be tuned 4. Itetain the phase of each determinant, but
so that the renormalized fermion-gauge-boson replace its magnitude with the square root
coupling is the same as the renormalized triple- of the determinant of the Dirac operator
gauge-boson coupling. The dominant contribu- with a vector-like coupling to the gauge
tion to Z_ comes from the region of large En- field. The vector-like action includes the
clidean loop momenta. Hence, for asymptotically naive terms SN and SNI with PL --' 1, the
free theories, Z_ can be computed in perturba- Wilson term Sw, and its gauging SwI. One
tion theory, and it is a finite renormalization. Un- must also include a counterterm for 5m or

fortunately, Z_ is gauge dependent, so one must a hopping parameter.

gauge fix in simulations. However, because Z_ is 5. _I_ne 6m so that the physical mass van-
a local (perturbative) quantity, it should be in- ishes; tune Z_ (or Z_) so that the renormal-
sensitive to Gribov ambiguities. For the terms ized fermion-gauge-boson coupling is equal
contai ling an odd number of'),5's, one can prove a to the renormalized triple-gauge-boson cou-
version of the Adler-Bardeen no-renormalization piing. For an asymptotically free theory,

theorem [8] to the effect that, if Z_ is properly ad- the critical hopping parameter and Z_ can
justed and Tr Au{Ab, Ac} = 0, then the Ward iden- be computed in perturbation theory.
tity for the complete fermion-gauge-boson vertex
is non-anomalous. That is, the presence of ra-
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