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ABSTRACT 

This paper presents an analysis of the quartic polynomial Nodal Expansion Method (NEM) for one-dimensional 
neutron diffusion calculations. As part of an ongoing effort to develop an adaptive mesh refinement strategy for use 
in state-of-the-art nodal kinetics codes, we derive a priori  error bounds on the computed solution for uniform meshes 
and validate them using a simple test pioblem. Predicted error bounds are found to be greater than computed 
maximum absolute errors by no more than a factor of six allowing mesh size selection to reflect desired accuracy. We 
also quantify the rapid convergence in the NEM computed solution as a function of mesh size. 

I. INTRODUCTION 

The next logical advancement in the solution of the neutron diffusion equation is the development of an adaptive 
mesh refinement strategy for nodal methods. The ability would then exist to solve problems with locallized, transient 
phenomena to a desired degree of accuracy without having to experimentally customize the solution mesh. The major 
requirement for such an undertaking is that we have an efficient means of estimating the error in the computed solution 
so that we may identify areas needing mesh refinement. At North Carolina State University, there is continuing effort 
to construct a modern nodal kinetics code.' The NESTLE code, as it is called, is the target for the aforementioned 
adaptive mesh refinement scheme. 

Using the traditional variable nomenclature where L is the neutron diffusion length, D is the diffusion coeffcient 
and s(x) is the spatial distribution of the neutron source, the one group neutron diffusion equation in homogeneous 
slab geometry is given by, 

Application of the Nodal Expansion Method (NEM) to neutron diffusion calculatiops in slab geometry is based on 
the assumption that the neutron flux as a function of position within node i = 1,. . . , N can be projected accurately 
on a set of polynomial basis functions, specifically 

t 

4 

k=O 

The basis functions we choose are those developed by Finnemann, et a1.,2 defined on the normalized spatial interval 
[-1/2, 1/21 corresponding to the node shifted interval [-%,$=I and absolute interval [ x i - l ,  xi]. Traditionally, the 
discrete variables to be computed are the basis function coefficients, but we find it convenient to use the more physical 
surface fluxes and flux moments within a cell instead. Let denote the flux moment resulting from weighting the 
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flux distribution in the ith node with the mth basis function, and denote @; and @: to be the flux on the east and 
west surfaces of node i respectively. The results of this tranformation are given here, 

ai  = 3 5 4  - 7046 - 7006 + 35& (3) 

The following "moment equations'' are the constraints that arise from weighting the neutron diffusion equation with 
the first three basis functions, 

(4) 
20@+ - 4066 - 280G + 204: 

A x 2  

-. 
7@+ - 144; - 140% + 745 

A x 2  
4 - 

Additional equations result from enforcing current continuity accross cell boundaries, 

D'+' 
A x  
- [-16,$'_+' + 20&,+,+' - 60#~+1+ 14oi',+'- 4@++t+1] (7) 

Numerical studies have supported the use of this procedure as a valid source of closure equations in high-order NEM2. 
Flux continuity at these same interfaces is also imposed. The final two equations necessary to close the system are 
given by Dirichlet boundary conditions, 4'- = 4: = 0 in our study. 

11. ERROR ANALYSIS 

A. Uniqueness of Solution 

The methodology employed in the error analysis of the quartic NEM equations parallels that presented by Ortega 
for finite difference methods? We derive a "Maximum Principle" to show that the problem solution is unique, a 
property necessary if we are to bound the truncation error. We first use flux continuity across cell boundaries to 
reduce the number of unknowns by one-fifth. The notation will now reflect that # is the flux at the surface located 
at xi on the east boundary of node i. Furthermore, we assume homogeneous nuclear properties and choose to work 
only with a uniform mesh. 

Hypothesize that the set {&,, #}, m = 0,1,2 is not a unique solution to the disctete problem and that there is 
a second solution that we will call {Ph, #}, m = 0, 1,2. If we now form the difference of the moment equations and 
continuity equations, we develop an analogous problem for the unknowns f,!,, = - @; and ti = # - # given by, 
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45'-1 - 20(; - 60fi - 14OG + 32Si - 140.$+' + 6OG+' - 20G+' + 4Si+' = 0 (11) 
Note that the new problem is homogeneous regardless of the original conditions. Also, the solution of these equations 
is subject to Dirichlet boundary conditions. Solution of (9) for the variable followed by application of the Triangle 
~nequality~ reveals, 

From the definition of a, it can be seen that it is always positive and la1 I $. Such properties guarantee that 
and 

substituting into (8), we are able to apply the Triangle Inequality once again to arrive at, 
< - max{l~l, lSi-l1}.  The maximum value of IS1 therefore cannot occur in the variable c. Solving (10) for 

Examination of P shows it to have attributes identical to those of a defined previously. We then conclude that the 
' maximum value of IS1 is not taken by the variable (A. Conversely, isolating 6 in (8) for substitution into (10) results 

in, after use of the Triangle Inequality, 

As before, properties of y do not allow the maximum value of to occur in f;. Therefore, the maximum absolute 
difference must occur at a cell boundary. *, 

Using the moment equations, we eliminate variables in (11) leaving only the surface quantities. Following 
considerable manipulation and application of the Triangle Inequality, we obtain 

100800 - 4320% + l20$ - 4+$ 
2217600 + 3 0 8 1 6 0 s  + 4980% + 32% IS'! S lql(lSi+ll + lSi-'1) where r ]  = 

Note that 171 5 4 and 7 2 0 for A x  5 5L, a condition that must be satisfied in the limit A x  + 0 that is necessary 
for the error analysis. Assume there is a maximum value in IC'l and let it occur at the surface xk. Furthermore, let 
ISk+'l 2 ISk-'l allowing replacement of the latter by the former in (15) and using the properties of 7 we conclude, 

(16) k + l  < Sk+Il  lSkl 5 2171 IS I - I 
The only statement that can satisfy both this equation and the claim made on IEkI as a maximum is that ISk] = ISk+l I .  
Similar logic applied to the alternative option ISk+'I 5 ISk-'l yields the result that, 

IS? = m a 2  { Irk+'l, IEk-ll}  

IS 1-1s 1-1s I 

(17) 

(18) 

Using this information in (15) leads us to the important result, 
k-1 - k - k + l  

We conclude that if a maximum does in fact occur in the interior of the region then IS1 is constant everywhere within 
the region. A more general statement of this is that the maximum of IS1 must occur on the boundaries of the region. 
Recall the boundary conditions set So = SN = 0. Therefore, 9 = (k = 0; m = 0,1,2; i = 1 . . . N implying that the 
solution of the original problem is unique. 

I 

B. Error Bounds 

Turning now to the question of bounding the error in the solution, denote the exact flux solution quantities by 
for each cell i and moment indices @ so that we may define the error in the solution as, ei = 9' - ai , 

m = 0, 1,2. Starting with the zero moment equation, (4), and subtracting from each side the following expression, 
= &, - 
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we arrive at the expression, 

where we have defined the zero moment discretization error to be, 

This form arises from substitution of the source term in terms of the exact flux. Similarly, subtraction of the 
expression, 

5@' - bo + 4 6; - 5ai-l 

' from each side of the first moment equation, (5), leads to the form, 

-5e'+ [ 60+-  $2] 8 = Ax2r1(i,Ax) 

with-an analogous definition of the first moment discretization error, 

Treatment of the second moment equations, (6), and current continuity equation, (7), are natural extensions leading 
to the forms, 

$ - 7&' = Ax2r2(i, Ax) 

- de'-' + 2 0 6  + 608 + 1403 - 32e' + 1403+' - 606+' + 204+' - 4e'+' = hr , ( i ,  A X )  

where the corresponding discretization errors are defined by, 

(25) 

(28) 4 -i+l 
-r,.(i, Ax)  -[(@'-' + ai+') - 5(@; + @;+I) - 12(Qf - @;+') - 35(@; + Q2 ) + Sai] 

Ax 
These expressions indicate that the errors introduced are given by the differences of derivatives in the exact equations 
with difference forms in the discrete variable equations. 

We now try to show that the truncation errors in the discrete variables are in some way bounded by a combi- 
nation of the different discretization errors. First isolate the cell moment variables in terms of surface variables and 
discretization errors using the moment-type equations. A bound on the surface flux error is then found and used to 
extract error bounds for the cell moment quantities. We solve for from (25) and sybstitute into (20) to isolate 3. 
The result is shown here, 

(840 + w) (e' + e'-') + (140 + $) Ax2ro(i, A X )  -=280Ax2r2(i, A X )  
ei,= 1680 + 180% + 

Isolation of 4 is accomplished by solving (20) for 4 and inserting this result into (25) to obtain, 

- 7  7Af' (e' + ei-') + (40 + $) Ax272(i, A X )  - 14Ax2ro(i, A X )  
% =  +;- 1680 + 180% + $$ 

(29) 

..-,.I- -.. 
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The solution of (23) for 8 is straightforward resulting in, 

[5(e' - e'-') + Ax2r1(i, Ax)] 1 
60 +-% g =  

Finally, these expressions are used in (26) to obtain an error bound for ]e i l ,  a long and tedious process which we will 
refrain from showing here. . . . 

J 

The properties of the local discretization error now warrant further investigation. The most important property 
to establish is that the discretization errors approach zero in the limit as Ax -, 0 since this guarantees the truncation 
error will also approach zero. We will also determine in the case that the exact flux solution is sufficiently smooth 
the rate at which the local discretization error components approach zero. This allows us to write a Taylor series 
expansion for the exact flux about the surface at t i .  This is done to simplify the combination of discretization 
error components in the expression for e'. Without assuming the exact flux solution is sufficiently smooth to allow 

. expansion to high order, the following exercise terminates with the realization that the discretization error goes to 
zero but at an unknown rate. 

It is important to note an implicit variable translation when weighting the Taylor series expansion of the flux 
using the basis functions, as required to evaluate the local discretization errors. The basis functions were intended 
to be used on the interval [y, 91, so there is a "shifting" that must occur to use the interval [0, Ax] when we 
center the Taylor series expansion on the surface xi. For clarity, a superscript is introduced on the basis function to 
indicate the cell in which the basis function is used. Since the zero order basis function is a constant, the shift is 
inconsequential but becomes important in'.higher order basis functions as shown here, 

2 
&x)=3(*) - -  1 fi,+'(Z) = 3  ( x  - LxF) - 1 

4 4 

Combining all these terms into (21) for nodes i and i+l promotes significant cancellation. Application of the Triangle 
Inequality to the expression derived for e' results in, 

4M("')AzS 

(33) 
(201600 - 8640% + 2 4 0 g  - 8$)1e1+ 9La 

201600 + 92160% + 4320% + 32% 1.7 I 

where we have replaced lei-'] and lei+'l by the maximumsurface flux error denoted lei. implies the maximum 
absolute value of the nth exact flux derivative over the Taylor series expansion points. Terms of order greater than 
six have been neglected since this analysis focuses on asymptotic error behavior. This expression is true for all nodes, 
including the node where the maximum is actually attained. The coefficient of le1 can take on either arithmetic sign 
depending on the value of Ax. We will only examine the case where this coefficient is positive, Ax2 _< 5L2 since this 
is true in the limit of small Ax. Evaluating (33) at the location of the maximum, we solve for the maximum surface 
flux error bound as. 

We apply the Triangle Inequality to (29) to obtain, 

We now derive a bound on 141 by replacing Ie'I and le'+'l with the upper bound given by (34), 

M(*')Ax6 
64800 ,-. lE0l _< 

(35) 

(36) 
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where 
cell moment errors isolated in (31) and (30) yields similar results, 

represents the maximum absolute error in the zero flux moment. Extension of this treatment to the other 

M(")At5 
la'' 100800 

lEZ1 12700800 
17M(")Ax6 

(37) 

Summarizing the analysis, we conclude that the error quantities lei, IEol, and 1Ezl behave as Ax6 while the error 1 ~ ~ 1  
is order Ax5. 

We now discuss how these results can be used within the context of adaptive mesh refinement. Our goal is to 
develop an error estimation technique based on information generated during multilevel acceleration cycles. This 
implies that we wish to relate the infinity norm of the error incurred at mesh level N to the expression 14(N)-4R(N)I.  
The term $ ( N )  is any of the computed unknowns on mesh level N and d R ( N )  is the same unknown at mesh level 
N reconstructed from the solution at mesh level 2N. It shouId be clear that the foIIowing equality holds. 

Application of the Triangle Inequality and assumption that the infinity norm of each error variable behaves as CAxP 
where p is known leads us to a relationship for C. 

Performing the NEM solution on mesh levels N and 2 N  permits calculation of the upperbounding value of this 
coefficient, which can subsequently be used to predict the mesh size that is necessary to satisfy a desired error 
tolerance in each variable. This provides a basis for adaptive mesh refinement. 

111. VALIDATION 

The simple test problem considered for this analysis consists of a one-dimensional slab [0, a] with uniform nuclear 
properties. The slab has a unit source distributed uniformly throughout. Only one energy group will be treated 
since we seek a simple analytic solution used to find the error incurred by solving the problem with the NEM 
approximation. The system chosen for the test problem was a 0.20m thick water slab with D = 1.429 x 10-3rn and 
E, = 2.2m-I. Behavior of the solution in a graphite medium was found qualitatively no different. 

A computer program was developed to solve the equations resulting from the NEM formulation. The algebraic 
system was cast in matrix form Ax = b and solved in double precision using established LU factorization (DGECO) 
and solver (DGESL) routines from the LINPACK l i b r a r ~ . ~  Estimates of the inverse of the matrix condition number 
are calculated to warn of potential roundoff problems in the solution when the number of nodes, hence the matrix 
dimension, becomes large. 

The largest problem size possible is dictated by the size of memory available on the computer and is compounded 
by the fact that we are forced to work in double precision lest the roundoff errors become intolerable at small numbers 
of nodes well before asymptotic error behavior is observed. Summarily, the condition number of the coefficient matrix 
became intolerable in advance of the memory constraint. Erratic, oscillatory values contaminated the solution vector 
and destroyed the monotonicity of the error behavior. 

We calculate an asymptotic error order by assuming the infinity norm of all variables behave like CAxP. There- 
fore, we compare maximum absolute error on mesh N and on mesh 2N to determine the value of p independent of 
the leading coefficient. 
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IV. CONCLUSIONS 

As a first step in verifying our analysis, it is important that the asymptotic error order for each discrete variable 
is consistent between the analysis and experiment. Table 1 clearly shows this to be the case. The error order for 
the zero flux moment seemingly decreases in the final trial, but recall the fact that we are solving the system of 
equations on a finite precision computer. The drop in error order is attributable to roundoff contamination of our 
solution. Note that the error order for the first flux moment tends to approach its theoretical limit much slower than 
the other variables, which will be explained below. 

The attached figures compare the analytic error bound in each variable with the computed data for the dis- 
crete variables in the quartic NEM. The computed maximum absolute errors for flux moments zero and two are 
approximately six times smaller than those estimated by the analysis evidenced by Figure 2 and Figure 4. The 
computed maximum absolute surface flux error in Figure 1 is observed to violate the analytic error bound at very 
coarse meshes. The computed value of IGl violates its analytic error bound over most mesh sizes shown in Figure 3. 
Wee believe that the bound violations noted can be explained by looking at the terms truncated in the analytic error 
bounds we derived. For each of the even flux moments, the neglected term was O(Ax8), two orders higher than the 
leading term. The same is true for the surface flux error bound, but the coefficient of the O(Az8) term relative to 
the coefficient of the O(Ax6) term is larger for the the surface flux error versus the even flux moment errors. The 
term ignored in the first flux moment error bound is only 0(Ax6), one order higher than the leading term. In each 
case, the truncated terms are additive and tend to raise the bound. Moreover, Table 1 supports the observation that 
the first flux moment is the last to reach asymptotic error behavior. The effect of these truncated terms on error 
bound violations and error order convergence is still subject to further research. 

Results of our attempt to predict the appropriate mesh needed to satisfy a given tolerance are given in Table 2. 
During this phase of our work, it was noted that doubling the mesh for quartic NEM so greatly improves the 
fidelity of the solution that it effectively reproduces the exact solution on the coarser mesh. The implication is 
that (40) provides the value of C versus an upper bounding value since we assume that both reconstructed and 
non-reconstructed variables behave in a similar way. Such behavior is very useful when performing error estimation 
in the context of multilevel acceleration. 

Work is underway investigating the effects of non-Dirichlet boundary conditions and material heterogeneities 
when deriving bounds as we have done. Future efforts will center on application of this method to multi-dimensional 
geometries. 
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1.25 - 0.625 
0.625 - 0.3125 

6.0 I 6.0 4.8 I 5.8 
6.0 I 5.7 .4.9 I 6.0 

Table 1: Computed asymptotic order of the error for the discrete variables for the quartic NEM solution to the test 
problem on various uniform meshes. 

Tolerance Predicted 
on 161 Mesh Number 

Computed 
161 

Table 2: Results of mesh size prediction using fine to coarse mesh reconstruction as a basis for error estimation. 
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Figure 1: Comparison of the computed maximum and the derived upper bound on the surface flux absolute error 
(le'[) for the quartic NEM solution to the test problem on various uniform meshes. 
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Figure 2: Comparison of the computed maximum and the derived upper bound on the zeroth flux moment absolute 
error (]GI) for the quartic NEM solution to the test problem on various uniform meshes. 
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Figure 3: Comparison of the computed maximum and the derived upper bound on the first flux moment absolute 
error (141) for the quartic NEM solution to the test problem on various uniform meshes. 
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Figure 4: Comparison of the computed maximum and the derived upper bound on the second flux moment absolute 
error (161) for the quartic NEM solution to the test problem on various uniform meshes. 


