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Abstract

The two-dimensional (R-Z) electromagnetic code FMRZ has been written to model induc-

tive sources self-consistently in time. The code models an argon plasma with momentum-

transfer, excitation and ionization as electron-neutral reactions and scattering and chaIge-

exchange for the ion-neutral reactions. The electrons and ions are treated as MaxweUJan fired

species and a reduced set of Maxwell's equations is used to advance the electromagnetic fietJs.

The set of equations used in FMRZ is not subject to typical numerical constraints pre,!:,:ntin

many time dynamic codes allowing one to choose appropriate time and space ,scales to re_olve

only the frequencies and scale lengths of interest. The model retains nonline_i drivhlg tet:ms

which give rise to a pondermotive force that distorts the density p,ofile Dcn_i'y and p_,_<.,r

profiles will be used to illustrate the physical effects of various terms it, the e_,' ;_tions, "rrc:xd,_

in average density and temperature compare well with an analytic rood,,!

1 Introduction

Inductively coupled plasmas (ICPs) [1] [2] have been recently redis_ ,'_'_,'_ _ _ _:':,sma source for

materials processing [3] [4]. Unlike the RF capacitive discharges curt_:_ i: , _,, iCPs can achieve

/" higher plasma densities for increased throughput without a large sheath drcl_ which can accelerate

ions and cause workpiece damage. ICPs can also be run at lower pressures which leads to less

collisionality and higher ion anisotropy for etching.

ICPs come in several geometric configurations. Simulation will help select the most effective
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configuration for a given application by providing trends for changes in control variables such as

• neutral pressure, coil current, wafer voltage, etc. Figure 1 shows a typical ICP configuration and

Fig. 2 shows our modeling geometry for the dielectric and flush coil cases. Our initial simulation

efforts concentrate on the inductive coupling and so capacitive coupling on the coil side and the

wafer side will be absent.

In contrast to many ICP simulations [5] [6], we simultaneously evolve the electromagnetic fields

and the plasma response. We chose this approach partly based on our previous simulation expe-

rience with time dynamic codes. Hov_ever, inclusion of time dynamics allows us to automatically

keep nonlinearities such as the pondermotive force which distorts the density profile and can alter

uniformity [7]. Futhermore, a time dynamic code is easily adapted to do particle-in-cell simulation

to model electron kinetics.

We want only to resolve wRF and _,_in to model power deposition and density profiles. Co-

evolving the full set of Maxwell's equations for the fields and fluid equations for the plasma requires

the numerical resolution of small space scales, Ape, and fast time scales, wpe and the light transit

time across a numerical cell. For typical ICP parameters, cope >> wRF and ADe << 6,k_r, and fast

electromagnetic waves are not important to inductive coupling. To resolve RF, we need a numerical

time step At = 10-9 sec but if we had to resolve electron plasma oscillations, At = 10-11 sec, and

if we had to resolve light transit time across a typical numerical cell, At = 10-13 sec.

A quasineutral Darwin model removes the unwanted scales by adding approximations to the first

principal equations as opposed to damping the scales by implicit numerical methods. Quasineutral-

ity removes the wve and hOe scales by avoiding charge separation. The Darwin or radiation free

approximation removes the fast EM waves from Maxwell's equations by dropping the time deriva-

tive of the divergence free part of the electric field present in Ampere's Law. Quasineutral Darwin

models have been used sucessfuly in pinch simulations and instability studies [8] [9] [10].

We started with the quasineutral Darwin code ZMR [9] which has been used to simulate theta

pinches. ZMR uses axisymmetry to further simplify the field and plasma equations and the zero

electron inertia approximation to remove electron cyclotron time scale which can also be numerically

prohibitive in the presence of large external magnetic fields. It was pointed out, however, that

without electron inertia at least in the 0 component of the electron momentum equation, the external

driving RF and the plasma current would always be in phase (or 180 ° out of phase), i.e., the resistive

coupling would be present but the reactive coupling would be missing [11]. Since for our ICP

parameters, wRF > gen, reactive coupling is important. Therefore, in addition to adding electron-

neutral and ion-neutral collisions and modifying the ion fluid and electron temperature equations and

boundary conditions, we added the 0 component of the electron momentum equation that retains



inertia. For ICPs there is no strong external magnetic fields and so numerical resolution of the

• electron cyclotron time scale is not a concern. The overall reworking of the code prompted us to

rename it FMRZ.

While FMRZ is still a fairly simple model, we have been able to use it to demonstrate ponder-

motive, coil placement, and ion-neutral collision effects on the plasma density profile. We have also

compared FMRZ results with an analytic model and we have noticed similar trends in density versus

power and density versus pressure.

The plan of this paper is as follows. In the second section, we will present our model and discuss

its limitations. In the third section, we will show pondermotive, coil placement, and ion-neutral

effects on the density profile and give some physical explanations for our observations. In the fourth

section, we will show our comparisons with an analytic model. In the fifth section, some concluding

remarks will be made.

2 The FMRZ Model

The model equations we are about to present are solved with simple finite forward time and centered

space differencing. The only exceptions are a two-step predictor corrector advance for the electron

8 momentum and an implicit Peaceman Rachford advance for the thermal conductivity term of the

electron temperature equation.

The electron fluid equations are

n, = n/, (1)

from quasineutrality,

u,r,, = uir,,, (2)

from r, z ambipolar diffusion, and

0,,,u°e+ IV.(-,-,-,)]0 = -en,Eolm, - en,[u, × n/(m,c)le

- [_.-,(.,e - u_e)- ..._._o,], (3)

for electron 0 momentum. Note that there is no pressure term because we retain ZMPJs axisymmetry

0e = 0 assumption. We zero the derivative normal to the plasma edge for uee, i.e., Ofiuee = 0 where

fi signifies the unit vector normal to the edge. If this is only an approximation to the true boundary

/ condition, it affects only the convective term of Eq. (3).

An energy balance gives the electron temperature equation

2e _
T, 2 V . _VT, - _n,7?,i(T, - 7})

O,T, + V. (u,T,)- -_-V.u, = 3n-"_ rn,
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2e2
,7..u_], (4)- v.eL+ -_-ne[_,i(_°e- ui0)2+ 2

where _ is a combine e - n and e - i thermal conductivity and the q terms are resistivity. The

boundary condition is derived from an plasma edge energy flux balance between convection and

conduction of energy into the sheath and an energy loss as the electron falls out of the sheath. The

result is

_¢OfiT, + 5uBn,Te = 0, (5)

where UB -- (Te/mi) 1/2.

For the ion advance, we use the usual set of fluid equations. The continuity equation is

Otni q- V . (niui) = b'izne, (6)

The momentum equation is

O_niui + V . (niuiul) = -V(ni_/mi) + eniE/mi + eniui × B/(rnie)

- [n_.(u_- u,)(.,,/.,_) + n_.,,_], (7)

and in lieu of a proper energy equation we take

= T.,.,. (8)

We apply our ion boundary conditions at the plasma sheath boundary which is O(ADe) away

from all walls since there is no driven electrode in these simulations. We pose physically reasonable

_oundary conditions without attempting to resolve Ape sheaths. We take

ui. a =uB (9)

and

on(., × _) = o (10)

for the velocities and

- DaOfani = niuB (11)

for the density. The boundary conditions make the outflow flux equal the Bohm flux and is based

on 1-D ambipolar diffusion theory where Da _ Te/(miz)in).

We use the Darwin model and axisymmetry to simplify Maxwell's equations [12]. Starting with

Ampere's Law

cx7 × B = 0rE + 4r J, (12)

the Darwin model drops the divergence free part of the displacement current to give

cV × B = -0tV_b + 47rJ. (13)



Using axisymmetry, the 0 component of Eq. (13) is

c(OzBr -c3rBz) = 4r J0. (14)

Ambipolar diffusion and quasineutrality combine to allow no net current in the r and z directions.

The divergence of Eq. (13) then gives V_¢ = 0 which is consistent with the quasineutral limit of

Poisson's equation. Therefore, the remaining components of Eq. (13) give Be = 0. Note that a B0

in an ICP is yet to be measured [13].

The c3, of Eq. (14) can be combined with the r and z components of Faraday's Law to give

Or l OrrEo + 02zEo = 4"_c3_Jo, (15)
r c*

where the P,.HS can be formed from the sum of 0 component momentum equations. Since electron

momentum terms all dominate, we can multiply Eq. (3) by -e and solve for c3_,/e0and use this for

the RHS of Eq. (15). An actual time differencing of 8_Je leads to a numerical instability [12]. With

E0 determined, we use the following equations for Br and B,'

O,Ae =-cEo, (16)

Br = -0:A0, (17)

Bz = l OrrAe. (18)
r

Equations (16)-(18) are restatements of the r and z components of Faraday's law that numerically

assure V • B = 0.

FMRZ soh'es Eqs. (15)-(18) for E0 and B but Er and E, must be found. Although ¢ _ 0

giving no electrostatic (capactive) E, Er.z # 0 and can be calculated from the inertialess r and z

components of the electron momentum equation which is appropriate to ambipolar diffusion. After

substituting Eqs. (1) and (2) into the inertialess r and z components of the electron momentum

equation and solving for the Er and E,, we get

Er = -[OrniTe + eniueeBz + m.ni_,nuir]/(eni), (19)

E, = -[O_niT,- eniu,oBr + m, niv,,ui,]/(eni). (20)

Note the u,0 terms in Eqs. (19) and (20). These terms contain a product of two quantities that are

directly driven by the RF. These terms are therefore nonlinear and give rise to the pondermotive

, force. Equations (19) and (20) are used in the r and z components of Eq. (6) so that the force felt

by the electrons is communicated to the ions thus affecting the density profile.

The boundary conditions for the electromagnetic fields are as follows. For B, we enforce V. B = 0

at all edges• No boundary conditions are required for Er and Ez since they are determined by Eqs.
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(19) and (20) and their gradients are never calculated. We Use Ee = 0 at all conducting walls. At

the coil side, we prescribe E0(r) - E0f(r)cos(wRFt) where ](r) is a function chosen to model the

coil and the dielectric window. For coils flush against the plasma as in Fig. 2, bottom, f(r) = 1 over

the coil and f(r) = 0 where there is no coil. For a dielectric window between the plasma and the

coil as in Fig. 2, top, we take a parabolic profile for f(r) with a maximum of 1 and a minimum of i

0. This is done to mimic the observed smoothing of the incoming field profile due to the dielectric

window.

The amplitude E0 is not fixed but adjusted at each RF cycle to insure that a given power is

ohmically absorbed in the plasma. To see why this is so, consider a simplified version of Eqs. (4)

and (6):

h = v_n- uBAn, (21)

Vn vizeL, (22)

where n = ne = ni and A is the plasma surface area and V is the plasma volume. At equilibrium, the

LHS of Eqs. (21) and (22) go to zero and we are left with a global particle balance that determines

Te and a global energy balance that determines n [14]. Now consider Pab_/V in terms of ohmic

heating:

Pob,/v=,..sh, (23)

where rlen = rneven/e2n. Considering only the inertial and Ee acceleration terms of Eq. (3) and

assuming E0 = Eoexp(-z/6,_.in)cos(waFt), the time average version of Eq. (23) becomes

e,2I/en 1772

Pobo/v= (24)
Thus, to at least a linear approximation, Pabs/V is linear with n if E0 is fixed. Substituting this

linear form back into Eq. (22) removes the n dependence in that equations and so a system based

on Eqs. (21) aad (22) can never reach an equilibrium density. This problem becomes more apparent

if the Ee profile is less dependent on skin depth as is true for some two dimensionsal geometries in

which a skin depth field solution is not valid.

That it is wrong to fix E0 in a time dynamic code can be seen in a transformer coupled model of
J

an ICP [15]. If the transformer secondary (plasma) properties are allowed to change, i.e. resistance

and inductance changing in time, the electric field between the primary and secondary (Ee(r))

should be changing in time as well. We have sidestepped this problem by readjusting the amplitude

so that a constant, chosen RF power is ohmically absorbed. After a few RF cycles, Eo settles to a

value which then drifts to an equilibrium value as the simulation approaches equilibrium. However,

attempting to fix E0 after equilibrium is acheived reintroduces the problem.

The limitations of the model are the Ee and dielectric window and boundary condition modeling

and more importantly the absence of collisionless heating and capacitive coupling. For our Ee



inductive field equation, Eq. (15), the dielectric window can be modeled more accurately by attaching

a region over which U2Ee = 0 is solved. To calculate E0, we can consider a transformer couple plasma

model which gives the Ee amplitude in terms of coil and plasma currents [15]. Collisionless heating

can added to Eq. (4) if a accurate expression can be derived. A few authors have already made

progress on this subject [16] [17]. It has been shown that the heating can be made to resemble an

ohmic term and so for some fixed absorbed power, the additional heating mechanism reduces the

calculated amplitude E0.

Modeling capacitive coupling is essential to see how capacitive sheaths accelerate ions to etch

the wafer or, unfortunately, the dielectric window. Capacitive coupling has been modeled by a

drift diffusion approach [5] [6]. Equations (19) and (20) are solved for uer and ue, instead of Er

and E_, Eq. (1) is replaced by an electron continuity equation similar to that of Eq. (6), and a

Poisson equation is solved to determine Er and Ez. The nonlinear terms in Eqs. (19) and (20)

may or may not be included depending on how Br, Bz, and ue0 are determined. Substituting these

equations in our model for quasineutrality and ambipolar diffusion approximations is quite possible.

However, since proper modeling of inductive coupling required inclusion of electron inertia in the

electron momentum equation, it seems reasonable to worry that proper modeling of capacitive

coupled requires inclusion of electron inertia in the r and z electron momentum equations. Including

these inertial terms while solving a Poisson equation reintroduces the wpe time scales which all

interested parties would want to avoid.

If electron inertia is indeed needed for modeling of capacitive coupling, one way to avoid tape

time scales to solve the capacitive coupling equations for ne, u_r, ue_, and ¢ implicitly. Another

approach would be to retain quasineutrality which is reasonable over the bulk of the discharge. A

set of electron momentum equations similar to Eq. (7) could be solved and a quasineutral Poisson

equation could be solved for ¢ and then Er and E_ [18] [19]. The boundary condition for the

quasineutral Poisson equation could be an analytic model for capacitive coupling. The boundary

conditions Eqs. (5) and (9)-(11) would also have to be suitably modified.

3 Three Density Profile Effects

By turning off various terms in the equations or by altering boundary conditions, we can demonstrate

many physical effects. Here, we have chosen to look at RF magnetic fields, flush coil placement,

and constant diffusion. Our base case for comparision is an equilibrated 400W, 5reTort argon run

with the geometry pictured in Fig. 2, top. All runs are said to equilibrate when the density at the

mid-point is no longer changing in time.



The results of the base case run are shown in Fig. 3. Note the source or heating region extending

about a skin depth away from the coil as shown on the ohmic heating plot. The resulting temperature

profile is high on the source side but thermal conductivity exerts smoothing so that the temperature

• gradients are not extremely strong. The resulting ionization rate vi_ which is temperature dependent

also does not have strong gradients but would be high in the source region. The resulting density

profile takes a diffusion shape. Note that the shape is not cosine/Bessel because of the asymmetry

of the source region, the RF magnetic fields, and the non-constant diffusion from taking vi,_ =

[v2h, + 2va,.ist io,,]l/">/)t,,,sp.

We first examine the importance RF magnetic fields by setting the fields to zero and comparing

this run with the base case run. Figure 4 shows contour plots of the density with and without the

RF magnetic fi_ld. The ¢ountour plots are oriented the same way as Fig. 2, top. Note that when

the RF magnetic fields are kept, the density is pushed out of the source region and piles up causing

a higher peak density value. The peak location itself shifts a little towards the source region, but

the overall effect seems to push plasma away from the source region.

The effect can be explained via the pondermotive force [20] [7]. Consider the following elec-

tric field Eo = E(z)cos(wt + ¢). Faraday's law then gives a magnetic field of the form Br =

(c/w)OzEsin(wt + ¢). Now consider a subset of the single particle equations of motion: i

_, -" (qlm)E,, (25)

,s,=(qlm)v,B,Ic. (26)

Solving Eq. (25) for gives ve = (q/mu_)Esin(wt + ¢). Substituting this solution into Eq. (26),

multiplying by m, and then taking the time average over an w cycle gives the single particle force

5 = -(q2/4rn_2)cO, E2. (27)

Note that for any particle type and any phase ¢ the force is always opposite to the gradient in Ea.

For ICPs with the coil at the top, the force pushes all particles out of the source region as we

have observed in our simulations. The force is stronger for electrons than ions by a mass ratio. In

fact, we noticed no observable difference from the base case when we set the RF magnetic field to

zero for the ions only• It has been speculated that if the coils are placed on the sides, a centripetal

force will cancel the pondermotive force thus keeping particles in the source region where they can

be heated more efficiently [21].

We next examined the effect of placing the coils flush with the plasma. This is analagous to

having so much current in the coil that the dielectric window cannot smooth the incoming field.

Figure 5 shows the same group of plots a Fig. 3. Notice that the temperature and density profiles

are essentially the same except the coil shape starts to penetrate into the plasma. For a shorter



device or higher powers, the coil shape could penetrate through the entire plasma so that the coil

• image could be etched onto the wafer. Also notice that the density peak is slightly higher for the

flush coil case. This may correspond to the Ee amplitude also being larger which leads to a stronger

pondermotive force.

Finally, we looked at constant diffusion by calculating vin :-" vth ion/_,n/p. This form of vi,

makes the ambipolar diffusion coefficient a constant so that one can proceed with a two dimensional

analytic calculation of the density profile [22]. This form would be accurate if ion drift velocities

were much smaller than ion thermal velocities, but for !CPs this is seldom the case. Changing to

this form of vin in the simulation is trivial and the effect is observed in Fig. 6. Note that the density

profile in the non-constant diffusion is flatter along z but with a sharp drop at the ends where as

the density profile in the constant diffusion case is much more peaked in z.

The effect can be explained in terms of diffusion theory. At the edge of the plasma, we have

Bohm flux outflow, which by Fick's law is equal to the product of the diffusion coefficent and the

density gradient. When nui,_ is calculated with the ion drift velocity instead of the of the ion thermal
I

velocity, the diffusion coefficient is smaller, and for the same Bohm flux outflow, the density gradient

must be larger. Since our code borrows from diffusion theory, it should be no suprise that diffusion

theory arguments work well. However, as this section has demonstrated, the profile can be strongly

affected by geometry and nonlinear effects as well.

This diffusion effect has also been observed by Godyak in his one dimensional analytic calculations

[23]. We are attempting to extend our analytic method to capture this effect in two dimensions.

The inclusion of ion drift velocity in the ambipolar diffusion coefficient makes the diffusion equation

nonlinear and so a simple closed for in two dimensions is elusive.

4 Comparision with an Analytic Model

We compared our simulation with an analytic model derived from diffusion theory [22]. The analytic

model gives a cosine/Bessel profile for the density. The simulation contains other effects besides

diffusion, such as the pondermotive force, source region asymmetry, and convection in the fluid

equations. To make comparisons, we ran our simulation with vin = v,h ion/,_rnJp.

Figure 7 shows that while absolute values of average n and Te do not match, the linear trend
,i

of average n with absorbed power and the independence of average Te with power is observed for

both the simulation and the analytic model. Furthermore, both analytic model and simulation give

increasing density and decreasing temperature with increasing neutral pressure. Note similar trends

are also observed experimentally [21] [24].
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5 Conclusion

In this paper, we have described our time dynamic code for the simulation of ICPs and have shown

that with the nonlinear terms in the fluid equations automatically retained, the pondermotive force

effect on the density profile can be easily observed. We have also presented coil placement and

correct _in effects on the density profile and checked the code's global response with an analytic

theory.

While a time dynamic code that follows wR,_ requires more computer time to reach steady state

than a code that assumes an ejwRrt variation on driven quantities, we believe that the physics

retained and the flexibilty to add more physics is worth the effort. Quick answers and trends can

already be supplied by analytic models where as simulations can be used to deepen understanding

and support analytic models.
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Figure 1: An ICP reactor. Typical parameter ranges are:

Plasma Density 101° - 1012/cms

," Neutral Pressure 1 - 50 mTorr

Power Absorbed 100 - 5000 W
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Figure 2: The top figure shows our normal modeling geometry and the bottom figure shows our

modeling geometry for coils flush with the plasma.
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Figure 4: The top figureshows density contour with Bnr _- 0. The peak density is 4.53 x 1011/cc.
,"

The bottom figureshows density contour with BRr -- 0. The peak density is 4,19 x l011 /cc. Both

contours were drawn over the rangc 1.8x l0 l° /cc to 4,6 x l0 jl /cc for comparison.
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.. Figure 5: Parameters are the same as the base casesimulation except the coil are flush with the

plasma.
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"" " ,_ io,]l/2/Amll,. The/ Figure 6: The top figure shows the density profile with vi. = [v;"h io. + tdrilt

.. density range along z at r = 0 for this case is 1,21 × 1011/cc to 4.53 x 1011/cc. The bottom figure

shows the density profile for the constant diffusioncase in which pin = Vthio./Amlp. The density

" range along z at r = 0 for this case is 1.12x l0 II /cc to 3.41 × l0 il /cc.
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.. Figure7: Comparisonof averagedensity and temperaturecalculatedby simulationand an analytic

model. The system parametersare the same as shownon Fig. 3.






