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Abstract

We use two co-evolving neural networks to determine new classes
of protein secondary structure which are significantly more pre-
dictable from local amino sequence than the conventional secondary
structare classification. Accurate prediction of the conventional
secondary structure classes: alpha helix, beta strand, and coil, from
primary _quence has long been an important problem in compu-
tational molecular biology. Neural networks have been a popular
method to attempt to predict these conventional secondary struc-
ture classes. Accuracy has been disappointingly low. The algo-
rithm presented here uses neural networks to similtaneously exam-
ine both sequence and structure data, and to evolve new classes
of secondary structure that can be predicted from sequence with
significantly higher accuracy than the conventional classes. These
new classes have both similarities to, and differences with the con-
ventional alpha helix, beta strand and coil.



1 INTRODUCTION

The conventional classes of protein secondary structure, alpha helix and beta
_heet, were first introduced in 1951 by Linus Pauling and Robert Cores
[Pauling, 1951] on the basis of molecular modeling. Prediction of secondary
structure from the amino acid sequence has long been an important problem
in computational molecular biology. There have been numerous attempts to
predict locally defined secondary structure classes usin5 only a local window
of sequence _nformation. The prediction methodology ranges from a combina-
tion of statistical and rule-based methods [Chou, 1978] to neural net methods
[Qian, 1988], [Maclin, 1992], [Kneller, 1990], [Stolorz, 1992]. Despite a variety of
intense efforts, the accuracy of prediction of conventional secondary structure is
still distressingly low.

In this paper we will use neural networks to generalize the notion of protein sec-
ondary structure and to find new classes of structure that are significantly more
predictable. We define protein "secondary structure" to be any classification of
protein structure that can be defined using only local "windows" of stiuctural in-
formation about the protein. Such structural information could be, e.g., the classic
45 angles [Schulz, 1979] that describe the relative orientation of peptide units along
the protein backbone, or any other representation of local backbone structure. A
classification of local structure into "secondary structure classes", is defined to be
the result of any algorithm that uses a representation of local structure as Input,
and which produces discrete classification labels as Gatput. This is a very general
definition of local secondary structure that subsumes all previous definitions.

We develop classifications that are more predictable than the standard classifica-
tions [Pauling, 1951] [Kabsch, 1983] which were used in previous machine learning
projects, as well as in other analyses of protein shape. We show that these new,
predictable classes of secondary structure bear some relation to the conventional
category of "helix", but also display significant differences.

We consider the definition, and prediction from sequence, of just two classes of
structure. The extension to multiple classes is not difficult, but will not be made
explicit here for reasons of clarity. We won't discuss details concerning construction
of a representative training set, or details of conventional neural network train-
ing algorithms, such as backpropagation. These are well studied subjects that
are addressed in e.g., [Stolorz, 1992] in the context of protein secondary struc-
ture prediction. We note in passing that one can employ complicated network
architectures containing many output neurons (e.g. three output neurons for pre-
dicting alpha helix, beta chain, random coil), or many hidden units etc. (c.f.
[Stolorz, 1992], [Qian, 1988], [Uneller, 1990]). However, explanatory figures pre-
sented in the next section employ only one output unit per net, and no hidden
units, for clarity.



2 DEFIN'ITION AND PREDICTION OF SECONDARY
STRUCTURE CLASSES

A widely a_lopted definition of protein secondary structure classes is due to Kabsch
and Sander [Kabsch, 1983]. It has become conventional to use the Kabsch and
Sander definition to define, via local structural information, three classes of sec-

ondary structure: alpha helix, beta strand, and a default class called random coil.
The Kabsch and Sander alpha helix and beta strand classification captures in large
part the classification first introduced by Pauling and Corey [Pauling, 195I]. Soft-
ware implementing the Kabsch and Sander definitions, which take a local window
of structural information as Input. and produce the Kabsch and Sander secondary
structure classification of the window as Output. is widely available.

The key ideas of this paper are contained in Fig. (1).
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InthisfiguretheKabsch and Sanderrulesarerepresentedby a secondneuralnet-
work. The Kabsch and Sanderrulesarejustan Input/Outputmapping (froma
localwindow ofstructureto a classificationof thatstructure)and may inprinci-

plebe replacedwitham equivalentneuralnetrepresentingthesame Input/Ot,tput
mapping.We explicitlydemonstratedthata simpleneuralnetiscapableofrepre-
sentingrulesofthecomplexityoftheKabschand Sanderrulesby traininganetwork
to performthesame structureclassificationas th_ Kabsch and Sanderrules,and
obtainedhigh_curacy.

The representationofthestructuredataintheright-handnetworkusesOq angles.
The right-handnetseesa window of Oq anglescorrespondingto thewindow of
mmno acidsinthe left-handnetwork.Problemsdue tothe angularperiodicityof

the @_ angles (i.e., 360 degrees and 0 degrees are different numbers, but represent
the same angle) axe eliminated by utilizing both the sin and cos of each angle.



The representation of the amino acids in the left-hand network is the usual unary
representation employing twenty bits per amino acid. Results quoted in this paper
do not use a special twenty-first bit to represent positions in a window extending
past the ends of a protein.

Note that the right-hand neural network could implement extremely general def-
initions of secondary structure by changing the weights. We next show how to
change the weights in a fashion so that new classifications of secondary structure
are derived under the intportant restriction that they be predictable from amino
acid sequence. In other words, we require that the synaptic wei_ihts be chosen so
that the output of the left-hand network and the output of the right-hand network
agree for each sequence-structure pair that is input to the two networks.

To achieve this, both networks are trained simultaneously, starting from random
initial weights in each net, under the sole constraint that the outputs of the two
networks agree for each pattern in the training set. The mathematical implemen-
tation of this constraint is described in various versions below. This procedure
is a general, effective method of evolving predictable secondary structure classifi-
cations of expeEmental data. The goal of this research is to use two mutually
self-supervised networks to define new classes of protein secondary structure which
are more predictable from sequence than the standard classes of alpha helix, beta
sheet or coil.

3 CONSTRAINING THE TWO NETS TO AGREE

One way to impose agreement between the outputs of the two networks is to require
that they covary when viewed as a stream of real numbers. Note that it is not
sufficient to merely require that the outputs of the left-hand and right-hand nets
agree by, e.g., minimizing the following objective function

E = Z(LeftO(P)- RightO(P)) 2 (1)
p

Here, LeftO (p) and RightO (p) represent the outputs of the left-hand an _ right-
hand networks, respectively, for the pth pair of input windows: (sequence window
-left net) and (structure window -right net). It is necessary to avoid the trivial
minimum of E obtained where the weights and thresholds are set s_ that each net
presents a constant Output regardless of the input data. This is easily accomplished
in Eqn (1) by merely setting all the weights and thresholds to 0.0.

Demanding that the outputs vary, or more explicitly co--vary, is a viable solution
to avoiding trivial local minima. Therefore, one can maximize the correlation, p,
between the left-hand and right-hand network outputs. The standard correlation
measure between two objects, LeftO (v) and RightO (v) is:

P = Z(LeftO(P) - LeftO)(RightO (p) - RightO) (3)
v

where LeftO denotes the mean of the left net's outputs over the training set, and
respectively for the right net. p is zero if there is no variation, and is maximized



if there is simultaneously both individual variation and joint agreement. In our
situation it is equally desirable to have the networks maximally anti-correlated
as it is for them to be correlated. (Whether the networks choose correlation, or
anti-correlation, is evident from the behavior on the training set). Hence the min-
imization of E = -p_" would ensure that the outputs are maximally correlated
(or anti-correlated). While this work was in progress we received a preprint by
Schmidhuber [Schmidhuber. 1992] who essentially implemented Eqn. (1) with an
additional variance term (in a totally different context). Our results using this mea-
sure seem quite susceptible to local minima and we prefer alternative measures to
enforce agreement.

One alternative to enforce agreement, since one ultimately measures predic-
tive performance on the basis of the Mathews correlation coefficient (see, e.g.,
[Stolorz, 1992]), is to simultaneously train the two networks to maximize this mea-
sure. The Mathews coefficient, C,, for the i th state is defined as:

pini -- uioiC, =
[(n_+ u_)(n,+ o_)(p,+ u,)(p,+ o,)]1/2

where pi is the number of examples where the left-hand net and right-hand net
both predict class i, ni is the number of examples where neither net predicts i, ui
counts the examples where the left net predicts i and the right net does not, and oi
counts the reverse. Minimizing E = -C, 2 optimizes Ci.

Other training measures forcing agreement of the left and right networks may be
used. Particularly suitable for the situation of many outputs (i.e., more than two-
class discrimination) is "mutual information". Use of mutual information in this
context is related to the IMAX algorithm for unsupervised detection of regularities
across spatial or temporal data [Becker, 1992]. The mutual information is defined
as

M = _ Pij log P/i (4)
ij P*pj

where Pij is the joint probability of occurrence of the states of the left and right
networks. (In previous work [Stolorz, 1992] we showed how pij may be defined
in terms of neural networks). Minimizing E = -M maximizes M. While M has
many desirable properties as a measure of agreement between two or more variables
[Stolorz, 1992] [Farber, 1992] [Lapedes, 1989] [Korber, 1993], our preliminary sim-
ulations show that maximizing M is often prone to poor local maxima.

Finally, an alternative to using mutual information for multi-class, as opposed to
dichotomous classification, is the Pearson correlation coefficient, X 2. This is defined
in terms of Pij aS

)2
X2 = _ (Pi_ -PiPj (5)

i,j Pi .P.j

Our simulations indicate that X 2, Ci and p are all less susceptible to local minima



than M. However, these other objective functions suffer the defect that predictabil-
ity is emphasized at the expense of utility. In other words, they can be maximal
for the peculiar situation where a structural class is defined that occurs very rarely
in the data, but when it occurs, it is predicted perfectly by the other network. The
utility of this classification is therefore degraded by the fact that the predictable
class only occurs rarely. Fortunately, tl;is effect did not cause difficulties in the
simulations we performed. Our best results to date have been obtained using the
Mathews objective function (see Results).

4 RESULTS

The database we used consisted of 105 proteins and is identical to that used in
previous investigations [Kneller, 1990] [Stolorz, 1992]. The proteins were divided
into two groups: a set of 91 "training" proteins, and a distinct "prediction" set
of 14 proteins. The resulting database is similar to the database used by Qian &
Sejnowski [Qian, 1988] in their neural network studies of conventional secondary
structure prediction. When comparison to predictability of conventional secondary
structure classes was needed, we defined the conventional alpha, beta and coil states
using the Kabsch and Sander definitions and therefore these states are identical to
those used in previous work [Kneller, 1990] [Stolorz, 1992]. A window size of 13
residues resulted in 16028 train set examples and 3005 predict set examples. Effects
of other windows sizes have not yet been extensively tested. All results, including
conventional backpropagation training of Kabsch and Sander classifications, as well
as two-net training of our new secondary structure classifications, did not employ
an extra symbol denoting positions in a window that extended past the ends of a
protein. Use of such a symbol could further increase accuracy.

We found that random initial conditions are necessary for the development of in-
teresting new classes. However, random initial conditions also suffer to a certain
extent from local minima. The mutual information function, in particular, often
gets trapped quickly in uninteresting local minima when evolved from random initial
conditions. More success was obtained with the other objective functions discussed
above. We have not exhauatively investigated strategies to avoid local minima,
and usually just chose new initial conditions if an uninteresting local minimum was
encountered.

Results were best for two class discrimination using the Mathews objective function
and a layer of five hidden units in each net. If one assigns the name "Xclass" to the
newly defined structural class, :hen the Mathews coefficient on the prediction set
for the Xclass dichotomy is -0.425. The Mathews coefficient on the train set for the
Xclass dichotomy is -0.508. For comparison, the Mathews coefficient on the same
predict set data for dichotomization (using standard backpropagation training with
no hidden units), into the standard secondary structure classes Alpha/NotAlpha,
Beta/NotBeta, and Coil/NotCoil is 0.33, 0.26, and 0.39, respectively. Adding hid-
den units gives negligible accuracy increase, in predicting the convention_! classes,
but is important for improved prediction of the new classes. The negative sign of
the two-net result indicates anti-correlation - a feature allowed by our objective
function. The sign of the correlation is easily assessed on the train set and then can
be trivially compensated for in prediction.



A natural question to ask is whether the new classes are simply related to the more
conventional classes of alpha helix, beta, coil. A simple answer is to compute the
Mathews correlation coefficient of the new secondary structure classes with each
of the three Kabsch and Sander classes, for those examples in which the sequence
network agreed with the structure network's classification. The correlation with
Kabsch and Sander's alpha helix is highest: a Mathews coefficient of 0.248 was
obtained on the train set, while a Mathews coefficient of 0.247 was obtained on

the predict set. There is therefore a significant degree of correlation with the con-
ventional classification of alpha helix, but significant differences exist as well. The
I,cw classes are a mixture of the conventional classes, and are not solely dominated
by either alpha, beta or coil. Conventional alpha-helices comprise roughly 25% of
the data (for both train and predict set_), while the new Xclass comprisc_ 10%. It
is quite interesting that an evolution of secondary structure classifications starting
from random initial conditions, and hence completely unbiased towards the conven-
tionM classifications, results in a classification that has significant relationship to
conventional helices but is more predictable from amino acid sequence than conven-
tional helices. Graphical analysis (not shown here) of the new Xclass shows that
the Xclass that is most closely related to helix typically extends the -.-tefinitio.a of
helix past the standard boundaries of an alpha-helix.

5 CONCLUSIONS

A primary goal of this investigation is to evolve highly predictable secondary struc-
ture classes. Ultimately, such classes could be used, e.g., to provide constraints
on tertiary structure calculations. Further work remains to derive even more pre-
dictable classes and to analyze their physical meaning. However, it is now clear
that the use of two, co-evolving, adaptive networks defines a novel and useful ma-
chine learning paradigm that allows the evolution of new definitions of secondary
structure that are significantly more predictable from primary amino acid sequence
than the conventional definitions.

Related work is that of [Hunter, 1992], [Hunter, 1992], [Zhang, 1992], [Zhang, 1993]
in which clustering either only in sequence space, or only in structure space, is
attempted. However, no condition on the compatibility of the clustering is required,
so new classes of structure are not guaranteed to be predictable from sequence.

Finally, we note that the methods described here might be usefully applied to
other cognitive/perceptual or engineering tasks in which correlation of two or more
different representations of the same data is required. In this regard the relation of
our work to that of independent work of Becker [Becker, 1992], and of Schmidhuber
[Schmidhuber, 1992], should be noted.
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