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I .  Introduction 

The Los Alamos National Laboratory has conducted in the past a series of experiments of 
transport of conservative and reactive solutes. The experimental setup and the experimental 
results are presented in a series of reports192fl94. The main aim of the experiments was to 
validate models of transport of solutes in unsatwated flow at the caisson intermediate scale, 
which is much larger than the one pertahhg to laboratory columns. Fm attempts to analyze the 
experimental results were by one-dimesnsional conveclive-dispersion modek. These models could 
not explain the observed solute breakthrough curves and particularly the large solute dispersion 
in the caisson effluent Since there were some question marks about the uniformity of water 
distribution at the caisson top, the transport experiments were repeated under conditions of 
saturated flow6. In these experiments constant heads were applied at the top and the bottom of 
the caisson and the number of concentration monitoring stations was quadrupled The analysis of 
the measurements by the same one-dimensional model indicated clearly that the fitted 
dispersivity is much larger than the pore-de  dispersivity and that it grows wiht the distance in 
an approximately hear fashion. This €ed to the conclusion, raised beforeq that transport in the 
caisson is dominated by heterogeneity effects, ie. by spatial variability of the material. Such 
effects cannot be captured by tra&tional one-dimensional models. 

In order to account for the effect of heterogeneity, the saturated flow experiments have been 
analyzed by using stochastic txansport modeling67. The apparent hear growth of dispersivity 
with distance5697 suggested that the system behaves like a sttaWied ones. Consequently, the 
model of Dagan and BreslerQ has been adopted' in order to interpret concentration 
measurements. In this simple model the h n  is viewed as a bundle of columns of different 
permeabilities, which are chafacteraed * by a p.d.f. (probabfity denasity function). From a 
physical standpoint, the presence of such a structure can be explained as a result of the 
nonuniform p a c e  of the caisson material, for instance due to different compactions in the 
center and near the walls. By using the model and by assuming convective transport, the 
expected value (M(z;t)), of the cumulative solute mass which has passed thtough the caisson 
cross-section at depth z and time t, was evaluated. By adopting a lognormal permeability 
distribution, an analytical expression of (M), depending on the logconductivity variance was 

derived. Since direct measurements of conductivity were not available, an inverse p d u r e  was 

applied. First, the experimental M(qt) was inferred by interpolating among concentration 
monitoring stations and integrating in space. Secondly, an ergodic assumption was adopted, 
namely that the entire population of conductivites is present in the single realization of the 
caisson such that Last, the value of the variance was identified by a best fit between 
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measured M and computed (M). Confidence in the model stemmed from its ability to reproduce 
quite -.* accurately the curves of M as function of t at different depths. 

The present study addresses two issues dated to the caisson experiments. The first one is that 
of uncertainty of M, the mass arrivai function, in the satutated experiments. The ergodic 
assumption mentioned above presumes that there is no such uncertainty. From a theoretical 
standpoints this is correct only if the oisson crm-sectional area is infinite, cr more precisely if 
the ratio between the diameter d and the conductivity correlation scale I tends to infinity. In 
practice the variance of M becomes very small if the mtio is f d e  but sufficiently large. The 
purpase of this part (Section 2) is to examine the dependence of CYM, the coefficient of 
variation of h4, upon d/I. Since conductivity measurements were not available, this ratio was not 
known. Hence, the purpose of the computation at this stage is to estimate the needed magnitude 
of d/I to ensure that CVM is sufficiently small, to allow for the exchange between M and 0. 
Furthermore, the results are indicative of the heterogeneous structure existing in the caisson The 
second issue (Section 3) is the analysis of the Caisson unsaturated experiments with the 
conservative solutel*z. In this analysis we evaluate again the expected value of the mass arrival 
(M) by using the same basic columnar modelQ, but adapted to the nature of the UIlSaturated flow 
and to the boundary condition of uniformly applied flux. Adopting again the ergodic hypothesis, 
a best fit is achieved between the observed M in the effluent and the calculated (h4) for a 
certain value of the variance of the logvelocity. By using a model of the flow, this value is 
related to the saturated conductivity Variance, which was determined previously. Again, the 
uncertainty of M is examined by relating its variance to the ratio d/I, between the caisson 
diameter and the velocity cornlation scale. 

Finally, in Sect 4 we p m n t  a few conclusions drawn from the devebpments of the present 
study, as well as recommendations for future caisson experiments. 

2. Uncertainty of mass arrival in saturated flow experiments 

Let z be a downward vertical Qttesian coordirmte, with origin at the caisson top and x,y 
coordinates in the horizontal plane. In line with our previous analysis6.7 the hydraulic 
conductivity % is regaded as a function of x,y solely. With bouuadry conditions of constant 
head at z=O and z=L (Caisson bottom), the exact solution of the flow problem is 
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where q is the vertical specific discharge and J is the head gradient Indeed, (2.1) expresses 
Darcfs Law and also satisfies exactly the continuity equation. Assnming a constant effective 
porosity we have 

J 
n n  

u(x¶y)= -% 

where u is the velocity and n the effective porosity. 
A slug of solute of ancentration C is inserted during a time perid At and at time t=O in 

the inlet reservoir. The solute is convected by the fluid through the caisson and the resident 
concentration C is given by 

0 

where A is the &n cross-sectional area and 6 is the Dirac operator. Eq. (2.3) expresses the 
assumption of pure convection with neglect of pore-scale dispersion. This is justified by the 
smallness of the pore-scale dispersivity in comparison with the heterogeneity scale. However, 
(2.3) can be easily generalized to include pore-scale dispersion by replacing the concentrated 
pulse in (23) by a Gaussian one. Our computations show clearly that with the values of pore- 
scale dispersivity derived from measurements, the effect is negligible and does not wanant the 
additional computational burden. 

The solute mass flux % through the &n cross-section is 

and the cumulative solute mass which has crossed the cross-section is given by 
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t 

M(z,t) = Qc(z,t') dt' = I 
0 

t 

where H(z) is the Heaviside step function, i.e. H=l for 4 and H=O for z4 .  M is the basic 
quantity we are using in order to a n a l p  transport. The reason is that we rely mainly on the 
measurement of the concentration of the caisson effluent, which is flux averaged, i.e. the 
product of the water discharge Q times the effluent concentration is precisely Q. 

We regard Ks and the resulting u (2.2) as random functions, to reflect their irregular spatial 
variability and the uncertainty affecting their distributions. In line with the libemture8, we 
assume K to be lognormal. and opemte with v = lnu as independent variable. Hence, the 
univariate p.df. f(u) is given by 

The joint p.df. f(vlp> of vl="(",,yJ and v2=vpz,y2) is bmormal and of correlation 
coefficient pv, ie.10 

The expected value of M (25) is obtained by substituting fust u = exp(v), multiplying by f(v) 
(2.6) and integrating from -00 to +oo. The result is 

lnr i uv2/2 
(M(z,t)) = C, At n A &[l + erf( )] where 

2 (2)J2av 

(u) = exp(5iuvz/2) and 7 = t(u)/z 
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This result has been obtained previousp7 and has been employed in order to identifv uy” 
from the concentdon measurements, as explained above in Section 1. Since the solute has been 
inserted as a pulse of duration T = 6 days, (M) (28) was integrated once more over time. It has 
been foundh7, however, that except for the smanest z, approximating the pulse by a 
concentrated one at n6dT is an accucate approximation of OM) for the actual pulse provided that 
At is replaced by T in (2.8). Hence, we shall emplpy in the sequel the expression of (2.8). 
Furthermore, we rewrote it a dimensknless form as fonows 

(2.9) 

where Mo= Co T n (u) A iS the expected value of the total solute mass m the caissun. 
We have assumed previously6” that M is ergodic, ie. that (h4) can be exchaged with M in 

any realiration and particularly in the Caisson experiment. This was the justification of the 
identification preocedure in which we have taken (u) equal to its measured value and 
the same. 

We are going now to examine this assumption by computing the variance a h a n d  the 
coefficient of variation CV?vf-M/(M). Only if the latter is much smaller than unity is the 
ergodic assumption bound to hold. Towad this aim we write M2 (2.5) and take its expected 
value as follows 

(2.10) 

where ul=u(x ,y ) and u,=u(x2,yJ are velocities at two arbitrary points in the caisson cross- 
section. The integraads in (2.10) can be computed by substituting ul=exp(uJ and u2=exp(u2), 
respectively, multiplying by f(ulYz) (27) and integmting from -00 to +oo. One quadratme can be 
carried out in a close form leading to 

1 1  

Z z 
al u2 H ( u ~  - e) H(u2 - -b = 

t t 



- 6 -  

00 

with a = ( ay2  - ln?-)/ aY (2. I 1) 

We have now to integrate (2.11) twke over the caisson area in (210). We assume that Ks and 
Y are stationary and isotropic, ie. the correlation coefficient pY depends on the distance r = 

[(x -x )%(y -y )2]1/2 solely. Hence, the function (2.1 1) depends on r through pv. Then, we may 
reduce the quadruple integration in (2.10) to a sigle one by using Cauchys algorithms and 

1 2  1 2  

rewrite (M2) (2.10) as follows 

(2.12) 

where d is the Caisson diameter, A=lrd2/4 is its area and B = cos-l(r/d) - (r/d) (I-r2/d2)1/2 
results from Cauchy's algorithms. 

To effectively evaluate (M2) we have assumed an expnential pY= exp(-r/Q Then, (M2) can 

be calculated by a double integration, one over X and an additional one over r. The coefficient 
of variation C V ~  = ((M~)/(M)z - 1>./2 results from this operation as a function of the 
dimensionless parameters a; and d'=d/I and of the dimensionless time z (28). 

In the case in which %$ is measured at a sufficiently large number of points m the caisson, 
the stationarity of the logconductivity and the value of the integral scale I can be determined by 
statistical iafemnce. Since such measurements are not available, we have computed CYM for the 
value aY = 12 identifled p r e v i o u s l ~ ~  and for different ratios d' between the Caisson diameter 
and the logconductiVity integral scale in the horizontal plane. The computation has been carried 
out numerically by carrying out the two quadratures in (2.12). The resulting CVM as function of 
'C=t(u)/z is represented in fig. 1 for a few d'. In E% 2 we have represented (M>/M, as function 
of z as well as bounding curves at 95% inteml of confidence. It is seen that a considerable 
reduction of the uncertainty of M/Mo is achieved for &=loo, ie. for M cm. 
From the structure of (M2) (2.12) and the associated CVM it can be seen that CYM is 

proportional to 1/A i.e. to d'-2 for d'>>l, This is proved by Fig. 3 in which the curves of Fig. 1 



- 7 -  

practically collapse in one curve after multiplying CVM by d'2. It is emphasized that for a 
three-dimensional heterogeneous structure the drop of CVM with d' is more rapid Hence, the 
present results may be viewed as upper bounds of the variance of M. 

3. Analysis of transpH in caisson unsaturated flow experiments 

(i) Introduction. 

Unlike the saturated flow experiments, in the unsaturated ones the solute breakthrough curves 
were measured only at a few stations1,293. Consequently, we were not able to carry out an 
investigation similar to the one performed for satuxated f low?  The presence of one sampling 
station at each depth does not permit one to compute, by interpolation, the curves of mass 
arrival as function of time. Hence, in the stochastic framework, the measured breakthrough 
curves can be viewed as samplings of the solute tramport in a few streamtubes and they can 
serve to determine the magnitude of the p o r e - d e  dispersion coefficient The heterogeneity 
effect could be asesd, however, from the measurement of the concentration of the effluent 
which averages the contribution of the entire caisson volume to transport. It is precisely the large 
discrepancy between the pore-scale effect manifesting in the breakthrough curves and the large 

rate of spreading apparent in the outlet concentration that prompted previous studies4 to propose 
heterogeneity as the main dispersion mechanism. 
Encouraged by the results obtained in the analysis of the saturated flow experiments 697, we 

have decided to apply the model of h g a n  and Breslers to the unsaturated flow case as well. A 

major difference between the two configurations is that while (21) is an exact solution of the 
flow equations for constant head boundary conditions, there is no such simple solution for 
unsaturated flow. Indeed, the simple extension of the flow model to unsatumted conditions is to 
assume that flow is gravitational and of constant vertical specific discharge q, imposed by the 
boundary condition at the caisson fop. This leads, however, to the existence of gradients of the 
moisture content 0 in the horizontal plane and in transverse components of the specific discharge 
vector, contradicting the model of vertical flow. Hence, a more accurate and complete analysis of 
the flow requires regarding it as three-dimensional. We can assume, however, that the horizontal 
gradients are weak as they are proportional to matric potential differences divided by the 
heterogeneity correlation scale in the horizontal plane. Since the & s o n  depth is only twice its 
diameter, it is reasonable to assume that the horizontal flow is of limited extent and regard flow 
as vertical and gravitaionaL This picture can be validated by measuring the moisture content on 



- 8 -  

a dense grid and breakthrough m e s  at a large number of stations. Although there are a 
relatively large number of B measurmg stations, they do not cover either the caisson area and the 
neighborhood of the walk in a comprehensive manner. Thus, validation of the model is a matter 
of future investigations (see Sect 4). On the other hand, we may use the information gained 
from the analysis of the saturated experiments, namely the magnitude of the satuiated 
logconductivity variance and check its compatibility with the results of the UIlSatilliited flow 
transport. 

(C) Analysis of experimental data. 

We have analyzed the two experiments of transport of iodide through the &son summarized 
in report3 by Polzer et al. We have started by determining the actual water discharge through the 
caisson based on the effluent outflow measurements. Based on the Table of p. 1033, the 
cumulative outflow is represented in Figs. 4 and 5. The day 77 corresponds to Dec. 6, 1984 
whereas the day 150 is Febr. 17, 1985. It is Seen from Figs. 4 and 5 that the actual flow through 
the caisson was quite steady, though small fluctuations were present The average rates of flow, 
i.e. the average slopes in Figs. 4 and 5, were determined to be 

20.6~103 2 1.4~103 Q, = = 286 I/day ; = = 319 l/&y 
149-77 216-149 

(3.1) 

respectively. The average specific discharges were, therefore, 

Our next task was to determine the cumulative solute mass M(L,t), arriving at the bottom 
section at z=L This has been done by multip€yhg the daily measured iodide concentration of the 
Table of p. la3 by the corresponding daily outflow of the Table at page 1033. M and M for 
the two experiments are represented in Fgs. 6 and 7, respectively. It is seen that the total solute 
mass in the two experiments was quite different, reflecting the difference m the concentrations 
at the inlet3. We have rendered the cumulative masss dimensionless by dividing it by Mo, the 
total mass in each experiment The curves M (L,t)/Mo and M (L,,t)/M are represented in Fig. 8. 
The time origin was shifted to day 77 and day 141, the beginning of the solute insert at 2=0 in 
the two experiments. The striking result is the closeness of the two curves, demonstrating the 

1 2 

1 2 0 
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repetibility of the experhent in spite of the difference in total mass and the slight one in the 
velocities. This result for M(Lyt)mo in Fig. 8 was the basis of our interpretative effort 

Next, we have analyzed the moisture content measurements 0 of the Table of p. 1003. We 
have used the data at six depths and ten times. From the various computations we reproduce 
here the results for the average 8 over each experiment period and over the entire caisson. We 
have also deterinined the variance of the In8 and the results are 

e = 0.278 
1 

e =029  
2 Y q,Ze = 0.0046 (3.3) 

While the variance is not regarded as representative, since the cross-section was not covered in 
a comprehensive manner, the average values for the two experiments were taken as acceptable in 
view of the small variability of 8. 

Based on (32) and (3.3) we could determine the average pore-water velocity during the two 

experiments as follows 

- -  - -  
u = q /8 = 14.6 cm/day ; u = q2/d2 = 15.6 cm/day 
1 1 1  2 (3.4) 

and the difference between the two velocities was narrowed down in comparison with that of 
the specific discharges. 

(i) The flow model. 

We have adopted the B m b  and Coreyn relationship between unsaturated conductivity K and 
moisture content 

where S = (e-ei,)/(ds-ei,) is the relative saturation and a is a constant. We have neglected e&, 
the irreducible satmition, since we did not have reliable data about it (it is poorly defined 
anyhow). Furthermorey for the relatively large saturations of (33), it is bound to play a minor 
role in (3.5). The coefficient a was assumed to be constant in the caisson, though field 
measurements mdicate that a is spatially variable. Again, the available data were not sufficient to 
determine the variabirity of a in the caisson and we adopted the value derived for samples of 
crushed Bandefier tufP2, namely -8.75. 
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The satmated conductivity Ks and the saturated moisture content BS are also interdependent, 
i.e. one can write 

where k is a constant. Eq. (3.6) is known as the Kozeny-Carman relatiomhip and in absence of 
measurements for the caisson tuff, we have adopted the value in the literature= of /3 = 3.5. 

We assume the flow in the caisson to be gmvitational, in line with the basic models. Hence, 
according to Darcfs law 

q = K  (3.7) 

Unlike the saturated experiments, the water was applied in the caisson uniformly at the top. 
As a matter of fact the distribution was not uniform in the upper part, as reflected by the 
measured breakthrough curves at the upper station3. However, since we are analyzing the 
effluent we disregard this effect, which adds to the other neglected sources of variability. We 
therefore assume that in each of the two experiments q was constant and equal to the values of 
(32), respectively. 

Finally, the pore velocity u is given by 

since in our models the caisson is viewed as a bundle of colurrms of % varying in the. 
horizontal plane. 

The Eqs. (3.5-3.8) summarize our simple flow modeL It is seen that the spatial Variability of 
the water velocity originates from that of 6 solely. Taking the logarithm of u, 6 = hu, we obtain 
from (3.5-3.8) 

In Eq. (3.9) a and b are constants, whereas the heterogeneity of the Caisson medium manifexts 
in the spatial variabity of Ks and of its logarithm jt. These have been determined in the 
saturated flow experimentsG7 (see also Sect. 2 here). In our modelQ K, is a function of x,y 
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solely. Since we view $ as a mdom variable it is immediately seen that the variance of € is 
related to that of p by the simpk relationship 

(3.10) 

with b given in terms of known co~lstants by (3.9) and with up = uv=1.2, the latter being the 
value identified from the saturated flow experiments"7 (see Sect 2). 

(iv) The transport model. 

The transport model9 follows closely the one of satuxated flofi7 (Sect. 2).The resident 
concentration is given (see. Eq. 2.3) by 

(3.1 1) 

where Co is the solute concentration in the fluid sprinkled on the caisson top, At = T = 6 days is 
the pulse duration, q is the constant specific discharge and u is the variable pore velocity. This is 
different from (2.3) in which q (2.1) was ako variable. This, of course, reflects the different 
boundary conditions in the two cases. 

We now have for the solute flux and cumulative mass through the caisson cross-section 

(3.12) 

t 

t 

Z 
u 6(z-uf) dt' dx dy = Co At q IjT - ;) dx dy 

0 
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similarly to (2.4, 2.5). Assuming that = lnu is normal of variance ut (see Eq. 2.6), computations 
similar to those of Sect. 2, Eq. (29), lead to the following results for the expected value of the 
cumulative mass 

(3.13) 

where (u) = exp(mt+ut2/2) and 7 = t(u)/z, precisely as in (2.8). 

bivariate normal (E-q. 2.7), computations similar to those of Sect. 2 lead to 
By the same token, assuming that ,$ at two different points in the caisson cross-section are 

-a 

(3.14) 

(3.15) 

where a is the same as in (2.11) whereas p( = pCc is the correlation coefficient of logvelocity, and 
therefore of InKs, at two points. The final result for (Mqz,t)) is give now by 

(3.16) 

0 

where B (see expression after 2.12) results from Cauchy algorithm. Eqs. (3.16) and (3.13) render 
the coefficient of -tion cvM(z,t) = [(M2)/(h4)2-1]J2 in the unsaturated flow experiments 
interms of two quadratures over X and r respectively. 

(v) Comparhn with measured mass arrival at the outlet. 
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Following our methodolog~7 for saturated flow experiments (sect. 2), we assume ergodicity 
and exchange the computed expected value of (M)/M (3.13) with the one measured in the 
affluent (Fig. 8). By moving the origin in Fig, 8 by T/2=3 days (the midpoint of the pulse 
application) and taking z=L=564 cm for the depth of the outleP7 we have identified by a least- 
square procedure the best values of (u) and uc which minimize the difference between the 
computed (3.13) and the measured (h4)/Mo (Fig. 9). The best-fitted theoretical and measured 
curves are represented together in Eig. 9. The value of the squared difference between the 
curves was quite low and equal to 0.018. The resulting optimal values were 

0 

(u) = 15.9 cm/day ; u{ = 0.08 (3.17) 

Since direct measurements of the conductivity were not available, the validity of our model 
can be assessed by (i) comparhg (u) (3.17) with the measured averages (3.4) and (ii) by 
comparing uc (3.17) with (3.10) based onthe saturated flow experiments. It is Seen that (u) (3.17) 
is somewhat larger than the average u=15.1 cm/day. The computed value of u (3.10) with 6 
d . 7 5 ,  @=3.5 and up=12 (the latter from the saturated flow analysis6y7) is uc = 0.194 whereas 
the optimal one (3.17) is ut = 0283. In view of the numerous simplifications adopted in the 
theoretical model and of lack of data for the various coefficients, the results can be considered 
as satisfactory. 

It is emphasized that the variance of In8 is equal to that of < in our simplified model, 
according to (3.8). However, the inferred 0 ~ 4 2 8 3  (3.17) from the transport model is much 
larger than uld=0.068 (3.3) inferred from measurements Df 8. This large discrepancy is attributed 
at present to the insufficient sampling of 8 on one hand and on the neglection of additional 
sources of variability of the velocity, e.g. variability of a, presence 8;. and three-dimensional 
effects, on the other. These conjectures have to be elucidated in future experiments. 

(vi) Estimates of coefficient of variation of mass arrival. 

Since measurements of Ks which could permit one to infer its spatial structure were not 
available, we have p&ed like in Sect. 2 and evaluated CVM in unsaturated transport for 
various ratios between the caisson diameter d and the logvelocity integral scale I. This time we 
used the variance ut = 0.08 of (3. 17) in the theoretical expression (3.14). The results of these 
computations are presented in Fig. 10 for CVM as function of T and for different d'=d/I. In Fig. 
11 we present (M)/M and bounding curves for 95% interval of confidence, where (M)/Mo is 

0 
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given by (3.13). F d y ,  in Fig. 12 we represent the product CVw2 which does not depend 
on d' for d'>>l (see sect. 2). fig. 11 shows clearly that the uncertarn * ty of M is much smaller 

than the corresponding one for satuxated flow (Fig. 21, due to the smaller logvelocity variance. 

The uncertainty is quite small even if 8-40, i.e. k75 cm and will be even smaller if three- 
dimensional effects axe accounted for. 

4. S m a r y  and discusion of results. Recommendations for future expriments. 

The aim of the analysis of the caisson experiments of transport of a conservative solute in 
saturated and unsaturated experiments was to identify the spatially variable properties of the 
medium which led to the e n h a n d  spreading of the solute as compared to that resulting from 
pore-scale dispersion. Toward this aim we have adopted a simple transport modelg, motivated by 

the observed linear growth of the equivalent dispersivity with The basic transport 
modelg, which approximates the actual stremtubes by a bundle of vertical columns and assumes 
heterogeneity in the horizontal plane only, has been recently found to be quite accurate for 
transport in the upper soil Iayer14. Genetally, the experimental verification and validation of the 
model requires the independent measurement of the spatial distribution of permeability and of 
solute concentration at a large number of points and times. In the Caisson saturated flow 
experiments only concentdon measurements were available. Hence, the model has been applied 
in an inverse appruach, namely by identifying the heterogeneous structure from solute mass 
arrival at different cross-sections. The model performed well67 in depicting the mass arrival 
curves, unlike the one assuming a constant effective dispersivity. In the present study (Sect. 2) 
we have examined the impact of the ratio between the caisson diameter and the permeability 
correlation scale m the horizontal plane on the variance of the mass a m i d  The main conclusion 
is that this ratio has to be larger than say 100 to warrant the ergodic assumption, i.e. the 
approximate equality between the mass expected value and its one realization value. 

The same vertical columns model9 has been applied to transport in the unsaturated flow 
experiments. This has been supplemented by a shpWkd gravitational flow model and has used 
the results of the saturated flow analysis. A fair agreement was found between parameters 
identified by the inverse p d u r e  applied to the effluent concentration and thase measured 
(mean velocity) or inferred (logconductivity variance). 

One of the striking results of the experiments and analysis was the much smaller dispersion in 
the unsaturated flow than in the saturated one. Indeed, the logvelocity standard deviation was 
approximately 028 in the fmt  and 1.2 in the latter. This difference for the same medium is 
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clearly explained by the model: in the saturated flow experiments the boundary condition was of 
constant heads applied at the Caisson ends and the velocity in our model was proportional to the 
saturated hydxaulic conductivity which has the above large variance; in contrast, in the 
unsaturated flow experiments the boundary conditionat the top was of applied constant flux 
which was preserved all over the caisson in our model, the only some of velocity variability 
being the change of the moisture content in space. The variation of the latter with the saturated 
conductivity is much weaker. This experimental finding comborated by a theretid model has 
far-reaching implications for field applications in similar conditions. 

Future caisson experiments should comprise a thorough scanning of the permeability point 
values throughout the space in order to characted its spatial structure independently of 
transport. As a starting point, the number of statiom and their distribution should be based on 
the need to estimate with a small error the mean, variance and integral scales of logpermeability, 
assuming that the medium wiU have the same logpermeability variance as in the former 
experiments. 
In the same vein the number of stations for measuring solute breakthrough curves should be 

at least equal to that in the previous saturated flow experiments to permit estimating the mass 
arrival curves at a few crm-sections. This is particularly true for reactive solutes for which part 

of the mass is not recovered The major role played by the effluent concentxation should be 
accounted for by its careful monitoring, avoiding as much as possible the delay effect of the 
conical section at the bottom. Finally, in the case of unsaturated flow conditions there is a need 
for a better coverage of the spatial distribution of moisture contents, as well as for measuring the 
characteristic curves (moisture content-matric potential and moisture content-hydraulic 
conductivity) for a sufficiently large number of samples of the Caisson materid 

Future caisson experiments may offer an opportunity to test the accuracy of stochastic 
transport modek under controlled conditions which are not generally available in the field on one 
hand and at a scale much larger than that of ordinary laboratory columns on the other. 



- 16-  

References 

1. Nyhan, J. W., W. L. Polzer, E H  Essington, E. Cokal, L. Lane, E. Lopez, E. S W g s  and R. 
Walker, A joint DOE/NRC field study of tracer migration in the unsaturated zone, LA- 
10575-h4S, Los Alamos National Laboratory, 1986. 

2. Fuentes, H. R., and W. L. Polzer, Interpretative analysis of date for solute transport in the 
unsaturated zone, NUREG/CR-4737, U. S. Nuclear Regulatory CommissSion, 1986. 

3. Polzer, W. L., E. H. Essington, H. R Fuentes and J. W. Nyhan, Compilation of field scale 
caisson data on solute transport in the unsaturated zone, NUREG/CR-4720, U. S. Nuclear 
Regulatory CommissSion, 1986. 

4. Springer, E. P., and H. R. Fuentes, Editors, Mdelling study of the solute transport in the 
unsaturated zone, Workshop Proceedings, NuREG/CR4615, LA-10730-h4S, Vol. 2, Los Alamos 
National Laboratory, 1987. 

5. Fuentes, H. R, W. L. P o k r  and E. P. Springer, Effects of influent boundary conditions on 
tracer migration and spatial variability features in intermediate-scale experiments, NUREG/CR- 
4901, U. S. Nuclear Regulatory CommissSion, 1987. 

6. Dagan, G., V. V. Nguyen and E. P. Springer, Analysis of transport in the upper soil layer and 
interpretation of the caisson experiments, Focus 8 9  Nuclear waste isolation in the unsaturated 
zone, Las Vegas, 1989. 

7. Nguyen, V. V., G. Dagan, and E. P. Springer, Analysis of caisson transport experiments by 
travel time approach, in "Field-Scale Solute and Wder TranspoH through Soit' K. Roth, H. 
Fluehler, W. A. Jury and J. C. Parker Eds., Birkhauser Verlag, Basel, 1991. 

8. Dagan, G., Flow and Transport in Porous Formations, Springer-Verlag, 465 p., 1989. 

9. Dagan, G. and E. Bresler, Solute dispersion in unsaturated heterogeneous soil at field scale i: 

Theory, Soil Science Soc. of Am. Journ., 43(3), 461-467, 1979. 

10. Abramowitz, M., and I.A. Stegun, Handbook of Malhematid FWions, Dover, New York, 



- 17- 

1965. 

11. Brooks, R H. and A. T. Corey, Hydraulic properties of porous media, HydroL Paper No. 3, 
Colorado State Univ., Fort Collins Colorado, 1%. 

12. Abeele, W. V., Hydraulic testing of crushed Bandelier tuff, LA-10037-h4S, Los Alamos 
National Lab., 1984. 

13. M i e n ,  E A. L., Porous Media : Fluid Transport and Structure, Academic Press, New York, 
1984. 

14. Protopapas, A. L. and R L. Bm, The one-dimensional approximation for jnfiittation in 

heterogeneous soils, Water Resour. Res., 27, 1019-1027, 1991. 



- 18 - 

Figure captions 

Fig. 1 The coefficient of variation CVM = [(M2)/W2 - 11 (Eq. 2.10) of the solute mass arrival 
as function of the dimeionless time et(u)/z and for different d'=d/I (caisson diamter/logveIocity 
integraI scale) under the saturated flow conditions. 

Fig. 2 

95% interval of confidence of the solute mass arrival. 
Like Fig. 1 for the expected value (V/M (Eq. 29, solid line) and bounding curves at 

0 

Fig. 3 Like Fig. 1 for the product CV&.d'2. 

Fig. 4 
in the first iodide experiment in unsatuxated flow. 

The cumulative effluent water volume litre) as function of the elapsed time (days) 

Fig. 5 
in the second iodide experiment in unsaturated flow. 

The cumulative effluent water volume litre) as function of the elapsed time (days) 

Fig. 6 
experiment in unsaturated flow. 

The cumulative effluent iodide mass (mg) as function of time (days) in the first iodide 

Fig. 7 
iodide experiment in unsaturated flow. 

The cumulative effluent iodide mass (mg) as function of time (days) in the second 

Fig. 8 The normalized (by the total mass) cumulative effluent iodide mass in the two transport 
experiments as function of time (day) from the beginning of the solute pulse at the caisson top. 

Fig. 9 Same as in Fig. 7 (solid lines) and the theoretical solution (eq. 3.13, dashed line). 

Fig. 10 The coefficient of variation CVM = [(M2)/(M)2 - 11 (Eq. 3.16) of the solute mass 
arrival as function of the dimesionless time T=t(u)/z and for different d'=d/I (caisson 

diameter/logvelocity integral scale) under the unsaturated flow conditions. 
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Fig. 11 Lke Fig. 10 for the expected value 
at 95% interval of confidence of the solute mass arrival 

(Eq. 3.13, solid h e )  and bounding curves 

Fig. 12 Like Fig. 10 for the product CV&i'2. 
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