$\stackrel{\rightharpoonup}{4}$

$10 F$

The Five-Gluon Amplitude and One-Loop Integrals*

Zuni Bern ${ }^{1}$
University of California, Los Angeles
Lat Angeles, CA 90024

Lance Dixon
Stanford Linear Accelerator Center Stanford Diversity, Stanford, CA 9/9eg
and
David A. Kosower ${ }^{\text {t }}$

CERF

Genets, Surizeriand
and
Centre d'Etudes de Sactay
F-9JI9I Guf-sur-Yvette ceder, France

- Aoseruch supported in part by the Department of Energy under grant DE- AC01-765Fu0515

I Sopparied by the Texas National Ressarch Laboratory Combination grant FCF Y9202
 Alomrege of France

Invited talk presented by Z. Bern at Particles \& Fields 92 Th netting of Division of Particles \& Fields of the APS (DPF 92)

[^0]
ABSTRACT

We review the conventions field theory description of the string motivated lectinique. This technique is applied to the one-loop five-gluon amplitude. To evaluate the amplitude a general method for computing dimensionally regulated one-loop integrals is outlined including results for one-loop integrals required for the pentagon diagratn and beyond. Finally, two five-gluon belicity amplitudes are given.

DISCLAIMER

This report was prepared as at account of work sponsored by an agency of the United States GowermmenL Neither the United States Government nor any agency thereof, nor aby of their eosployess, makes any warranty, express of implied, or assumes any legal liability or repporar bility for the ateruracy, completenen, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would rod infringe privately owned rights. Referene berets to any specific comracrial product, process, or service by trade name, itademath, manufacturer, or otherwise does nod arcessarily constitute or imply its endorsement, reconmendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United Slates Government or any agency bersol.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMiTED

1. Introduction

The search for new physics at corrent and future hadron colldiders demards that we first fefine our underslanding of events originating in known phybies, most importantly QCD.associated background proceses. Hecanee the perturbation expansion for jet phystics in QCD is not an expantion strictly in the coupling constent, but is tecther an expansion in the roupling constant times various inffared logarithms, loop corrections pley an important rale in matching thearetical experta:ions to experinental data. Thus far, the one-loop somections are known only for th : most basic processes, matrix elemtents with four external partons.

In order to minimize the algebre required for one-loop computations invalvfnis n external gluons string motivated rules were developed in arf. [1]. Although the mothod wat originally derived from string theory, it has been summarized in terns of simple rulea which require no knowledge of string theory ${ }^{1,2}$. Since string thearies coatain gatuge theories in the infinite string tension limit ${ }^{\text {a }}$ and have a simpler orgacization of the amplitudes than field thoories, s string motivated organization of the amplitude is more compach than a traditional Feynman diagram organization.

Here we discuss the applicelion of the atring motivated technique to the contpotation of the fite-gluon amplitude. Thit requires the evaluation of dimentionally regrularized pentagon integrals. The computation of pentagon integrals in the case in which all internal lines are massive has been discussed by various authors'. In particular van Neerven and Vermaseren have prosided an efficient method for calculating suth integrals in four dimensions. The techniques of vas Neerven and Vernaseren do not apply directly to dimensionally-regularized integrala, however, and the requited pentagon integrals have not yet been presented in a closed and uraful form, which is to say with all poles in $s=(4-D) / 2$ manifert, and with all functions of the kinematic invariants expregsed is terms of (poly)logarithms. Here we will provide a formula which yields such expressions." We aleo present \& gencral so ution for one-loop integrals beyond the pentagon.

2. Review of String Motivated Methads

The string motivated rules evaluate a one-loop n glwan amplitude in terms of ubstitution rules acting on a basic kinemalic expression. In refa. [1.2] the yubstitut cn rules necesgary to obtain the values of all diagrams associated with a one-doop n-gituon amplitude have already been given. Here we will not present the rules
 by vi imdppescent tedmigur
but will instead briefly review the interpretation of the rules in tenms of coriven. tional fietd theory. The çopteotional field theory idens pecessary to reproduce the simplicity of the tring areb;
a) Dse of basteroond field gauge. Calculations in QCD have ttaditionally been performed in ordinary Feynman gauge Perbaps a reason why tle background field method' has not been used for gluon amplitudes is that it inherentiy seems to be a method for computing effective actions and not seattering amplitudes. However. as shown a number of years ago by Abbatt, Grisaru and Scharffer', the beckgromed feld method can in fact be used for S-matrix computations; one simply sews trees onto the loops in some other gauge to oltain the S-matrix ehments. In the background field Feynman gatuge, vertices can be organized to mimic the simple stracture inherent in the atring motivated rules leading to large simplifications for QCD amplitudes. A convenient gauge for sewing trets onto the loops is the nonlinear Gervais-Nevel gauges (which was aloo motivated by string theory) since it has simple verticen.
b) Cotor ardering of pertices. This amounts to rewriting the Yangshills structure conotant as $f^{\text {abe }}=-i \operatorname{Tr}\left(\left[T^{*}, T^{\natural}\right] T^{c}\right) / \sqrt{2}$ and then eveluating the coefficient of a single eolor trace ordering . String theory motisates the use of a $U\left(N_{e}\right)$ genge group insted of an $S U\left(N_{c}\right)$ gauge group; the extra $U(1)$ decouples but the relevant color algebra is much simpler for $\theta\left(N_{e}\right)$. A full description of the one-loop color decomposition has been given in ref. [10].
t) Systeratic organitation of the verter algebra, In order to minimize the werk involted, it is important to organive the vertex algebra in a partieular systematic fashion. Because of the way in which the loop momentumenters into the beckground feld vertiver it turns out that the integration over loop momentuan is trivial. In convencional gauges or other background fied gauges the loop momentum enlers into the vertices in a much more complieated way, nat aliowing a simple systematic organization. Once the amplitude has been writem in a form where the loop momentum is integrated out, one can use the spinor belicity method't to simplify the expressions.

Given this field theory underatanding of the string motirated method one might conclude that string theory is no longer reouired. This, however, misters the point behind the use of string theory the point is that string theary guides computational organizations of gauge theory aruplitudes where efficient organizations of the amplitude are unknown (as the one-loop case bas prior to string motivated methods). Further exapaples where string theory provides useful ingight which would
be difficuil to obtain by conventional means are extensione to multi-loope and calculations of gravity amplitudes's. Even with all hown field thoory tricks such as spinor helicity methods and special gange choices, in a conventional framework it is difficult to envision the compact organization of the amplitudes implied by atring theory.

3. One-Loop Integrala.

The integrai we wish to evaluate is the n-gon with general kinematics, whose momentum-space definition is
where $\bar{P}\left(p_{n}\right)$ is a polynomial in the loop momentum and where we take $p_{1}^{\prime \prime}$ 三 $\sum_{f+1} k_{F}^{4}$ and $k_{1}^{2}=m_{+}^{2}$ with the k_{1} momenta of exteral particies. For QCD, $m_{1}=$ $M_{4}=0$. In the $\mathfrak{k v e}$ point cast, after Feymati parametrization the integral becomes

Following't Hooft and Veltman', we make the change of varisbles $a_{1}=\alpha_{1} t_{1} / \sum_{j=1}^{n} \alpha_{3} u$, (no sum on :] where

$$
\begin{equation*}
A_{1+1}-M_{1}^{2}-M_{1+2}^{2}=-\frac{1}{O_{1} \dot{B}_{1+7}}, \quad m_{1}^{T}-M_{1}^{T}-M_{1+1}^{2}=-\frac{\dot{m}_{1}^{2}}{a_{1} a_{1+1}} . \quad M_{1}^{2}=-\frac{\dot{M}_{1}^{2}}{a_{1}^{2}} \tag{3}
\end{equation*}
$$

so thes

The key obseruation is that this integral ean be expresed in terms of derivatives acting on the scalar integrail

$$
\begin{equation*}
I_{5}\left[\mathcal{P}_{\mathrm{m}}\left[\left\{\alpha_{2}\right]\right\}=\frac{\Gamma(2-m+2 c t}{\Gamma\{2+2 c)} \quad P_{\mathrm{m}}\left(\left\{a_{0} \frac{\delta}{\partial_{1},}\right\}\right) \quad t_{\mathrm{f}}[1]\right. \tag{5}
\end{equation*}
$$

where P_{m} is a hamogeneous polynomial of degree mand the normal ordering siganties that all the α_{1} should be brought to the left of the derivatives. This equation and its exteosions forms the basis for obtaining all the tensor integrads as derivatives of the: scalar integral and for a differential equation method for evaluating integrels'3.

In order to use this equation we need the solution of the pentegon scalar integrel. The general recursive shution for $n \geq 5$ exterand lags is
where $f_{*-1}^{(0)}[1]$ is the ($n-1$)-point scalar integral obtained by removing the internal
 is the rescaled Gram determicant (with $i, j=1 \cdots, n-1$). For $n=5$ the a, are defined in EA. (3). In this case the last term in Ef. (6) is suppressed by a power of csince the $D=6-2 \varepsilon$ scalar pentagon. $I_{s}^{D=6-2 i}[1]$, is completely finite. Thus, the explicit value of $f_{5}^{D=6-3 t}[1]$ is not needed. (It also turns out thet it is not needed when applying the differentiation formula (5).) For $n>5$ the last term tarishes for four-dimensional exteral kinematics due to the vanishing of the Gram determinant. In this way we obtain a recuraive solution for all one-locop sealar integrals in terms of the bor integrals (which are relatively easy to etaluate). The overall normalization is $N_{n}=2^{n-1}$ det ρ where $\left.\rho_{y}=-\frac{1}{2}\left(t p_{p-1}-p_{1-1}\right)^{2}-M_{1}^{2}-M_{7}^{7}\right) a_{\mathrm{t}} \mathrm{o}$, is independent of the a, when converted to rescaled variables analogous to the pentagon oncs in Eq. (3). For the massless pentagon $N_{s}=1$. This solution exterudo ran Neerven and Vermaseren's ${ }^{4}$ four-dimensional pentagon sulution to dimensionai rugularization and arbitrary numbers of external legs.

Obe way to verify the sotution (6) for a particular n is is considering the integral (1) with an inverse propagator in the nume:ator This metegral can be evaluated as either an n-point integral or at an ($n-1$)-point tategras By comparing the two forms and summing arer cyelic permutations with eoefficients cobtained fr sum the solution (6) one can terify its correctness after using $\sum_{n=1}^{n} a_{1}=1$. A getee A^{\prime} proof will be given elsewhere'3.

4. Explinit Results for Amplitudes

For five-point amplitudes a strightlorward use of the spinor helicity method is cumbersome. By rewriting ratios of spinor imner products in terms of more con. ventional kinematic variables and the square-root of the pentagon Gram determirant the spinor helicity method becomes more usable ${ }^{11}$. The tive gluon arplitudes ean then be obtained by applying the string motivated tectriquer and using the solution for the pentagon integral. By following this protedure we have obtained
the two finite five－gluon one－ioop $S U\left(N_{c}\right)$ partinl amplitudes：

$$
\begin{aligned}
& A_{\mathrm{B}, 1}^{1-\log }\left(1^{+}, 2^{+}, 3^{+}, 4^{+}, 5^{+}\right)=\left(1+\frac{5}{2} N^{2+4}-N^{n+4}\right)
\end{aligned}
$$

 fermions．（Fundamental representation fermions or scalars require an additiona！ factor of $1 / N_{\mathrm{c}}$ ．）We follow the same notation and normalizations is in refs．［1．2］． ＂＂he corresponding double trace $A_{5 ; 3}$ pariial amplitudes follow from the formular in ref．f10｜．These amplitudes gatisfy the relevant supergymmetry Ward identities ${ }^{14}$ （which are satisfied trivially since they hold for the integrand of each string moti－ sated diagram）．The remaining helicity antplitudet will be prescried elsewhere．

In summary，the string motivated organization of the r－gluon amplitude plays a major role in simplifying the coraputation of the five－gluon one－loop am－ pritude．Additional ingredients which allow the computation in be performed are simple formulae for the relevant one－loop integrals and a yewritiog of spinor－helicity i：ivariants in terms of more conventional kinematic quantities．These issucs will be Fresented in detail elsewhere ${ }^{13}$ ．

The work of Z．B．was supported by the Texas National Research Laboratory Commigsion grant FCFYa202 while the work of L．D．was supported by the US Department of Eacrgy under grant DE－AC03－76SFO0515．

3．References

I．Z．Bern and D．A．Kosower，Nacl．Phys．B379（1992） 451.
3．Z．Bern and D．A．Kosower，in Proceedings of the PASCOS．91 Sympasivm，edo P．Nsth and S．Reucroft；Z．Bern Pitt－92－05．to appear in Phys．Lett．B．

3．J．Scherk，Nucl．Phys． 8181 （1971）227；A．Neveu and J．Scherk，Nucl．Phys． B36（1972）155；M．B．Green，J．H．Schwarz and L．Brink，Nucl．Phys．B198 （1982） 472.

4．©．＇t Hooft and M．Veltrman，Nucl．Phys B153（1979）365；W，van Neerven and J．A．M．Vernazeren，Phys．Lett．137B（1984） 241.
5．Z．Berr，D．C．Dupbar Nuci．Phys．B37e（1992） 562.

6．L．F．Abbott，Nuci．Phya．B185（1981） 189
7．L．F Abbotr，M．T．Griseria and R．K．Schaeffer，！－I．Phys．B229（1983） 372.
8．J．L．Gerwis and A．Neveu，Nucl．Phys．B40（19；2）38\％．
9．M．Mangano，S．Parke，and Z．Xu．Nutl．Phys．E298（1988）653；M．Mergano and S．J．Parke，Phys．Rep． 200 （1901） 301
10．Z．Bern and D．A．Kosower．Fucl．Phys．B362（1991） 389.
11．F．A．Berends，R．Kleiss，P．De Causmanker，R．Gastmans，and T．T．Wu， Piyss．Lett．103B（1981）124；P．De Causmaeker，F．Gastmang，W．Triost， and T．T．Wha，Nucl．Phys．B208（1988）53；R．Kleins and W．J．Stirling， Xicl．Phys．B262（1985）235：J．F．Gunion and 2．Kunszt．Phys．Lett．161B （1985）333：Z．Xu．D．－H．Zhang and L．Chang，Nucl．Phys．B2日1（1987） 392.
12．F．A．Berends．W．T．Giele，H．Fiuje，Phys．Lett． 21 IB（19大今s： 91.
13．Z．Bern，L．Dixan and D．A．Kosower，in preparation．
14．N1．T．Grisara，H．N．Pendeton，Nucl．Plyys，$⿴ ⿱ 冂 一 ⿱ 一 一 厶 124$（1972）81：S．i．Parke．T．R Taytor，Phys．Lett． 157 B （1985）Es．

ses

[^0]: Batavia, IL, November 10-14, 1992

