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ABSTRACT

We review the conventional ficld theory description of the atring motivated
technique. This technigue is applied to the oneloop five-gluon amplitude. To
evaluate the amplitude a geners] method for computiog dimenzicnally regulated
one-loop integrals is outined including results for ooe-loop integrals required for
Lhe pentegon diagratn and bevond. Finally, twe five-gluon belicity ampliludes are
given.
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epce heretn w any spocific commerzial product, process, of service by trade name, irademark,
manulectuter, or atherwise does ool accossarily cmstitute of imply its cpdorsement, recom-
mendation, or favoring by the United States (Government or any agency Lhersol. The views
and opitiont of authors cxpresed herein do nol pecessarily stare or reflect those of the
United Stales Government or aay ageocy el

DESTRIBUTION OF THIS DOCUMENT IS UNLIMITED

2

n'r"?-
ri K. f

'|i

1..-_--.4-“



1. Introduction

The search for new physics at current and future hedron colliders demands
that we first refine cur understanding of events eriginating in known physics, mest
impoctantly QCD-associsted background procsises, HBeemuwe the perturbation ex-
pacsion fer jet physics in QCD is not an expantion strictly i the coupling con-
stant, but i tather an txpensiom in the roupling constant limes various inlaced
lngarithms, loop correclions play an imporiast role in matching thearetical expec-
te lons (o experimental dats. Thus far, Lhe one-loop corrections are known only for
1h : most basic processes, metzix slements with fowr externel partons.

la order t¢ minimize the slgebre requited for one-loop computations invaly-
iopt n external gluons string motiveted tules were developed in refl [1], Although the
method wms oginally derived from string thoory, it has breen summanzed in lerms
of simple rules which require no knowledge of string theary'-*. Sines string theories
contain pauge (heories in the infinite string tepsion limit® and bave a simegpler or-
gatization of the smplitudes than ficld thoories, s string motivated ocganization of
thz emplitude is more compact than a traditional Feynman diagram orgamzation.

Here we discuss the applicelion of the 3triog motivated Lechiique to the coni-
putation of Lhe five-gluon amplitude. This requizes the svaluation of dimcosonally
reypularized pentagon integrals. The computzlion of peotagon int#grale o the case
in which sll interoe! lines ere massive has besan discussed by varions authors'. In
particalar van Neerven and Vermaseren have provided an efficient method for cal-
culating such integrals in four dimensions. The techniques of vam Neerven and
Yirmeseren do not apply directly to dimensionelly-regularized integrals, however,
mnd the reguited pentagon miegrals have not yet besn presented in 8 cicsed and
useful form, which is to say with all poles ip ¢ = (¢ — D)f? manifeat, and with ai}
fuacrions of the kinematic invariants expressed i termes of {poly logarithme. Here
wi will provide a formula which yields such expressions.* We alic present a general
g6 ution for one-leop integrals bevond the pentagon.

2. Review of String Mativated Metheds

The string motivated rules evaluate 8 coe-loop A gluon ampliiude in terms of
ubstitution rules acling on & basic kincmalic expression. o tefs. [1.2] the substitu-
t.cn rules necegsary to obtain the values of all dingrams associated with 2 oo loop
- zlyon amplitude heave slready been given. Here we will not present the rulss

"We have been wionmed Lhat B K. Elis. W, Gile and E Veludai have recently evghuated the protagon. inde grale
by »n iredepeocent Leckmagae

but wil] ingread boiefly review the interpretation of the rules in terms of conven-
tional field theory. The copventional ficld theory idens pecessary te reproduce the
simphcity of the string wret;

e} Dot of bachyroond field gauge. Coleylalions in QUD have traditically been per-
formed in ordinary Feynman gauge Perhaps a renson why 1le background field
method" haz not beep used for gluon amplitedes s that it inhevently seemns (o be
a rmethod for computing cffective actions and not scastering emplitudes. However.
as shown a number of years mgo by sbbatt, Gdsarn mnd Schareffer®, the back-
ground ficld rmethod can in Tact be used for S-matrix computetions; one sunply
sewrs trees onto the loops in some other gauge to oltain the Samatrix elements, In
the background field Feynman gauge, wrtices can be crganized 1o mimdc the simple
stroctare inherent in the gtring motivated rules leading to large simplifications for
QUCD amplitudes. A convenient gauge for sewing trees onte the loops is the nop-
linepr Gervais-Heveu geuge* (which wes also motjvated by siring theory) since it
has gimple verijces,

&} Celor ovdering of wertices. This smounts to rewriting the Yang-Mills structure
constant az [ = _¢Tr([T*, TH 71/ F and Lhen evnluating the coefficient of a
singls eolor trace ordering®. String theory motivates the yse of a LN, gruge
group metead of an SU{N. ) gauge group; the extra I{1) decouples but the relevant
eolor algebra is much simpler for ©/(AL) A& ful] deseription of the one-loop eolor
decomposition has been given in ref. [10].

¢} Spstematic ergenizadion of the wverter algefre. In order to minimize the work
inveleed, it is important to organize the vertes algebra in a particular systematic
fashion. Becauvse of the way in which the loop momentuam enlere into L he background
ficld wertices it turns out that the ntegration over luop momeniwg is tivial, Io
cerwencional gauges of other background ficld gauges the loop momeotum enles
inta the vertices in 2 mueh more complicated way, nat aliowing a simple systematic
crgamzation. Once the amplitude has baen writlen in a form where the loop mo-
menlwm i3 integrated out, one can use the spinor helicity method'® to sienplify the
CAPTEATIONS.

Given this feld theory undertanding of the siring motivated method one
might conclude that stong theory 35 no longer ceouired. This, however, miseas the
point behind Lthe nse of string theory - +he point is that steing theary guides computa-
tional organizations of gauge theory aniphitudes where efficient organizations of the
azplitude are unaknown (a8 the oneloop tase was prior Lo string molivated math-
ods). Furthe ctamples where stong theory provides vsefu] insight which would



b dificmit to obtsin by coprentionel means are extensionn to multi-loops and zal-
culations of pravity amplitudes’?, Even with sll known ficld theory tricks such as
spinor helicity methods apd special gauge choices, in & conventionel fremeweck it is
dificult to epvision the compact orgamizstion of the amplitudes implied by stong
theory.

3. Quoe-Loap Intepralas.
The integral we wish to avalusts is the n-gon with general kinematics, whose
momentum-space definition iz

&' Fip)

b= e | M G

ware P{p_] is a polynomial in the leop momentum and where we take pf =

;ﬂi;’ and kf = m! wilk the k, mometa of external pacticles, For QCD, m, =

M, = 0. In the fve point case, after Feynman parametsization the integral becomes
T3+ )P {280 — 0]

b
LlPta)] = | d. '
5 j (= ((tnms = M2 = M, b0 (= 467 = W3 s = A7) [
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Following "t Hooft and Veltman®, we make the change of varisbles 0, = o, f 7 oy u,,

[ne sum on ¢] where

1 T Ard
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The kev chservation is that this integral ran be expreesed 1o tertts of dervatives
agting on the scalar integral

Pt )= o2 Pn.({n.%}) Ei1) (5]

wliere Py iz & hamogeneous polymoniiel of degree m and the normal ordering sigmiics
that all the & should be brought to the left of the derivatives. This equatien and
its extensions forms the basis for oblaining all the tensor integrals as dervatives of
the sealnr integral and for a differential equation methed for evaluating intepralel?,

In opder ta use this equation we need the solution of the peotepon scalar
integral. The gersral recursive wlution for n 2 5 externnl lagn in

1 [1= A . 5
I‘I]I = E[EEH‘% -, e BT * 'Edll Toim=da ﬁﬁf-p“-"m;f (u}

where £, [1] ia the (n ~ 1}-point scalar integral shinined by temoving the internal
propagator between legs @« 1 end i [defined med n), Ay m det[2k, « k) x [, of
is the rescaled Gram determipant (with 6, =1---,n —1). Forn = 5§ the a, are
defined in Eq. (3). In thie ease the last term in Eq. (G} is suppressed by a power of
¢ since the [} = 6 — % sealar pentagon. JP""[1], is completely finite. Thus, the
explicit value of FE=5-[1] is not needed. (It aleo turmns out that it is mot meeded
when applying the differentiation formuls (5).) For n > § the Iast termy vacishes for
four-dimenstonal externed kinematica due to the vanbang of the Gram determiinant.
In this way we obinin a reeuraive solution for all sne-loop sealnr integeals in terms ol
the box integrale {which are relatively casy to eealuate], The aversll sermalization
g M. = 271 den p where o, = 5Py — 8107 — M7 — Mo, i mdependent
of the &, when converted to rescaled wariablet analogous to the pentagen onee m
Eq. {3}, For the magsless pentagen M = 1. This selution extends ven MNeerven and
Vermaseren’s! four-dimensional pentagon solution te dimensiona ropularization and
arbitmary oumbers of exieraal ]cg_s.

Ome way to veofy Lthe solution (8] for » particular n o+ by considerng the
integral {1] with an inverse propagator in the numesior This integral can be
evaluated a5 eilther an n-point integral or as an {n —1)-point uiegral By compering
the twa forms and surming ever cyelic permutations with coefficients obtained from
the solution () one can vedly its cormeetness after using T, 2, = 1. A gensis’
proof will be given elsewhere™.

4. Explicit Results lor Araplitudes

For hvt-point azplitudes a steaightlorward use of the spinor helicity methed
is rumbersome. By rewriting ratios of spinor tener praduocts i terms of more con-
veational kinematic varables and the square-rect of the pentagon Gram determi-
rant the spinor helicity method becomes more nsable!!. The five gluon amplitudes
can then be obizined by applying the string motivated techniques and using the
solution for the pentagon iotegral By following this procedure we have ohtained
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ihe two finite five-gluon ooe-loop SE(LY, ] partinl amplitudes:

R Rt L LR AT (R ;”-""’ - ¥
0 (v [1F 423} 23] + (46] 55 0[5 0]+ (23} M 3 [25][34]
T NRERENEREY
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where N2 and N/ are the number of adjoint massiess real scalars and Weyl
fermicns. [Fundamental ceprescntation farmicns or scalars require an additionab
faclor of 1/¥..)] We follow thr same netation and nommalizations og o refs. |1.2),
"he corresponding dowble trece 4:; partiel amplitudes [ollow Tom the formulaes
in ref. [10}. These amplitndes seticfr the relevant supersymmetry Ward identitiesH
(which are satisfied trivially since they hold for the mtegrand of each string mati-
vated dizgrem ). The remaaming helicity amiplitudes will be prescnied elsewhere.

!

In summary, the string motivated scganization of the n-glion amplitnde
plays a mejor tole in simp]ifying tha cornputation of the ﬁ'm-Ell,u;m one-loop Am-
plitude. Additicnal ingredients which elow the computation 1o be performed wre
simple formulas Jor the relevant one-loop integrals and & rewditiog of spiner-helicity
Lvariants in terms of maote comventional kinematic quantities, These issucs will be
presented in detail elsewhere!?,

The work of Z.E. was support=d by the Texas National Hesearch Laboratory
Clomminsion grant FCFYA202 wrhila the work of LD was supporied by the U4
Depariment of Enerpy under grant DE-AC03-TESFO0E1S,

5. Referetices
L. % Bern and D. A, Kosower, Nocl. Phys. BaT9 {1992) 451,

. &, Bern and D, A Kosower, in Proceedings of the PASCOUS. 31 Symipasivm, #ds.
F. Math and 5. Reucroft; Z. Bern, Pitt-32-05. to appear in Phve. Lett. B.

3. ). Scherk, Nuel Phys. BA1 (1971} 227; &4, Neven and 3. Scheth, Nucl. Phys.
B3g {1972} 155; M. B. Green, J. H. Schwarz and L. Brink, Nucl. Phy=. Bi9&
(1982} 472.

. G5t Hooft and M. Veltroan, Hucl. Phys. B133 {197%) 365, W, van Nesrven
and J. A, M. Vernmaseren, Plys. Lact, 137H (1984) 241,

5. 2. Bern, 0. €. Dupbar, Nuel, Phys. B3T0 (1092) 562,

6. L.F. Abbott, Nucl. Phys. B28S {1081} 185.
7. L.F Abbott, M.T. Grisaru and R K. Schaeffer, - el Phys. B229 [{1983) 572,
8. J.L. Gervais mnd A, Nevew, Nucl. Phys. B8 {1952} 381,

9. M. Mangano, 3. Parke, and 2. Xu. Nucl. Phys. 3298 (1088} 653; M. Mengono
and 5.), Parke, Phys, Rep. 200 (1931) 201

10, & Bern snd ILA. Resower, ¥ucl, Phys, B3G2 (1991 ] 380.

11. ¥. A. Herends, Q. kleiss, . De Causmaccker, B Gastmans, and T, T. W,
Plivs, Lett. 303B [1381) 124; P De Causmacker, R. Gastmans, W, Troost,
and T. T. Wi, Mucl Phys. B208 {198%) 53; B. Kleiss and W, J. Stirlieg,
Sucl. Phys. B262 {19585) 215 1. F. Guuion and 2. Kunszt. Phys, Lett, 161R
(1985) 333 Z, Xu. D-H. Zkang and L. Chang, Nuc]. Phys. 201 {1087) 302,

12, F.A. Berends, W.T. Giele, H. Kuijf, Phys. Leat. 2118 [1955: 31,
13, Z. Bern, L. Dixon and DA Kosnwer, in prepamation.

14. ST, Grisarg, H.X. Pendleton, Nuel, Phys. B124 (1877 £1: 5.7, Parke. T.R.
Tayior, Phya Lett. L5TE [1385) B1.









