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ABSTRACT 

We review the conventional field theory description of the string motivated 

technique. This technique is applied to the one-loop five-gluon amplitude. To 

evaluate the amplitude a general method for computing dimensionally regulated 

one-loop integrals is outlined including results for one-loop integrals required for 

the pentagon diagram and beyond. Finally, two five-gluon helicity amplitudes are 

given. 
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1. I n t r o d u c t i o n 

The search for new physics at current and future hadron colliders demands 
that we first refine our understanding of events originating in known physics, most 
importantly QCD-associated background processes. Because the perturbation ex
pansion for jet physics in QCD is not an expansion strictly in the coupling con-
stunt, but is rather an expansion in the coupling constant times various infrared 
logarithms, loop corrections play an important role in matching theoretical expec
tations to experimental data. Thus far, the one-loop corrections are known only for 
t h ; most basic processes, matrix elements with four external partons. 

In order to minimize the algebra required for one-loop computations involv
ing n external gluons string motivated rules were developed in ref. [1]. Although the 
method was originally derived from string theory, it has been summarized in terms 
of simple rules which require no knowledge of string theory1 2 . Since string theories 
contain gauge theories in the infinite string tension limit3 and have a simpler or
ganization of the amplitudes than field theories, a string motivated organization of 
ths amplitude is more compact than a traditional Feynman diagram organization. 

Here we discuss the application of the string motivated technique to the com
putation of the five-gluon amplitude. This requires the evaluation of dimensionally 
rejrularized pentagon integrals. The computation of pentagon integrals in the case 
in which all internal lines are massive has been discussed by various authors4 . In 
particular van Neerven and Vermaseren have provided an efficient method for cal
culating such integrals in four dimensions. The techniques of van Neerven and 
Vermaseren do not apply directly to dimensionally-regularized integrals, however, 
and the required pentagon integrals have not yet been presented in a closed and 
useful form, which is to say with all poles in e = (4 — D)/2 manifest, and with all 
functions of the kinematic invariants expressed in terms of (poly)logarithms. Here 
w< will provide a formula which yields such expressions." We also present a general 
so ution for one-loop integrals beyond the pentagon. 

2. R e v i e w of S t r i n g M o t i v a t e d M e t h o d s 

The string motivated rules evaluate a one-loop n gluon amplitude in terms of 
ubstitution rules acting on a basic kinematic expression. In refs. [1.2] the substitu-

t.cn rules necessary to obtain the values of all diagrams associated with a one-loop 
n-.jluon amplitude have already been given. Here we will not present the rules 

"We have been informed that R.K. EUi», W. Girle and E Yehudai have recently evaluated the pentagon integrals 
by ui indepenoent technique 
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but will instead briefly review the interpretation of the rules in terms of conven
tional field theory. The copventional field theory ideas necessary to reproduce the 
simplicity of the string are5: 
a) Use of background field gauge. Calculations in QCD have traditionally been per
formed in ordinary Feynman gauge. Perhaps a reason why the background field 
method6 has not been used for gluon amplitudes is that it inherently seems to be 
a method for computing effective actions and not scattering amplitudes. However, 
as shown a number of years ago by Abbott, Grisaru and Schaeffer7, the back
ground field method can in fact be used for 5-matrix computations; one simply 
sews trees onto the loops in some other gauge to obtain the S-matrix elements. In 
the background field Feynman gauge, vertices can be organized to mimic the simple 
structure inherent in the string motivated rules leading to large simplifications for 
QCD amplitudes. A convenient gauge for sewing trees onto the loops is the non
linear Gervais-Neveu gauge8 (which was also motivated by string theory) since it 
has simple vertices. 

b) Color ordering of vertices. This amounts to rewriting the Yang-Mills s tructure 
constant as fabc = -iTT{[Ta,Tb]Tc)/\/2 and then evaluating the coefficient of a 
single color trace ordering9. String theory motivates the use of a U{NC) gauge 
group instead of an SU(NC) gauge group; the extra U(l) decouples but the relevant 
color algebra is much simpler for U(NC). A full description of the one-loop color 
decomposition has been given in ref. [10]. 
c) Systematic organization of the vertex algebra. In order to minimize the work 
involved, it is important to organize the vertex algebra in a particular systematic 
fashion. Because of the way in which the loop momentum enters into the background 
field vertices it turns out that the integration over loop momentum is trivial. In 
conventional gauges or other background field gauges the loop momentum enters 
into the %'ertices in a much more complicated way, not allowing a simple systematic 
organization. Once the amplitude has been written in a form where the loop mo
mentum is integrated out, one can use the spinor helicity method11 to simplify the 
expressions. 

Given this field theory understanding of the string motivated method one 
might conclude tha t string theory is no longer reouired. This, however, misses the 
point behind the use of string theory the point is t b i t string theory guides computa
tional organizations of gauge theory amplitudes where efficient organizations of the 
amplitude are unknown (as the one-loop case was prior to string motivated meth
ods). Further examples where string theory provides useful insight which would 
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be difficult to obtain by conventional means are extensions to multiloops and cal

cidations of gravity ampli tudes". Even with all known field theory tricks such as 
spinor helicity methods and special gauge choices, in a conventional framework it is 
difficult to envision the compact organization of the amplitudes implied by string 
theory. 

3 . O n e  L o o p I n t e g r a l s . 

The integral we wish to evaluate is the ngon with general kinematics, whose 
momentumspace definition is 

/ \Piv 11  iiV+1f4*V«i / * p ^ 5 E > (1) 

wiere P(p„) is a polynomial in the loop momentum and where we take pf = 
Ej=i K an<^ tf = m2 with the k, momenta of external particles. For QCD, m, = 
M, = 0. In the five point case, after Feynman parametrization the integral becomes 

W W I I - / * 1 - i 7 'C + 'WfrJW'-C-.) 
•/0 [ E ((*,,*,  Af,3  Af2

2)a,a*2 + (m2  A/,2  M^)a,a^  A/ 2a 2) j 
(2) 

Following't Hooft and Vel tman\ we make the change of variables a, = a,u,/ £"_j a j u j i 
(no sum on i) where 

, , + 1 _A/ , 2  W2 = — , m}-\1? -M* = ^— , A/,2 = -^l , (3) 

so that 

,1 P({a ,u ,} )«(Et i .  l ) ( E ; = i « ; t i 7 ) l _ m + 2 ' 

J° [E?=I (".".43 + m?«.U,4.,  Af,2«2)j 

The key observation is that this integral can be expressed in terms of derivatives 
acting on the scalar integral 

MP„ (w l=n^±H „.({..£}) Mll 

where Pm is a homogeneous polynomial of degree m and the normal ordering signifies 
that all the a, should be brought to the left of the derivatives. This equation and 
its extensions forms the basis for obtaining all the tensor integrals as derivatives of 
the scalar integral and for a differential equation method for evaluating integrals13. 
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In order to use this equation we need the solution of the pentagon scalar 
integral. The general recursive solution for n > 5 external legs is 

'"'"
= M^tr^—-'-""'"

i
"-'

m + f-'+'oA-tf--™] «•> 
where 7„_i[l] is the (n — l)point scalar integral obtained by removing t he internal 
propagator between legs t — 1 and i (defined mod n), A n = det(2fc, ■ k3) x f l ^ i Q,2 

is the rescaled Gram determinant (with i,j = 1 • • • ,n — 1). For n = 5 the a, are 
defined in Eq. (3). In this case the last term in Eq. (6) is suppressed by a power of 
c since the D = 6 — It scalar pentagon. / 5

 = 6 ~ 2 t [ l ] , is completely finite. Thus, the 
explicit value of I^=6~2t[l] is not needed. (It also turns out that it is not needed 
when applying the differentiation formula (5).) For n > 5 the last term vanishes for 
fourdimensional external kinematics due to the vanishing of the Gram determinant . 
In this way we obtain a recursive solution for all oneloop scalar integrals in terms of 
the box integrals (which are relatively easy to evaluate). The overall normalization 
is Nn = 2 n _ I d e t p where pt} = —§((p,i — p.  i ) 2 — A/,2  M2)ata} is independent 
of the Q, when converted to rescaled variables analogous to the pentagon ones in 
Eq. (3). For the massless pentagon A\ = 1. This solution extend* van Neerven and 
VermaserenV fourdimensional pentagon solution to dimensioned rjgularization and 
arbitrary numbers of external legs. 

One way to verify the solution (6) for a particular n is by considering the 
integral (1) with an inverse propagator in the numerator This integral can be 
evaluated as either an npoint integral or as an (n — ] )point integral By comparing 
the two forms and summing over cyclic permutations with coefficients obtained fr j m 
the solution (6) one can verify its correctness after using £" = 1 a, = 1. A geneial 
proof will be given elsewhere13. 

4. Expl ic i t R e s u l t s for A m p l i t u d e s 

For fivepoint amplitudes a straightforward use of the spinor helicity method 
is cumbersome. By rewriting ratios of spinor inner products in terms of more con

ventional kinematic variables and the squareroot of the pentagon Gram determi

nant the spinor helicity method becomes more usable13. The five gluon amplitudes 
can then be obtained by applying the string motivated techniques and using the 
solution for the pentagon integral. By following this procedure we have obtained 
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the two finite five-gluon one-loop SU(NC) partial amplitudes: 

4 i - 'ooP ( 1 + | 2 + i 3 + i 4 + j 5 + ) = (l + Iff^H - JV/*) 

i (12) [1 2] (2 3) [2 3] + (4 5) [4 5] (5 1) [5 1] + (2 3) (4 5) [2 5] [3 4] 
* 4 8 * 2 (12) (2 3) (34) (4 5) (51) 

4^loop(l-.2-t\3+,4\5+)= (l + i.V^ - A/*) 
x ' 1 [ P5]3 (14)3[4 5](3 5) (13)3 [3 2] (4 2)1 

48x» (3 4)2 [ [12] [51] (12)(23)(45)2 (1 5) (54) (32)2J 

where A"^ and N, i are the number of adjoint massless real scalars and Weyl 
fermions. (Fundamental representation fermions or scalars require an additional 
factor of \/Nc.) We follow the same notation and normalizations as in refs. [1.2]. 
The corresponding double trace .4s;3 partial amplitudes follow from the formulae 
in ref. [10]. These amplitudes satisfy the relevant supersymmetry Ward identitiesM 

(which are satisfied trivially since they hold for the integrand of each string moti
vated diagram). The remaining helicity amplitudes will be presented elsewhere. 

In summary, the string motivated organization of the n-gluon amplitude 
plays a major role in simplifying the computation of the five-gluon one-loop am
plitude. Additional ingredients which allow the computation to be performed are 
simple formulae for the relevant one-loop integrals and a rewriting of spinor-helicity 
invariants in terms of more conventional kinematic quantities. These issues will be 
p resented in detail elsewhere13. 

The work of Z.B. was supported by the Texas National Research Laboratory 
Commission grant FCFY9202 while the work of L.D. was supported by the US 
Department of Energy under grant DE-AC03-76SF00515. 
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