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ABSTRACT 

This is final report on the Purchase Order B-192560. It consists of 3 chapters. 

Chapter I contains stability analysis of axisymmetric plasma configurations in 

which there exists a population of “hot” particles whose drift fiequency around the 

magnetic axis greatly exceeds the frequency of the flute perturbation. It is shown 

that fast drifting particles affect not potential energy of MHD perturbations but 

their kinetic energy. The possibility of the stabilization of the flute instability due 

to the “negative inertia” effect is discussed. Results, obtained in this chapter, are of 

considerable importance for the stability of various systems with hot particles. 

Chapter 2 is devoted to the theory of non-paraxial MHD stabilizers for axisym- 

metric mirror devices for plasma confinement. In this chapter, a method of search 

of axisymmetric configurations which provide stability of rigid (m = 1) flute mode is 

given and several theorems, elucidating the effects of non-paraxiality on flute modes 

stabilization by sloshing ions are proved. 

Chapter 3 presents experimental part of the work. Two interrelated sets of ex- 

periments were planned for the GDT facility in order to study the problems included 

into an experimental part of the work. The first was intended for measurements of 

a pressure-weighted curvature observing a plasma equilibrium response to applying 

a small test (dipole in a simplest version, or may be of a higher order) perturba- 

tion of magnetic field in the MHD-anchor region. A simple magnetehydrodynamic 

model is used to deduce from experimental data the pressure-weighted curvature of 

the field lines that determines a plasma stability against flute modes. Main assets of 

the approach are its simplicity and clearness, which allows it to be served as one of 

the mains. It is also potentially of great utility to control the displacements of the . 
plasma from geometrical axis of the trap which arise in many cases due to uncon- 

trolled errors in mounting of the coils, soft-iron parts near the machine, etc. Response 

* to quadrupole external disturbances were also studied. Significant difference between 

measured response and its theoretical estimate was found. 



Another set of experiments was devoted to studying the stabilization of the flutes 

by a cusp end cell. The cusp cell was attached to the GDT device at early 1992. 

The cusp coils was electrically tested and desired parameters were achieved. Within. 

the frame of this Purchase Order we accurately measured plasma parameters in the 

cusp, studied stability limits and measured some spatial characteristics of the unstable 

MHD-modes above the instability threshold. 

... 



Contents 

B 
C 

1 Stability of axisymmetric plasma containing fast drifting particles 1 

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1.2 Generalized energy principle €or axisymmetric plasma configurations . 5 
1.3 Stability of the “global” mode . . . . . . . . . . . . . . . . . . . . . .  9 

1.4 “Negative inertia” stabilization in the magnetic mirror . . . . . . . .  12 

1.5 “Negative inertia” stabilization in the cusp . . . . . . . . . . . . . . .  15 

1.6 Nonlinear stability . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

1.7 Application to the beam-plasma neutron source . . . . . . . . . . . .  21 

1.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

Van Dam-Rosenbluth-Lee energy principle in the case of the flute per- 

turbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

29 

30 

A 

Energy principle for the “disk”-like plasma . . . . . . . . . . . . . . .  
Generalization of the energy principle for the case: I’/m << s l d  5 I’ . . 

2 Non-paraxial axisymmetric MHD anchors 35 

2.1 Stability of disk-shaped plasma . . . . . . . . . . . . . . . . . . . . .  36 

2.1.1 System of two magnetic dipoles . . . . . . . . . . . . . . . . .  36 

2.1.2 System of two close coils . . . . . . . . . . . . . . . . . . . . .  41 

2.2 Stability of isotropic plasma . . . . . . . . . . . . . . . . . . . . . . .  44 

2.3 Stabilization by sloshing ions . . . . . . . . . . . . . . . . . . . . . . .  45 



3 Experiments on the GDT facility 50 

3.1 Measurements of a plasma equilibrium response to external multipole 

fields in an axisymmetric gas-dynamic trap . . . . . . . . . . . . . . . .  50. 
3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 

3.1.2 Estimates of the equilibrium parameters in the presence of 

multipole disturbances. . . . . . . . . . . . . . . . . . . . . . .  54 

3.1.3 Results of measurements. . . . . . . . . . . . . . . . . . . . .  56 

3.1.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

A neutral beam probe for measurements of density fluctuations in the 

GDT experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

3.3 Stability properties of a cusp-anchored gas-dynamic trap. . . . . . . .  60 

3.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 

3.3.2 Experiments with Gun-Produced Plasma. . . . . . . . . . . .  61 

3.2 

3.3.3 Experiments with Neutral Beam Heating. . . . . . . . . . . .  63 
_______________----------------------------------.------ _______--___------------------------------------------- 



Chapter 1 

Stability of axisymmetric plasma 

containing fast drifting part ides 

1.1 Introduction 

Axjal symmetry is a very desirable property of the mirror devices both for fusion and 

neutron source applications. The main obstacle to be circumvented in the develop- 

ment of such systems, is the flute instability of axisymmetric mirrors. In recent years 

there appeared a number of proposals, devoted to the stabilization of the flute pertur- 

bations in the framework of axisymmetric magnetic configurations, which are based 

on the combining of the MHD unstable central cell with various types of end-cell sta- 

bilizers [1]-[3]. In the present Chapter we concentrate ourselves just on this scheme, 

including long solenoid with a uniform field, conjugated with the end stabilizing an- 

chor, intended to provide MHD stability of the system as a whole. The attractive 

feature of such a configuration is that it allows to exploit finite larmor radius (FLR) 
effects [5] for the stabilization of the flute perturbations. As is well known [5], FLR 
effects, being strong, stabilize all flute modes, except the one with azimuthal number 

m = 1, corresponding to the “rigid” displacement of the plasma column (the ‘Lglobal” 

mode). Consequently, in the conditions when FLR effects dominate, the anchor has 
’ 



to stabilize the “global” mode only. Bearing in mind a favorable influence of FLR 
effects we, however, don’t restrict our research by discussion of only “global” mode 

stability and consider a general case of an a r b i t r q  azimuthal mode. 

The conventional approach to the stability analysis (used, for instance, in [1,2]) 

contains an assumption that the curvature-induced particle drift is slow as compared 

with the scale-time of the flute perturbation growth, 

where I’ denotes a characteristic growth-rate of the flute perturbation (or a charac- 

teristic frequency in the stable case), and Qd is a characteristic drift frequency in 

the stabilizing anchor. Inequality (1.1) means that plasma particles in the anchor 

undergo displacement remaining within the flute flux tube that they were initially 

occupy’ing. Therefore their perturbed position can be defined by 2-D hydrodynamic 

displacement vector E,  being the same for all particles, occupying in the initial state 

some flux tube, irrespective to their velocity and pitch angle. So, one can analyze 

the stability of the system in the framework of the familiar Kruskal-Oberman energy 

principle [SI. Just this approach was used in [1,2]. 

On the other hand, the presence of a long central cell, possessing large inertia, 

can result in the violation of (1.1). Indeed, flute growth-rate in the central cell itself 

(without the anchor) scales as [8] 

r - V T i l & z r ,  (1.2) 

where L,, Lt, are lengths of solenoidal and transition regions respectively, and z l ~ i  is 

the ion thermal velocity in the central cell. It looks hardly probable to achieve a 

stabilizing contribution of the anchor more than 1.5 - 2 times exceeding the unstable 

contribution of the central cell. Hence, if one switches on the anchor, the characterisiic 

.frequency of the flute oscillations keeps its former value (1.2), just the sign of r2 
changes. Drift frequency around the magnetic axis in the andhor region is estimated . 

2 



as follows: 

B8 being the magnetic field in the stabilizer middle plane, T8 being plasma temper-' 

ature in the stabilizer (to avoid unnecessary notation overloading in estimates, we 

suppose electron and ion temperatures in the anchor to be equal to each other). As 

it follows from (1.2),(1.3), growth-rate l' becomes really small as compared with the 

drift frequency when L, is large enough. 

The latter conclusion gives rise to the interest for the investigation of the situation 

when the drift frequency in the stabilizing anchor exceeds essentially the frequency 

of MHD perturbations, i.e. when inequality inverse to (1.1) is satisfied: 

n d  B r. 

To analyze the stability of such a system one cannot use Kruskal-Oberman energy 

principle and has to rely on its modified version that takes into account the condition 

(1.4). 

The generalized energy principle accounting for the contribution of nonhydrody- 

namic (in the sense of (1.4)) plasma species has been first formulated in [7], where 

single-particle adiabatic invariant technique has been used to calculate the pertur- 

bation of the particle energy. The energy variation, derived in [7], consists of the 

contributions of both perturbed plasma and magnetic energies. However, if one in- 

serts into the expression for W ,  presented in [7], the displacement vector of the 

flute perturbation 

with 7 constant along the field line, then one comes to a somewhat paradoxical result. 

Namely, it turns out that W ,  as given in [7], becomes identically zero (see Appendix 

A).  The reason is that authors of paper [7] retained in W only terms proportional 

* to  E2 while, as it has been shown in [SI, the contribution of non-MHD particles to 

the energy of the perturbations has a different structure, being proportional to 9. 
3 
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Henceforth in this Chapter we consider just the case of purely flute perturbations 

(1.5). 
Now it's appropriate to mark one more aspect. The stabilization due to strong 

FLR effects, mentioned above, takes place in the conditions [5] 

CTC 

e B,a; ' r e -  
where B,, T,, a, are magnetic field, temperature and plasma radius in the central cell. 

Combining (Ll), (1.3), (1.6) and taking into account the conservation of the magnetic 

flux through the plasma cross-section, 

(here we suppose that radial dimension of plasma in the stabilizer is of the same order 

of its axial dimension La) one can find that the assumption of the dominating FLR 

effects in the limit (1.1) is valid only if 

Since the latter condition is rather restrictive, it stresses all the more the actuality of 

the stability analysis, involving particles with fast drift frequency (1.4). 

The contents of the present chapter is as follows. In the next Section we repro- 

duce the derivation of the generalized energy principle [8] for the axisymmetric case. 

In Section 1.3 we invoke the cited energy principle to illustrate the possibility of the 

stabilization of the flute instability due to the "negative inertia" effect. The investiga- 

tion of the conditions, required for the "negative inertia" stabilization in the magnetic 

mirror and cusp, is the subject of Section 1.4 and Section 1.5, respectively. The influ- 

ence of the nonlinear effects on the stability of plasma with fast drifting particles is 

examined in Section 1.6. Section 1.7 is devoted to the application of the generalized 

energy principle to the stability analysis of the neutron source device, proposed in 

[9]. Section 1.8 contains conclusions. Several computational subjects are carried out 

in Appendices. In particular, in Appendix C we show that the energy principle [8] 

4 
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admits the generalization to the intermediate frequency interval, r/m << s l d  5 r, for 

modes with high azimuthal numbers m. 

1.2 Generalized energy principle for axisymmet- 

ric plasma configurations 

Suppose that in the anchor region there exists a population of hot particles with drift 

frequencies satisfying inequality (1.4), while other plasma both in the anchor and in 

the central cell is cold enough to admit conventional MHD treatment. We examine 

the stability of such a system with respect to the purely electrostatic perturbations 

that are characterized by the electrostatic potential 'p, constant along the field line. 

The latter assumption, identical to the one made in [7], implies the presence of a cold 

plasma component which justifies the constancy of the potential along the field line 

and acts to  provide quasineutrality condition. 

- 

It is convenient to adopt the following coordinate system: we mark every field 

line with the polar coordinates T,  $ of its intersection with some plane, perpendicular 

to the uniform magnetic field in the central solenoid. Instead of T one can use the 

magnetic flux @ inside the cylindrical surface of the radius T: @ = nr2B,. A drift sur- 

face can then be described by the equation @ = @(+). In the introduced coordinates 

potential 'p of the perturbations, corresponding to the mode with azimuthal number 

m, is given by 

'p = @(@) cos m+. 

Note that 

since there is no azimuthal component of the electric field on the magnetic axis. 

At a given configuration of magnetic and electrostatic fields, the drift surface for a 

particle with a total energy e and magnetic moment p is determined by the constancy 
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of the longitudinal action 

J(E, p, a, $) = (2111)1/2 / ( E  - p B  - ecp) 1 / 2  d 1 , (1.10) 

with the integration carried out between the turning points. If the condition (1.4) is 

satisfied, then, with the electrostatic potential varying, the drift surface adjusts itself 

to keep constant the magnetic flux inside the surface [lo]. This occurs via variation 

of the particle energy. 

To find the change W of the kinetic energy of the particles (just this quantity 

enters the energy principle for the perturbations with a scale-length much in excess 

of the Debye radius), we use the following approach. We consider some group of 

particles (of a total number A N )  that in the initial state have certain values of e and 

p, and that are filling a drift surface characterized with a certain value of J. When 

we slowly turn on the electrostatic potential of the perturbation, the drift surface 

deforms and the kinetic energy of the particles changes. If we find the change of the 

kinetic energy A W  for this group, then, by summation over all the groups, we find 

the required quantity 137. 

The group 4 N  is drifting along the contour a($) determined by the instantaneous 

configuration of the electrostatic field and the instantaneous value of E . The number 

of particles from this group d A N ,  occupying the section of the contour of the arc 

length d$ , can be presented in the form d A N  = ud$ , where u is the number of 

particles per unit arc length. The stationarity condition u$ = const yields: 

ANnd 
y = -  

2 x 4  ' 
where 4 is the angular velocity of the bounce-averaged drift motion [ll]: 

2nc 4 = --J+, 
et11 

(1.11) 

(1.12) 

til = J, is the transit time between the turning points, and !& is the drift frequency, 

6 
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We use notations J, 

change of the kinetic energy of these particles is, obviously, 

dJ/&,  J+ E dJ /a@,  etc., for the partial derivatives. The 

(1.14) 

where the subscripts indicate the difference between the final and initial state. The 

total energy e of particles is constant over the drift surface in the time-scale of 

while their kinetic energy E - e'p varies from one field line to another according to 

variation of cp . In this respect, AW, if divided by AN, represents the average (over 

the drift surface) change of the kinetic energy. 

The condition of flux conservation inside the drift surface can be written in the 

form: 

where a($) is a solution of the equation 

(1.15) 

(1.16) 

In principle, equations (1.11)-(1.16) allow one to find the particle kinetic energy at 

arbitrarily large 'p . However, we will consider only the case of small 'p . The quantities 

of the first order in 'p will be denoted with subscript "l", the second order corrections 

by subscript "2", etc. 

In the linear approximation, equation (1.16) yields: 

wherefrom, taking into account relationships (1.8) and (1.15), we find that 

JC 
J+ 

el = 0, @I = ecp-. 

The next order expansion of (1.16) gives: 

(1.17) 

(1.18) 

(1.19) 



The requirement (1.15), when applied to a2 , yields: 

while from (1.14) we find that 

(1.20) 

(1.21) 

From equation (1.12) one obtains that 

(1.22) $1 JC - =  
4 

Now, using relationships (1.8), (1.18), (1.21) and (1.22), we can express AW in terms 

of@: 

To perform the summation over the plasma particles, we introduce the distribution 

function F(E ,  p, a), normalized according to the relationship Ail. = F(E, p: @)AeAp.I@. 

Then, the energy W of the perturbation acquires its final form: 

( 2 ----- Je+ Jcc JcJr*)] , 
J@ Jc 4 

Sometimes it's more convenient to use the expression for 1V in the form 

(1.24) 

(1.25) 

which can be obtained from (1.24) through the integration by parts of the first term in 

the square brackets (1.24). There is no contribution of limits from the integration by 

parts in (1.25), since on the upper limit there are no particles, and so the distribution 

function equals to zero, while on the lower limit the potential y vanishes according 

to (1.9). 



In Appendix B we derive also the expression for the energy variation, relevant 

to the conditions when the longitudinal energy of the particles is small as compared 

with their transverse energy. In such a case plasma is located near the point of the 

minimum field strength on the given field line (the so-called “disk”-like plasma), and 

the contribution of the particles with fast drift can be expressed as 

or after the integration by parts 

(1.26) 

(1.27) 

where Bo is the minimum value of the field strength on the magnetic surface, cone- 

sponding to the flux @, and Bo* = aBo/d@. 

1.3 Stability of the ‘‘global” mode 

Formulae (1.24), (1.25) define the contribution of only fast drifting particles (1.4) to 

the total energy variation, while there exist two more terms, originated fiom plasma 

particles with small drift frequencies (l.l), whose contribution can be obtained in the 

framework of MHD approach. The first one scales as 

(1.28) 

Henceforward in this Section we consider the case of the “global” mode perturbations 

with E as a displacement of the plasma column as the whole in the central cell. 

Expression (1.28) describes the kinetic energy of the perturbations. It is caused by 

inertia of ions in the long central cell. 

The second term, 

(1.29) 

describes the potential energy of the perturbations caused by the field line curvature. 

The sign of W ( p )  is negative due to the unfavorable field line curvature in the transition 



region. As it follows from (1.28), (1.29), in the central cell itself (with the anchor 

being switched off) the instability grows up with the characteristic increment given 

by (1.2). 

Taking into consideration the contribution (1.25) of the fast particles, notice that 

the expression for W scales as ‘p2. Since the displacement t of the flux tube, filled 

with a cold plasma, is determined by formula (1.5) with 7 = - ( l / c ) J y d t ,  we see 

that, if (1.25) is expressed in terms of t, it scales as 

(1.30) 

Here we have supposed the radial dimension of plasma in the stabilizer to be of the 

order of L,, and also condition (1.7) has been taken into account. Thus W scdes as a 

kinetic energy of the perturbations (- i2), giving contribution to  W(k),  not to Wb). 

Therefore the presence of the fast drifting particles manifests itself in changing of the 

“inertia” of the perturbations, not of their “rigidity”. 

Fast drifting particles may affect the stability in two different ways, depending 

on the sign of the energy 11;. Positive value of 147 gives rise to the increasing of the 

effective kinetic energy of the perturbations (or of their effective “inertia”) that , in 

turn: leads to the decreasing of the increment I?, but the instability still remains. 

It seems to be more attractive another situation, when IV is negative and, more- 

over, the following requirement is satisfied: 

W@) + w < 0. (1.31) 

The negative sign of the effective kinetic energy corresponds to the oscillations of 

the perturbations with the “negative inertia” in a hump-like potential (1.29). Since 

the frequency of such oscillations is, obviously, real, condition (1.31) allows one to 

conclude that the system becomes stable. 

Estimates (1.28), (1.30), together with (1.31), impose one more constraint on the 

plasma parameters: 



where p~~ is the ion larmor radius of the hot particle in the stabilizer region. 

To cite one more example of the magnetic configuration in which the fast drifting 

particles may considerably affect the stability of the plasma we consider a single non- 

paraxial mirror of length L (with a plasma occupying a volume of the order of L3). 

Let plasma consist of a thermal population with temperature T and density n, and a 

hot population with temperature T, and density n, < n; let also the pressure of the 

hot component exceed that of the cold one: n,T. > nT. For the mode of a “global” 

displacement one can evaluate the plasma kinetic energy (per unit volume) as 

(1.32) 

where [ is a (small) plasma displacement. The first term here represents a contribu- 

tion of the fast particles. The potential energy is just 

(1.33) 

as fast particles do not contribute to it. If the drift frequency of the fast particles f i d  

is not too high, 

the inertia of the fast particles dominates. The estimate for the growth-rate r is then 

As n,T, > nT the growth-rate is automatically less than the drift frequency, ensuring 

the applicability of our analysis. So, we see that, indeed, the “inertia” of the fast 

drifting particles can be dominant, despite their small density. 

Notice that though in the present Section we have concerned oursel\-es with the 

stability analysis of the “global” mode (estimates (1.28), (1.29), (1.32),(1.33) hold just 

for the “global” mode perturbations), the stabilization due to the “negative inertia” 

effect, discussed above, makes it possible to suppress, in principle, the instability of 

an arbitrary azimuthal mode. However, as the “inertia” of the oscillations is negative 

(see (1.31)), the dissipative instabilities are possible. 

11 



1.4 “Negative inertia” stabilization in the mag- 

netic mirror 

As it was established in Section 1.3, the necessary condition for the stabilization of 

the flute instability due to the “negative inertia” effect is the negative definition of 

the energy variation W of the fast particles: 

TY < 0. (1.34) 

In the given magnetic field the latter inequality imposes certain restrictions on the 

possible profiles of the distribution function F of the fast particles. In the present 

Section we investigate the requirements, which the distribution function F should fit 

to satisfy (1.34) in the magnetic mirror configuration. 

We start with the stability analysis of the paraxial magnetic mirror. In the frame- 

work of the paraxial approach, the plasma radial dimension should be small compared 

to the mirror-to-mirror distance. If we use the coordinate frame with the axis coin- 

ciding with the magnetic axis, the longitudinal invariant J ,  up to the terms linear in 

9, can be written as [7] 

J = J(O)(&,p) + @ J @ ) ( & , p ) .  

The neglect of the higher order terms in 9 is justified in the paraxial region. Since 

the \ariation of F in @ has a small scale-length, the first term in (1.25) is dominant, 

and so expression for IY reduces to  a simplified form: 

(1.35) 

Since the derivative aF/a@ defines the sign of the diamagnetic frequency, one can 

conclude from (1.12), (1.35), taking into account JP)  > 0, that the energy variation 

would be negative for those particles whose directions of the curvature-induced and 

diamagnetic drifts coincide, and would be positive in the opposite case. 

As an example of the stability analysis of the concrete plasma configuration, we 

examine the stability of the hot “disk”-like plasma located in the middle plane of 

12 



the magnetic mirror. The energy variation of such a plasma is given by formulae 

(1.26), (1.27). The paraxial expansion of the magnetic field in the middle plane can 

be presented in the form 173: 

(1.36) 

where B is the field strength on the a x i s  and prime denotes the derivative along the 

axis. Note that BN > 0, since the magnetic field has a minimum in the middle plane. 

Inserting (1.36) into (1.27), one obtains: 

As it follows from the latter expression, condition (1.34), necessary for the stabiliza- 

tion, is satisfied for a descending plasma profile, 

OF - <o. a@ (1.37) 

Now we investigate in more detail the stability of the “global” mode for the dis- 

cussed above plasma configuration. The potential ‘p, corresponding the “global” mode 

perturbations, is given by 

‘p = Po& cos $. 

After the substitution of (1.36), (1.38) into (1.26), one can find 

B F w=-re2- JdpdC -. 
BN P 

(1.38) 

(1.39) 

Inequality (1.34) is satisfied in this case, and so the “negatiye inertia” stabilization 

is realizable. 

lip till now in the present Section the discussion has been restricted by the 

framework of the paraxial plasma configurations. To illustrate the influence of non- 

paraxiality on the stability of the plasma with fast particles, we turn to the stability 

analysis of the hot “disk”-like plasma, localized in the middle plane of the magnetic 



Figure 1.1: Field lines of the mirror composed of two magnetic dipoles. Bold line 

corresponds to the separatrix, passing through the point of zero field strength. 

mirror composed of two equal co-axis magnetic dipoles (Fig. 1.1). The magnetic field 

in the middle plane of such a mirror can be written in the form 

(1.40) 

where x = 4r2/L2, T is a radius in the middle plane, L is a distance between dipoles 

and B, is the field strength in the middle point between them. The magnetic flux 

can be expressed in terms of x as follows: 

3312 2 

3/2 ’ @ = QS-- (1.41) 

where 

the adiabatic confinement (see Fig. 1.1). 

denotes the Am, corresponding to the separatrix that bounds the region of 

Now we examine the sign definition of the energy variation 147 for the “global” 

mode perturbation (1.38). Consider the plasma envelope, involving particles located 

14 



on the distance & from the axis in the equilibrium state. Inserting (1.38), (1.40), 

(1.41) into (1.26), after elementary analysis one can obtain, that the energy variation 

W occurs to be negative for the plasma envelopes with radii 

Ro - < 0.72, 
R s  

(1.42) 

where R, is the separatrix radius, while for radii I&, being outside the interval (1.42), 

the energy W has a positive sign. Hence, non-paraxial effects lead to the violation of 

the condition (1.34), and so the region of distant radii pays unfavorable contribution 

to 1Y in the sense of the possibility of the “negative inertia” stabilization. 

1.5 “Negative inertia” stabilization in the cusp 

We start with the reproducing of some basic formulae, characterized cusp magnetic 

configuration. In the cylindrical coordinate system with the ax is  of the device as 

z-axis, cusp magnetic field can be written in the form: 

B, = ~ G z ,  B,. = -Gr, (1.43) 

with G being constant, defining the lalue of the magnetic field. It’s convenient to 

present equation, that governs the magnetic field lime, as follows: 

( 1.44) 2 = 13, 

where parameter 1 marks the giyen field line. The minimum d u e  of the field strength 

on the field line 1 is expressed as 

Bo(1) = A G l .  (1.45) 

Magnetic flux 

flux surface, through the formula 

is connected with parameter 1 of the field lines, forming the give2 



Now we proceed to the establishing of the conditions which provide the negative 

definition of the energy variation IV of the fast particles. We examine two limits: 

(1.47) 

(1.48) 

Inequality (1.47) implies that the longitudinal energy of the particles is small as com- 

pared with their transverse energy. These particles perform small bounce oscillations 

nearby the point of the minimum field strength value (the “disk”-like plasma), and 

their energy \ariation 1%’ is described by expressions (1.26), (1.27). The second condi- 

tion, on the contrary, corresponds to the large longitudinal energy (the limiting case 

of the inclined injection). 

Analysis of the first limit is especially trivial. Indeed, as it follows from (1.44),( 1-45), 

the derivative i3Bo/d@ is positive. Hence, according to (1.27), the negative contribu- 

tion to 11’ make those particles for which 

dF 
- > 0. a@ (1.49) 

Kote, that the latter condition is opposite to the one (1.37), obtained for magnetic 

mirror configuration in the same limit (for the “disk”-like plasma). 

Inserting (1.45), (1.46), (1.38) into (1.26), we find that for the global mode per- 

turbations the energy 1%’ occurs to be positive. Consequently, one can’t stabilize the 

global mode by the “negative inertia” effect in the conditions (1.47). 

Xow we examine the limit (1.48). Using (1.43), (1.44), one can derive the following 

expression for longitudinal action J :  

where Jo = 2 J m ,  r o  = ,5/2’I3pGl and integration being carried between the 

roots of expression in the square brackets. Inequality (1.48) leads to the requirement 

T~ >> 1, which, in turn, allows one to calculate approximate values of T~ and r2: 
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and then to compute J :  
2 312 J = i J o ~ o  . (1.50) 

Differentiation of (1.50) with respect to E and Q, and substitution of the corresponding 

derivatives into (1.25) give: 

W = -  %e2 jd&dPdQ* (-- a F  + --) 31F . 
2 E 18Q 

Hence, one comes to the following relation 

(1.51) 

(1.52) 

that provides the negative contribution of the particles to the energy W.  

For the potential (1.38) of the global mode perturbation, the calculation of the 

expression (1.24) leads, with account for (1.46), (1.50), to the positive \due  of W. 

The latter states that in the l i t  (1.48) the “negative inertia” stabilization of the 

global mode is impracticable. 

1.6 Nonlinear stability 

Up to this Section we have investigated the stability of plasma, containing fast drift- 

ing particles, in the linear approximation within the assumption of the infinitesimal 

amplitude yo of the perturbed potential. In this approach the energy variation W 
of the fast particles was found to be quadratic in ‘po (see (1.25)). As yo grows, the 

character of the relationship between IV and 9 0  modifies, since the nonlinear effects 

switch on. The latter may lead to the changing of the sign of W and, hence, may 

affect the stability of the system as the whole. Therefore it is of the certain interest 

to calculate the energy TV for the finite amplitudes yo as well. As an example of such 

calculations we shall carry out the nonliiiear stability analysis of the hot “disk”-like 

plasma, localized in the middle plane of the magnetic mirror, compose of two equal 

co-axis magnetic dipoles (1.1). Suppose that particle energy is high enough to satisfy 
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condition (1.4). Henceforward we shall concentrate ourselves on the stability of the 

"global" mode with the perturbation of the potential given by 

(1 53) 

Here @# represents the magnetic flux corresponding to the separatrix, that bounds 

the region of the adiabatic confinement (see Fig. 1.1). 

Consider a plasma envelope formed by N particles, located on the magnetic surface 

@o in the equilibrium state. The energy and the magnetic moment of each particle 

are E and p respectively. According to (1.11)-(1.14), the energy variation of such 

particles can be expressed as 

(1 34) 

where A& is the changing of the total energy of the particle, constant along the 

drift surface. Another designations are the same as in Section 1.2. It should be 

stressed that formula (1.54) is valid for an arbitrary magnitude of the amplitude of 

the perturbed potential (not only for the infinitesimal one). Just the calculation of 

the function l l r ( j c O )  is the goal of the present Section. 

In the case of the "disk"-like plasma the particle transverse energy greatly exceeds 

its longitudinal energy, and so the kinetic energy of the particle approximately equals 

to  pBO, with the magnetic field in the mirror equatorial plane Bo, being determined 

by (1.40). In the same fashion as in Section 1.2, the perturbed drift surface can be 

described by the function @($), which is as yet unknown. The kinetic energy of the 

particle on the a($) surface is given by equation 

pBo (Q i )  = pBo( @o) + AE - e90 - COS $, (1 3 5 )  

where the flux Qi being determined by (1.41). Equation (1.55) allows one to define 

the shape of drift surface @($) as well as to find the energy A&. Indeed, every value 

Ae governs some solution @(+) of equation (1.55). However, among all this solutions 

we have to chose the only one, that satisfies the additional requirement (1.15). Then 
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the corresponding value A€ will be just the desired particle total energy variation. 

Since the presented above scheme of the solution of equation (1.55) doesn‘t admit the 

analytical approach, the problem was investigated numerically. 

Once the dependence a(+) has been found, it would not be difficult to compute 

the second term in the right side of (1.54). For the “disk”-like plasma the angular 

velocity (1.12) reduces to  the form 

(1 56)  

which has a clear interpretation: the angular velocity is determined by the gradient 

and E x B drifts. Finally, inserting (1.56) into (1.54), one obtains the value for the 

energy variation W. 

The numerical computation results are presented on Fig (1.2), where the depen- 

dence of W/N versus ‘po being shown. Plasma envelopes with various radii .&, in the 

equilibrium state were examined. The energy W / N  (being equal to the variation of 

the kinetic energy of a single particle, averaged over the drift surface) is measured in 

the units of E ,  while amplitude 9 0  is measured in the units of €/e. The radius .&, is 

normalized on the separatrix radius. Dotted lines relate to the parabolic profiles of 

the linear approximation. 

It should be noted one more point now. Equation (1.55) possesses the solution 

a($), satisfying the requirement (1.15), not for an arbitrary large 9 0 ,  but for the 

amplitudes, less than some fixed value, determined by the radius Rw of the envelope 

in the equilibrium state. The latter is a consequence of the fact that for sufficiently 

large 9 0  the drift surface breaks up, i.e. it  ceases to be a closed surface. Just for this 

reason the curves on Fig. 1.2 terminate at various values of the maximum allowable 

amplitude 9 0 .  

The curves on Fig. 1.2(a)-(c) relate to the values & < 0.72Rs, that is the interval 

where, according to (1.42), the linear theory predicts the negative definition of the 

energy W ,  that, in turn, implies the possibility of the “negative inertia” stabiliation. 

For the large amplitudes ‘po the quadratic fall of the energy W slows down and then 
’ 
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Figure 1.2: The energy variation W/N plotted as a function of the amplitude 90 of 

the perturbed potential. The values of W/N and c are measured in the units of e 

and &/e, respectively. Curves relate to the following radii & of plasma envelopes in 

the equilibrium state (& is normalized on the separatrix radius): a - 0.4; b - 0.54; c 

- 0.6; d - 0.8 . Parabolic profiles of the linear approximation are shown with dotted 

lines. 
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gives way to the rise of W .  However, for plasma envelopes with radii & < 0.54R,, the 

energy W remains negative for the arbitrary allowable amplitudes yo (Fig. L2(a)). In 

the case, when & = 0.54RS, the energy W becomes zero for the maximum allowable 

potential amplitude (Fig. 1.2(b)). In the region 0.54R, < & < 0.7222, the energy 

W is found to be positive for the large amplitudes ‘po (Fig. 1.2(c)), and hence the 

possibility of the “negative inertia” stabilization fails. 

In the interval 0.7222, < I& < R,, where according to the linear theory the energy 

W increases as cp& the nonlinear effects lead to even greater growth-rate of the profile 

W ( c p 0 )  (Fig. 1.2(d)). Thus in this case the energy W occurs to be positii-e for all 

possible amplitudes. Consequently, the nonlinear stabilization due to the “negative 

inertia” effect in the interval of & under examination turns to be impossible. 

1.7 Application to the beam-plasma neutron source 

Our results can be of some interest for the development of the beam-plasma neutron 

source (BPXS) [9]. In this system a relatively short mirror machine is filled with a cold 

tritium plasma which serves as a target for high energy (-SOkeV) deuterons which 

are produced by KB injection and confined in the same mirror machine. In order to 

reduce the heat losses through the cold plasma electrons, there is envisaged the use 

of the long solenoidal sections with gradually decreasing magnetic field between the 

mirror cell and the end-walls: as the target plasma is a collisional one and the heat 

flux is determined by the thermal conductivity, this arrangement indeed reduces the 

heat flux. Another implication of the using of these long sections is a considerable 

increase of the inertia of the flute perturbations. As one can easily show 1131, for the 

global mode the kinetic energy can be evaluated as 

where 6 is a plasma displacement in the equatorial plane of the device, Bo and are 

magnetic field strength and plasma radius in this plane, respectively. Denoting the 
* 
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half-length of the mirror cell as L, one can obtain the following expression for the 

pot entia1 energy: 

("(n.T./L2)ira:L, 

where the subscript ''P refers to the high energy particles. 

The growth-rate r of the flute perturbations is equal to 

while the drift frequency of the fast ions is 

Here p. denotes the Larmor radius of the hot particle. After the substitution of the 

numerical values of all variables (see [9]), i t  turns out that 

I - - 0.1, 
n d  

that is, the contribution of the fast ions to the potential energy of the flute pertur- 

bations in fact is zero. This should allow the Change of the magnetic configuration 

from Yin-Yang to axisymmetric one, with the corresponding simplification of design 

of the neutron source. 

1.8 Conclusions 

In the present Chapter we have analyzed the stability of the axisymetric mirror 

device with respect to purely electrostatic flute perturbations. We have investigated 

the scheme consisting of the long central cell conjugated with the end stabilizer that 

contains hot plasma. One of the main results of our research is the establishing of the 

' fact, that a population of hot particles with fast azimuthal drift (see (1.4)) may pay a 

favorable contribution to the MHD stability of the system as the whole. The reason * 



is that fast drifting particles affect not potential energy of MHD perturbations but 

rather their kinetic energy, and in the case, when the effective kinetic energy is found 

to be negative, the stabilization due to the “negative inertia” effect takes place. . 

Another system, to which our results can be applied, is a two-component plasma 

consisting of a cold dense background and a minority of hot particles that determines 

the plasma pressure (like in some versions of mirror-based neutron sources [9,17]). At 

high enough density of a cold component, condition (1.4) can easily be met. 

We have also showed that the energy principle, formulated in [8], can be gen- 

eralized on the intermediate frequency interval r/m << R d  5 r for the azimuthal 

modes with high numbers m (see Appendix C). Therefore all conclusions, concerning 

the stabilization due to the “negative inertia” effect, can be transformed to these 

conditions as well. 

Appendices 

A Van Darn-Rosenbluth-Lee energy principle in 

the case of the flute perturbations 

We start with the introducing the Clebsh coordinates (a,8) [15] with property 

B = Va x VB. 

The a coordinate is chosen so that the contour surfaces of constant a form a nested 

series of topological cylinders, and it is normalized to enclose the magnetic flux 2 i i a  

by any a surface. The 8 coordinate is angle-like and of period 27r on each CY surface. 

In the limit of zero p the magnetic field satisfies equation V x B = 0, and hence it 

can be expressed as a gradient of some potential x: 

B = Vx. (1.57) 



(1 5 8 )  

compose a covariant basis that we are going to deal with. We also define a contrvariant 

basis (ut v, r ) ,  dual to (1.58), in such a way that 

ve x vx 
B2 ' ll= 

According to the energy principle [7], derived within the assumption of the fast 

particle drift (see condition (1.4)), the energy variation W consists of two terms: 

The first one, Wf, represents the local part of 14' and can be written in the Taylor- 

Hastie form [14] : 

-(1/B)PQj1 -k e * VB)(< - V'Pl)] - 
is the displacement vector, Q is the Eulerian magnetic field perturbation, 

( 1  .SO) 

Here 

the subscripts 11, I refer to the parallel and perpendicular components with respect 

to the direction of the unperturbed magnetic field: and the coefficients Q and [, 

are measures of stability against firehose and mirror anisotropy modes, respectively. 

. Also, the following notations are introduced: 

V' = V - ( V B ) d / d B ,  



q=bb:V<.  (1.61) 

The kinetic contribution to  the energy variation, IVk, originated from the fast 

drifting particles, is given by 

where 

(1.62) 

(1.63) 

and F = F (J(a, 8, E ,  p ) ,  E ,  p )  is the equilibrium distribution function, depending only 

on the integrals of motion (see e.g. [IS]). Single angle brackets in (1.62) describe the 

bounce average: 
d J  -' 

(. - .) = (x) f dZvRl(. . .), 
while double angle brackets denote the average both over bounce and drift motions: 

(1.64) 

where & = p d e a ( 6 )  is the flux adiabatic invariant (a = a(B) defines the particle 

drift-surface, and integration is performing with J and E being constant), 

is the precessional drift period, and ( & / d a ) ~  = (dp/dt)  is the bounce-averaged rate 

of precession [IO]. 

Xow we turn to the calculation of the energy (1.59) for the flute-like perturbations, 

characterized by the following displacement vector < : 

with function 7 constant along the field line, 

Since 
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(1.66) 



the perpendicular displacement (1.66) can be expressed as 

(1.67) 

In the curved coordinate system (a, 8,i)  ( with I as a coordinate along the field line, 

determined by dl = dx/B ) one obtains: 

As it follows from (1.61)y (1.65), the expression for q yields: 

q = - -  ' " I  - (b - V)b. ai 

Accounting for V x B = 0, and using the relationships 

(b * V)b = -b x (V x b), 

1 
V x b = --(VB x b), B 

we come to 

After simple manipulations one can find from (1.63), (1.68), (1.69) that 

(1.68) 

(1.69) 

(1.70) 

The contribution from the first integral vanishes, since the particle energy conserves 

along the field line. 

As it  was shown in [15], 

(1.71) 



a J  dl aB 
- = -1 - (Mvi + p B )  x. ao Bull 

Combining (1.71),(1.72) with (1.70), one can rewrite the expression for ( H )  as 

(1.72) 

(1.73) 

Now it'is easy to perfom' the average of ( H )  over the drift motion. Inserting 

(1.73) into (1.64) and taking into account that 

aJ  aJ aJ aJ  (z), = - a S ( J 9  ( $ ) J =  -a,(z)-l, 
we have: 

Finally, using 
a J  a& (E)e=-(z)(aa),(g); 

one obtains after the substitution of (1.73) into (1.62): 

= -- 1 / dcrdOdpdE (E) (E) (( $) 2- 
2 

aJ aq 
-2 (%) (z) (aa) (2) 4- (g)-2(g)2($)2) (1.74) 

Here we have changed the set of the integration variables, and perform the integration 

over dc instead of dJ .  

Kow we turn to the calculation of the energy variation Wj. Since Wj does not 

depend on the parallel component (11 (see [14]), and besides that the displacement 

(1.65) does not perturb the magnetic field, Q = 0, the expression (1.60) reduces to 

+j+L. 1 V'p,,) [gg - ""I) . aa ae (1.75) 



The parallel and perpendicular pressure components, presented in (1.75), are given 

by 

pl=/*B pBF.  

The substitution of (1.67) into (1.75) leads to 

2 ----I a P a B  a P  (-) all - 
a B  ae ae aa 

(1.76) 

P = / (Mu;  + p B ) F ( p ,  E ,  J ) .  

The calculation of the derivatives of P ,  entering into (1.76), gives: 

ap 
aB 

- = / dEdpF aB 

Now reminding that d3x = dadBdZ/B, and accounting for (1.71), (1.72), (1.77), one 

can transform (1.76) to 

The latter expression, together with equations 
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aJ aJ (%), = aa(aa)-’(f); 
allows one to show easily that 

sign, and hence the energy variation (1.59) is found to be identically zero. 

equals to  the expression (1.74) with the inverse 

B Energy principle for the “disk”-like plasma 

Consider the limit of zero longitudinal hot plasma pressure, pi1 = 0, when transverse 

energy of hot particles greatly exceeds their longitudinal energy. In the equilibrium 

state these particles perform small bounce oscillations round minimum field point, so 

that 

(1.79) 

Bo marks minimum value of the field strength on the given field line. Using expansion 

of B along the field line in the vicinity of Bo, 

B 2: Bo + B12, 

one can carry out the integration in (1.10) explicitly: 

A& J = r J 2 ?  - @’ (1.80) 

with A E  = e -pBo. Now it would not be difficult to calculate with sufficient accuracy 

E- and a- derivatives of J :  

Jcc = 0, (1.81) 

Here we have taken into account, that At/pBO is a small parameter according to 

(1.79). Substitution of (1.81) into (1.24) leads to the following expression for the 
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energy variation: 

(1 32) 

Note that there is no integration over dE in (1.82). The reason is that in the case 

under consideration, the distribution function F depends on E approximately in a 6- 

functional way, F - S(E -pB,-,), and so the integration over dt^ can be done explicitly. 

C Generalization of the energy principle for the 

The crucial point of the derivation of the expression for the energy variation in paper 

[8] (as well as in [7]) is the exploitation of the fact that the flux adiabatic invariant 

conserves. As is well known (see, e.g. [lo]), when the frequency of the drift motion 

n d  around the axis is high as compared with the inverse characteristic time of vari- 

ation of the electric and magnetic fields, then the magnetic flux 6 encompassed by 

the drift surface is an adiabatic invariant (notation & shouldn't be confused with a 

flux coordinate @ , an independent variable). In the case considered in the present 

paper, the magnetic field is constant; the varying is electrostatic potential 9 of the 

perturbations. The slowness of variation of 'p in the above mentioned sense (see (1.4)) 

guarantees the consertation of 6. 
When considering the case of perturbations with high azimuthal mode number 

m >> 1, one may encounter the situation when the drift frequency f i d  is lower then I' 

but higher than I'/m : 

(1.83) 

The inequality f& 5 r means that. one cannot thoughtlessly use the traditional adi- 

abatic invariant 6. However, we shall show that, under the condition r /m  << a d ,  

there exists another adiabatic invariant, similar to 6. 
We consider the potential perturbation (not necessarily small) which is of the form 

(1.8) and changes in time with the characteristic frequency I'. Then the inequality 
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r/m << O d  means that the guiding centre traverses one spatial period of the system 

in a time that is short as compared to the time of potential variation. Just this fact 

is a basis for existence of the generalized adiabatic invariant. 

The guiding centre motion, averaged over the fast bouncing along the field line, 

is governed by the following equations [Ill: 

27rc .I=-- J@ , 
et11 

(1.84) 

where tll = Jc is the transit time between the turning points. In the context of the 

problem under consideration, J is a constant of motion (as well as p). Resolving the 

equation J = const with respect to E , we can find the function E ( $ ¶ @ )  for a given 

particle. By differentiating the function J(e($,  a), a,$) over $ and , we find: 

de J* 
a$ Jc' 
- = -- 

and the equations of motion (1.84) acquire the Hamiltonian form: 

27ic de &- - 
e d a y  
2xc a& &.-- - 

e d$' 
with $ and @ being canonically conjugate variables and e playing a role of Hamil- 

(1.85) 

tonian. As the explicit dependence of E on t is slow in the sense that the guiding 

centre traverses one spatial period of the system (in coordinate + ) in a time short 

as compared to the time of potential x-ariation, equations (1.85) possess an adiabatic 

invariant 

(1.86) 

where integration is carried out over one spatial period TG, equal to 27i/m. Of course, 

for slow enough potential variations, r << R d  , the integration in (1.86) can be 

extended to a full rotation of a particle around the axis, and (1.86) reduces to the 

standard flux invariant. 



P 

Now it  becomes clear that the expression for the energy variation, that takes into 

account conditions (1.83), coincides with formula (1.24). Indeed, all calculations in 

this case would exactly repeat calculations, performed in Section 1.2, with the only 

exclusion: 6 conservation requirement should be replaced by the requirement of the 

conserlation of &*. But this changing doesn't, obviously, affect formula (1.24), since 

the averaging of the expressions, composed of function (1.8), either over 2nlm-intenal 

(as in (1.86)) or over 27r-interval (as in the expression for 6 )  would finally lead to the 

same result. 
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Chapter 2 

Non-paraxial axisymmetric MHD 

anchors 

Big attention is paid last years to search for axisymmetric configurations of magnetic 

field which can provide MHD stable plasma confinement [1,7]. By obvious reasons, 

preference is given to the configurations with “natural” singlyonnected region of 

plasma confinement. Perspective for this direction of research has been demonstrated 

in i7; where non-paraxial mirror trap, formed by a system of tu-o small coils (;.e., 

dipoles) in an external relatively weak homogeneous magnetic field, has been pointed 

out to be the example of stable axisymmetric configuration. Inserting of non-paraxial 

mirror trap into the composition of an open (for instance, an ambipolar) device guar- 

anties stability of large-scale flute perturbations, while small-scale perturbations are 

supposed to be stabilized due to Finite Larmor Radius effects. In this chapter, we 

poit out a method of search for axisymmetric configurations which provide stability 

of rigid (m = 1) flute mode and prove several theorems, elucidating the effect of 

non-paraxiality on sloshing ions stabilization of flute modes [3,4:. 



2.1 Stability of disk-shaped plasma 

Let us, first, consider disk-shaped plasma with pll = 0, confined at the equatorial 

plane z = 0 of non-paraxial mirror trap. For the sake of simplicity, we assume for the 

trap to be symmetrical about the plane z = 0. Such system is stable against global 

flute mode provided that there exist at least one point along radius, near which the 

following two inequality are simultaneously satisfied [7]: 

where B0(r) = B=(T) 0 )  is the magnetic field at the equatorial plane, 

T 
@ = 2 x 1  drr&(r) 

is the magnetic flux throughout the circle of radius T .  The first inequality (2.1) guar- 

anties the existence of “longitudinal:’ minimum of magnetic field near z = 0 plane 

and, hence, stability against plasma displacement along field lines. The second in- 

equality provides stability against global displacements of the plasma across magnetic 

field. In the region: close to plasma axis as well as very distant from it, the conditions 

(2.1), (2.2) are incompatible [7]. Therefore the region, selected by these inequalities, 

if it exists, has form of a ring. The above mentioned system of two magnetic dipoles 

with superimposed weak homogeneous external magnetic field gives first example of 

such “ring of stability”. Trying to ascertain which magnitude of the external field 

corresponds to arising the ring of stability readily gives a common guide of search for 

the system with the ring of stability. 

2.1.1 System of two magnetic dipoles 

Magnetic dipole m produces magnetic field 

3(mR)R - R2m 
R5 B =  



at the point with radius-vector R. First of all, we note that own magnetic field of 

pair of similar dipoles, directed along the axis z wich connects them, goes to zero at 

the equatorial plane z = 0 on a distance from the axis. If to choose a half of distance 

between the dipoles for the unit of length, then from (2.3) we get 

where B, = 4m is the field at the center T = z = 0 of coordinates, so that the 

null of the magnetic field is the circle of the radius T = d. A separatrice surface 

matches the null and separates the regions with reverse direction of magnetic field 

B. If to superimpose weak homogeneous magnetic field H, co-directed with the field 

B on the axis z of the dipoles system, the circle of second null, initially (at H = 0) 

placed at infinity (T = 03) in the equatorial plane, approaches to the first null and 

merges it near the radius T = 2 when H/Bo = 5-'/' 2: 1.79. Simultaneously with 

the merging, the regions of reversely directed magnetic field disappear (see Fig. 2.1). 

Sot  specifying further our chose of magnetic system, we show that it is the moment 

of merging when the ring of stability appears for disk-shaped plasma. 

lye can neglect the effects connected with cylindrical geometry of the problem 

and consider the magnetic field to be planar near null rings. Collating cylindrical 

coordinates {T, 'p, z )  to Cartesian ones {x, y, z), we can write the expansion 

of scalar magnetic potential $, which satisfies to the equation A+ = 0: in the following 

form: 

V'ith ascertaining the symmetry about the plane z = 0, the coefficients y, Y should be 

equalized to zero. The coefficient cy can be converted into zero by means of changing 

thc center of coordinates by a/2p along the axis z and redefining H to H + a2/4P. 

After this, the magnetic field B = V+ remains depending on the two parameters H 

and p only: 

B, = ~Pxz, By = 0, B, = H + P x 2  - Pz2 ,  (2-6) 
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Figure 2.1: Map of magnetic field near null. a - H / p  = -1, b - H / p  = +I. 
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with one of them, for instance P, being positive. With the approach (2.6) used, field 

lines are cubic hyperbolas. They are described by the following equation 

and are shown on Fig. 2.1. The magnetic field in the equatorial plane 

has the extremum, equal to H .  If HIP < 0; magnetic field nulls lay in the equatorial 

plane (see Fig. 2.1,a): 

, z 1 , 2  = 0, (2.9) 

while they are plased symmetrically on both sides from it if HIP > 0 (see Fig. 2.1 ,b): 

(2.10) 

The inequalities (2.1), (2.2): which determine the boundaries of stability ring, are 

transformed in the case of planar field by nicans of limiting transition to the form 

Inserting here Bo from (2.8), we get the condition 

1 H  H -- < 0 x 2  5 -, 
3 P  - P 

(2.1 1) 

(2.12) 

which can be satisfied when HIP > 0 only. For HIP > 0 there are two solutions; 

however one of them corresponds to outer ring of stability, which is separated from 

plasma's axis by the separatrix. Outer boundaries x = &JEI/p of the couple of 

rings are fixed by the condition of stability of global displacement, while the internal 

boundaries x = =kdm by the condition of stability of longitudinal displacemenrs. 

The configuration of the kind, shown on Fig. 2.l,b, can be created by two methods. 

In the first variant, the coils marked by the plus sign on Fig. 2.l,b, produce on their 

axis magnetic field co-directed with the external quasi-homogeneous field. This is 



configuration of non-paraxial mirror kind. In the alternative variant, the coils, marked 

by the minus sign, produce anti-directed magnetic field, forming the configuration 

of divertor kind. Dashed line on Fig. 2.1,b connects the extremums magnetic field 

along field lines, Le., the points where (B,V’)B = 0. The magnetic field achieves 

its maximum on the piece AB and its minimum on every other pieces, including the 

line OAO’. Hence, longitudinal stability is provided on the piece OAO‘; however, 

the condition of global displacement stability is not fulfilled there. Thus, the ring 

of stability exists only near the equatorial plane. In ’the divertor variant, the ring 

of stability can get close to the plasma axis, which lays below bottom edge of thr 

Fig. 2.1; when this occurs, the ring of stability disappears and two separate mirrors 

appear instead of the divertor. 

As it was already pointed out, merging of nulls and, hence, formation of stability 

rings in the system of two dipoles occurs for yery weak external field. However, from 

practical point of view: the opposite case, where non-paraxial anchor field is less than 

exqernal field o f  solenoidal part of an open trap, is more interesting. Considering for 

the ratio b of itilchor‘s magnetic field to external one to be small: we can rewrite the 

inequalities (2.1)? (2.2) in the form 

(2.13) d b  2 1 db d2b r db  d2b 1 db db  2 d r r 2 -  < - + -- 5 2(-) . (z) - F ( ~ - r d r 2 ) ~  d r - d r 2  r d r  d r  

As b --f O? the inequalities (2.13) can be satisfied in narrow interval close to the radius 

T ~ :  such that 

rd2b /dr2  + db/dr  = 0. (2.14) 

Having substituted rd2b /dr2  in the left-hand-side of inequalities chain (2.13) by 

-db/dr ,  we easy ascertain that it is less than the right-hand-side if 

(2.153 

Among all solutions ro of the equation (2.14), the inequality (2.15) separates those, 

which correspond to ring of stability. Using (2.4) we find that, in the case of dipoles 
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system, the equation (2.14) has two solutions TO = 2(1 f l/&)’/’, but only one of 

them, namely TO = 2(1 - l/&)’’’ = 0.85, satisfies to the inequality (2.15). This 

solution does not depend on sign of b, i.e., corresponding ring of stability exists at 

any direction of external field about the dipoles’ magnetic filed. 

Let us show that the ring of stability is separated by separatrix from the plasma‘s 

axis T = 0 if B,/H > 0, Le., if external magnetic field is opposite to the direction of 

dipoles’ filed at their axis. The separatrix is the filed line which goes through the nulls. 

When B,/H + f-0, magnetic filed nulls are placed near the dipoles. Using (2.3): we 

find the coordinates of the nulls. They are circles of radius ~ ~ ( 5 1 )  2: </rn/H placed 

approximately in the coils planes z = &l. The magnetic flux throughout the circles 

is equal to as = Equalizing it to the magnetic flux function @ = i iH * r2 
in the equatorial plane, we get that the separatrix radius ~ ~ ( 0 )  = 31/2B!/3 /22/3H1/3  

is significantly less there than T ~ .  

In the case, where external field is antiparallel to the magnetic dipoles ( B , / H  < 0), 

magnetic nulls are placed on plasma axis, while the separatrix surrounds the dipoles 

themselves and does not cross the equatorial surface. 

Thus: in the disk-shaped plasma, inserted into the field of two magnetic dipoles 

(;.e.: coils of small radius), there appears two ring of stability when H/B. = 1.79%. 

As H increases above the cited value, one of the rings (external one) disappears, 

while other ring exists up to H / B ,  + co; however the latter “departs” beyond the 

separatrix at some value of H .  

2.1.2 System of two close coils 

As an example, opposite to the system of two dipoles, we consider the magnetic 

configuration consisting of two closely placed thin equal coils, inserted into external 

magnetic field, co-directed to the coils. Once again we take a half of distance between 

the coils for the measure of length, but now suppose that 2t is much less than the coils’ 

radius, i.e., R >> 1. Near wire of such coils, their magnetic field once again can be * 



' considered in plane approximation. We introduce Cartesian coordinate system {x, z }  

with the center, laying at the middle of line which connects parallel currents and with 

axis z directed along the radius T = R + z of cylindrical system of coordinates. The 

axis T = 0 of the coils corresponds to infinitely removed point x = -w for the planar 

approximation R >> 1. Summing fields of linear currents I we find the magnetic field 

H in the equatorial plane z: 

B,,=-B.R[~- 1 4 , 
li 22 + 1 (2.16) 

where B. = -1iiI/cR is the field of the coils on their axis in the equatorial plane: and 

6 = iiH/B,R. Ascertaining the behavior of nulls of the function (2.16), it is easy to 

understand that there is a couple of stability rings when 161 2 1/2. Apart it, there 

are two more rings with one of them existing for any value of 6. 

The condition for the stability ring to exist (2.11) for the field (2.16) can be 

reduced to the form 
(x2 - 1)2 
2(z2 - 1) - 

1- < -z(2 - 3)26 5 1. (2.1i) 

lye first consider the case 6 > 0, when the external field H is co-directed with the coils' 

filed on their axis. Then maximum of magnetic field is formed under the coils on their 

axis. The couple of stability rings, appearing when 6 2 1/2, is placed on both sides 

from x = 1 in the region z > 0, i.e., outside the coils with the current. For 6 ----f 1/2+0, 

- 

outer ring of stability is in the region 1 + d m / &  5 x 5 1 + d-, and 

internal ring is placed symmetrically on other side from x = 1. As 5 ---f cay outer ring 

moves to x = 8: and internal one moves to z = +O, their widths decrease as 1/6. 

One more solution of the inequalities (2.17) exists for any 5 > 0. It corresponds to 

the most internal ring of stability which, for 6 -, +O, extends from z = - (Z  A) 
formally to x = -cc; in fact it extends to x - -R/Z, where plane approsimation 

breaks. Forth solution corresponds to the most external ring. For 6 --f +O it occupies 

* wide region 2 + 6 5 x 5 +ca but disappears after shrank to zero width at the point 
' 

z h  = (3 + 2"' + 25/3)*/2 = 2.95 when 6 = zh(xi + 3)/3(xi + = 0.122. 



Thus, there exist two rings of stability for 0 < S < 0.122 <, one for 0.122 < 6 < 
0.5, and three for 6 > 0.5. All three existing rings become very narrow as 6 4 co. 

Their boundaries are fixed by the following inequalities 

- & - 1/66 5 x 5 -& - 11126, 

1/66 5 x 5 1/36, (2.18) 

Let us now show that in the limit 6 + 00 (as well as for 6 4 1/2 + 0) the third ring 

is separated from the system's axis z = -w by separatrix, and, hence, for any 6 can 

not be used for stabilization of the plasma which occupies near-axis region, i.e., lays 

inside the separatrix. 

Alagnetic field nulls lays in the coils' plane when 6 >> 1. Substituting the coordi- 

nates of the nulls x = 1/26, z = &l into the magnetic flux function 

1 1 1 
4 4 

@(z, z )  = -B,R{xS - - In [x2 i- (z  - 1)2j - - In [x2 + (2 + I ) ~ : }  - 
c 

we get its value at the separatrix 

@, = -B,Rln 1 le61 + @o. 
7r 

Next, from the equation @(xcd,O)  = Q S  we find the coordinate of the separatrix in 

the equatorial plane: x, = (1/26) In 1.61. Comparing it with (2.18) proves the above 

made statement. 
/ 

If 6 < 0; minimum of magnetic field is formed under the coils. Every results are 

reproduced from previous ones by means of simultaneous change of signs of 6 and x. 

It appears therefore, that there is by one ring of stability, placed inside the separatris, 

for 6 < -0.5 and for -0.;22 < 6 < 0, but no single ring for -0.122 < 6 < -0.5. It 

' e  should be mentioned however that the configuration with S < 0 might have no big 

*. value because it has nulls on the axis inside plasma. 



2.2 Stability of isotropic plasma 

Here we consider isotropic plasma with a specific heat ratio y and introduce the notion 

for the specific volume 

B (2.19) 

as a function of magnetic flux @. The ring of stability in the isoptropic plasma is the 

region where 

(2.20) 

Let us ascertain whether the ring of stability appears right after merging of magnetic 

field nulls as it does in disk-shaped plasma. Published till now results of numerical 

calculation [7] did not exclude such possibility. They show that in the configuration 

of two dipoles the ring of stability appears for H/B.  2: 2.3%: while nulls merging, 

as it was mentioned in the Sec. 2.1, occurs for H / B ,  2: 1.8%. Little discrepancies 

between the two values of H / B ,  could be prescribed to an inaccuracy of numerical 

calculation. 

As before, we can use planar approximation (2.6) near the region of nulls merging. 

It was established for the example of disk-shaped plasma that  the rings of stability 

exist only when HIP > 0 and are placed symmetrically on both sides about the line 

00' which links magnetic field nulls (see Fig. 2.1). Hence, it is sufficient once more 

to analyze the case HIP > 0 only. 

Having noted that dZ/B = dx/Bz = dx/23zz ,  and excluding J by means of the 

field line equation (2.7) we get from (2.19): 

(2.21) 

where [ = IzI/JH/p, f = I@ - Q o i J m ,  and is a real root of the equation 

J 3 / 3  T - f = 0. 

The condition (2.20) for the ring of stability to exist under the planar approxima- 
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tion comes to the requirement for the minimum of the function 

(2.22) 

be less than y. In the limiting case f = 03 we have S = 4, while for f + 0 get 

S = -'In f .  The function (2.22) achieves its minimal value S ~ n  = 2.69 for f = 0.48. 

Thus, in the contrary to the case of disk-shaped plasma, no ring of stability appears 

at the moment of nulls merging if plasma is isotropic and its specific heat ratio is not 

fantastically large, i.e., y < 2.69. 

2.3 Stabilization by sloshing ions 

Let us ascertain now how the effects of non-paraxiality affect stabilization of flute 

perturbations by sloshing ions. This method of stabilization is based on formation 

of a piece with relatively large slope of field lines to the system's axis in the region 

where there pressure peak of an anisotropic plasma is quite big so that :-I; - _  

(2.23) 

where P(@: B )  = pit(@, B )  + p l ( @ ,  B). The condition (2.23) is obtained \:-ith paraxid 

approximation used, which means that slope angle of field lines is nevertheless small 

in comparison with right angle. 

In order to ascertain how the condition (2.23) is modified after accounting for the 

effects of non-paraxiality, we consider the magnetic field differing a little from the 

homogeneous field H :  ' 

Moreover, we consider that b , ,  4 0 as z + +co. When writing out the equation of 

a field line in such weakly inhomogeneous field, it is useful to distinguish line's small 

'. deviation [ << TO from straight line: 



Sufficient condition for flute modes (large-scale as well as small-scale ones) to be 

stable in a plasma with steep boundary is W > 0 where the integral 

(2.26) 

is calculated along the boundary field line. Here @o is the magnetic flux throughout 

the circle of total plasma radius, K curvature projection onto external normal (directed 

from the axis) of the field line. Introducing the notation f ( B )  = P(@O, B ) / B 2  and 

keeping the terms of order not higher than first power of b,,,/H, we get from (2.26) 

(2 .2i)  

Integrating first terms yields zero since J d l ~  = 0 and Br = 0 at the ends of the 

intenal of integration. As to the remaining terms (already having small parameter), 

we can substitute there K = d t / d z  = b,/H. Making integration of (2.27) by parts 

and accounting for 

casts the condition 11- > 0 into the form 

where index '0' has been omitted, H substituted by B, and 

d br 2 d 
d r  r dr E ( @ )  = T*- dz (-) /2 -  1 d z  (rbr)2.  

(2.28) 

In paraxial approximation, the inequality (2.28) coincides with (2.23) since b, 0: r 

and, hence: E = 0. 

In the limiting case dln !bTl/aln r -+ x, which corresponds to "planar" magnetic 

field approximation near the conductors with current, we get E = 1/2. Hence, instead 

of (2.23) w e  have the condition 

(2.29) 



.. 

For the latter condition to be satisfied, greater anisotropy is needed than the paraxial 

region needs. 

Now we shall show that the latter conclusion is also valid in the intermediate 

region between the axis and the conductors. Having b, expanded into Furiet integral 

of Bessel’s functions I1 : 

we find that 

Since 

it is easy to prove that the derivatives of the integrals in both sides of the inequality 

(2.28) are positive. Hence, 

€(@) 2 E(0) = 0. 

Thus, non-paraxial effects strengthen the requirements for the degree of inisotropy 

needed for stabilization of flute modes in axisymmetric open mirror devices for plasma 

confinement. 

With rejecting the approximation of quasi-homogeneous field, we now estab- 

lish obligatory condition of stabilization by sloshing ions for planar magnetic field 

{BJx ,  z),  0, Bz(x ,  2)). Steep boundary plasma in a planar magnetic field is stabile 

against flute perturbation provided that 

(2.30) 

U’e adopt the convention to count magnetic flux from plane of symmetry x = 0, which 

is analog of the axis if symmetry T = 0 for the case of an axisymmetric magnetic field, 

= [ dx BJz ,  2). 



We shall show that if P(@, B)  = F(@)G(B) and 

for every B,  then W / F  is a monotonically decreasing function of a. Since 11,’ = 0 for 

@ = 0 (Le., on the system’s axis) from this statement it must follow that the opposite 

inequality 

is needed to be fulfilled, at least for some values of B: for stabilization of flute per- 

turbations. 

To prove this, we calculate the derivative dlV/d@, assuming that magnetic field is 

vacuum and, hence, 
1 dB dB 
B a n  a@’ K = - - = -  

where stands for the derivative over the normal to field line. Bringing in the 

derintive a/a@ under the integral sign in (2.30) and accounting for BBd1,’On = 0, 

we get 
d 117 G d2B dB d G 
-- d@ F = / d l  [-- B4 an2 + (- an 1 2 - 7 1  dBB - 

Subs ti tuting the relation 

a2B 2 d B  dB a2 B -- - - [(-)2 4- (,,.I - - 
an2 B an a z 2  , 

which follows from the equations divB = 0, rotB = 0, and integrating the term 

d2B/dZ2 by parts we get finally 

which ends the proof. 

(2.31) 



.- 
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Chapter 3 

Experiments on the GDT facility 

Main Contrubutors:  V.Anikeev, P.A.Bagrianskii, P.A.Deichuli, A.N.Karpushov, 

V.N.Khudik, A.Ivanov, A.I.Rogozin, T.V.Salikova 

3.1 Measurements of a plasma equilibrium re- 

sponse to external multipole fields in an ax- 

isymmetric gas-dynamic trap 
9 

Y. Ani keev, P. A. B agrianskii , V.N .K hudi k, A .Ivanov, T.V. S ali kava 

3.1.1 Introduction 

In this paper we report on the results of studies of a plasma equilibrium in the gas- 

dynamic trap in the presence of small non-axisymmetric disturbances of the main 

magnetic field. These studies were initiated by experimental oliservations on the 

plasma behavior during its decay in various configuration of the magnetic field. Re- 

cent studies of a gun-produced plasma decay in the GDT facility have shown that 

violation of the hlHD-stability criterion results in growth of large-scale flute-like per- 



Parameters 

Mirror-Mirror 

Diameter of Central 

Cell Vacuum Chamber 

Magnetic Field 

Coils Current Duration 

Base Pressure 

Central Cell 

Plasma Density 

Electron Temperature 

Value 

7m 

l m  

0.22T/16T - lOOms 

5 x 1 0 - 7 ~ ~ ~  

0.5 - 1 x 1 0 1 4 ~ - 3  

up to 40eV 

Table 3.1: Parameters of the GDT facility. 

turbations. When driven unstable these perturbations cause fast plasma losses across 

the magnetic field rll. _ _  During these experiments it was found that the plasma behav- 

ior, in particular, in equilibrium state e-shibited a significant role of non-axisymmetric 

disturbances of magnetic field. This gave raise to experimental efforts to qualify these 

effects and, if possible, find the ways of their controlling. The experimental layout is 

schematically depicted in Fig.3.1. 

The GDT experiment consists of an axisymmetric central cell and two outboard 

NHD-anchors attached from both ends. Axisymmetric magnetic field has a strength 

of 0.15-0.22T at the midplane and up to 16T at magnetic mirrors. The field was 

produced by a set of axisymmetric coils installed on the vacuum chamber. Main 

parameters of the GDT facility are summarized in the Tabl.3.1. More details on the 

facility and key objectives of the experimental program it was build for, are given in 

PI. 
The plasma build-up in the trap was performed by a plasma gun located beyond 

During the gun operation plasma the magnetic mirror in one of the end tanks. 



remained macroscopically stable, within certain limits, even if the instability threshold 

defined by the pressure-weighted curvature criterion [3]was exceeded. This stability 

was attributed t o  the electric contact of plasma in the central cell with the plasma 

inside the gun where it is supposed to be highly conductive across the magnetic field. 

The peak plasma density reached during a typical shot for 3ms gun operation was - 6 x 1 0 1 3 ~ - 3  with electron temperature 5-1OeV. 

As it was previously reported [llafter the gun was turned off, the plasma be- 

havior and parameters of the decay became sensitive to the ai7eraged curx-ature of 

the field lines in the trap. In an unstable decay, the azimuthal spectrum of driven 

perturbations was found be dominated by a rigid-shift mode of m=l. Further exper- 

iments [4]have shown that measured correlation between the growthrates of unstable 

azimuthal modes are consistent with the theory including finite Larmor radius effects 

[51. 
These effects are significant for standard conditions of the GDT experiments even 

if any auxiliary heating (ICRF or neutral beams) was not applied to increase the 

plasma temperature over its initial value of G-lOeI'just after the gun off. 

Temporal development of the flute modes were observed with the use of Langmiur 

probes located near the magnetic mirrors at various azimuthal positions. Design of 

the probe array and parameters of the hardware were those that allow to measure 

amplitudes and phases of the modes up to m=12 in lOOkHz frequency band. Plasma 

column offset and radial width were measured by making use of linear probe arrays 

located in the central cell and inside the expander. 

111 the stable decays, plasma column after the gun turned off had a chaotic initial 

offset from the geometrical axis of the trap. Suhscquently, during -300-500psec, the 

plasma ivolved to a position that was almost the  same for different shots. The motion 

had a form of shifting into the final position that further remained invariable during 

the decay (-2ms) or it appeared as a damped oscillation about this position. A 

few samples of trajectories of center of the plasma column during the relaxation are 



.. 

shown in the Fig.3.2. As it easily seen from the figure the final position of the plasma 

centroid is shifted considerably from the geometrical axis of the machine. 

In [SI the influence of external non-axisymmetric disturbances on a plasma equi- 

librium in a long axisymmetric open trap was treated in approximation of ideal IIHD- 

theory. It was found that the plasma should respond to dipole disturbances by off-ads 

shifting. Higher order multipole disturbances should cause more complicated pertur- 

bations of pressure profile with corresponding azimuthal number. We attributed the 

plasma offset observed in our experiments to uncontrollable dipole disturbances of 

the magnetic field. Rough estimations have indicated a few gauss transverse field 

would be sufficient for that. In particular, residual dipole disturbances of the main 

axisymmetric field may result from misalignments of the coils, existing of soft-iron- 

made parts near the device, etc. Because of the pulse character of the main magnetic 

field, screening currents in metallic structures of the walls of the building also pro- 

vide considerable contribution to the distortions. Xote that the unstable' decays also 

exhibited a preferable direction of the centroid motion during the decaFs.(see Fig.3.3). 

Completely avoid distortions of the axisymmetric magnetic configuration is practi- 

cally impossible. \Ye therefore concluded that it is very important to develop reliable 

control system of a plasma equilibrium position and shape which will be able to re- 

duce these distortions to acceptable level. Furthermore, this system, of course if it has 

a proper frequency response, can be used to stabilize large scale flute perturbations. 

In this report we studied the possibility to control the plasma equilibrium by the use 

of coils that produce a,small transverse magnetic fields in the regions of the plasma 

expansion beyond the mirrors. As it was first mentioned in :6], because of the fact 

that the main magnetic field here is quite small, the external field applied in these 

regions altering the equilibrium to a maximum degree. 



3.1.2 Estimates of the equilibrium parameters in the pres- 

ence of multipole disturbances. 

A plasma equilibrium in an axisymmetric gas-dynamic trap with multipole external 

disturbances of the magnetic field was first discussed theoretically in [7]. The equilib- 

rium was treated in an approximation of ideal magneto-hydrodynamic. To facilitate 

the discussion of our experiments we display the main relationships following mainly 

to the results of [6,7]. In case when a small dipole field is applied, the components 

of the magnetic field can be written in the form ( using a long thin approsimation): 

H, = H(z) ,H= = 6Hx(z)  - EH'(z), where H(x) - is unperturbed on-axis magnetic 

field. It follows from the results of [7] that at a midplane, surfaces of a constant 

plasma pressure are to be enclosed circles: 

(1) (X + $)2 + (Y g)'= const 

Here X and Y -are coordinates of a point at the midplane, 

function F(H) describes pressure distribution along magnetic field lines in the gas- 

dynamic trapis] : 

PL+Pli = 2P(..Y, 17)F(H):  R- current mirror ratio, functions 62 = R(z)-'j2 s f ,  R(=)*/2%di,  

Sy = R(z)-'I2 f, R(z)'I2 * d z  were the integrands comprise corresponding compo- 

nents of the perturbations of the field- 6Hx, SHY. 
H ( z )  

If, simultaneously: a quadrupole disturbance of the form 6Hx = --3b(,-)z;bHy 1 

+2b(z)y: 6H,  = - ( x 2  - y2)$) is applied, it makes the surfaces of a constant pressure 

be ellipsoids: 

(X + g ) 2  (Y + 5 ) 2  = const 
c 2  + c2 



with coordinates of a center: [-6; -91 and ellipticity of E= = E .  c 
bY 

Parameters of the ellipsoids are functions of the following integrals: 

e dsF(H)R1I2E’I2 d2 
H2 dz2  

- SX 

e dsF(H)R1/2E-1/2 8 
H2 dz2 - SY 

where E ( z )  = exp(4J,” a d z )  is a function of the b(z), that describes an ampli- 

tude of the quadrupole perturbation of the field. 

Value of the integrals which define off-axis shift of the entire plasma column and 

its ellipticity, strongly depends on a choice of upper limit that corresponds to the 

points near end walls where the magnetic field is small. It is quite obvious that 

response of the plasma column is determined mainly by a region at the radial profile 

where pressure gradient has its maximum. According to this consideration , while 

integrating along the axis we searched for the paramet.ers at thcse field lines at the 

same z-positions. We fixed the upper limit in z by a condition that one of the two 

imposed limitation will be broken at a field line corresponding to a maximum of the 

pressure gradient: ~p 5 ~ p , ; ~ , / 3  5 1. For our experimental conditions, practically 

the former limitation was violated. The value of Kp,;t in calculations was varied from 

0.1 to 0.5. 

It is worth noting that stability properties of the plasma can he judged quan- 

titatively from the data on the plasma offset as a function of amplitude of applied 

dipole perturbation. The C-integral entering the Eq.1 represents. with a n  accuracy 

of multiplying on a nonessential factor, the pressure vxighted curvature. Esactly the 

same expression enters the kIHD-stability criterion [3] for the localized modes with 

m >>1. Of course, we consider a paraxial approximation to be valid. 



Let split the stability integral into two parts one of that corresponds to segment 

of the field line in the central cell and another to that in the end cells. The stability 

criterion is then can be reformulated in terms of a " safety factor" Q which is defined 

as absolute value of the ratio of these integrals. The plasma will be stable against 

curvature-driven flute localized modes when QL1. Similarly, the safety factor can 

be defined for arbitrary radial and azimuthal modes. In our previous experiments-91, 

the Q-value measured for the gun-produced plasma in the GDT facility appeared be 

somewhat less than calculated for m=l mode with ~ t p ~ i ~ = 0 . 5 .  

. -  

Measurements of the plasma off-axis shift under dipole disturbance externally 

applied inside the expander, can provide one with the data on the safety factor for 

high-m localized modes. This value then can be used to estimate Q for large-scale 

modes which control the plasma life time when driven unstable. II'ithin t h e  frames of 

the model used in ;9,10,llj for analysis of the experimental data one is able to obtain 

independent estimate of Kp,it, which define upper limit in C-integral. This approach 

suggests, of course, that parameters of the plasma flow in the expander is correctly 

covered by either izothcmial or adiabatic niodel ;lo;. 

-4 comparison to t h e  experimental data on electrostatic potentials in expander 

show, that these models are reasonably accurate only for high electron temperature 

in the central cell'9-. . -  Severtheless, this approach to estimate the parameter of K P , ; ~  

seem to be important. 

3.1.3 Results of measurements. 

Dipole perturbations. 

Experimental layout and locations of the main diagnostics used are shown in 

Fig.3.4. Dipole perturbation in the cspandcr was produced by a pair of coils with 

radius of 0.84 installed at  the distance between them of 2..1 (not shown in thc figurc). 

The magnetic field generated by the coils was practically homogeneous over the region 

in expander occupied by the plasma. Fig.3.5 shows experimentally measured shift of 
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the plasma centroid as a function of transverse field amplitude in the expander. 

Also shown in the Fig.3.5 are calculated curves for various values of tcp,it in the 

case of adiabatical plasma flow in expander. The curve corresponding to 1cp,i~=0.3. 

gives the best fit to experimental data. Sensitivity of the calculated offset to the 

limitation imposed on tcp,it is illustrated by the curves with tcpm;,=0.1;O.5 (curves ,). 

Quadrupole perturbation. 

Quadrupole perturbations in the expander were generated by four properly con- 

nected coils of 0.5m in diameter (Fig.3.4). Ellipticity of the plasma column was 

measured by a linear array of Langmiur probes (6) located inside the central cell 

and by 8mm-interferometer (8) located just beyond the mirror throat in expander. 

To obtain the ellipticity from interferometer data, we used Ialues of ( N L )  measured 

along the perpendicular plasma diameters. 

On-axis amplitude of the perturbation, determined by the function b(z), signifi- 

cantly changed inside the expander. Fig.3.6 shows experimentally measured ellipticity 

as a function of b(z)-\-alue directly in the z-point where disturbing coils were located. 

\\-e observed the expected ellipticity, calculated €or tcp,it =0.3, being approximately 

3-4 times larger then the measured values. 

Possible reasons for that will be discussed in the next section. 

3.1.4 Discussion. 

As it was already mentioned, in our previous experiments on the RIHD-stability limits 

in the gas-dynamic trap, we have found a contribution of the expanders to the stability 

criterion be considerable less than calculated for ~p,i~=0.5. Present experiments also 

indicate that ~p,;~=0.3 is a more appropriate value to be used. Thus it can be 

concluded that the safety factor inferred from the  data on the equilibrium response 

to dipole disturbance. gives a reasonable estimation. 

The origin of the difference between expected and measured responses of the 

plasma equilibrium to quadrupole disturbance is now not well understood. The ideal 

. 



MHD-theory predicts the response to be inversely proportional to slightly modified 

stability criterion of localized modes [6,7]. Ryutov [12] has pointed out that where 

may be several pitfalls. Specifically, he suggested that the effects of finite ion Larmor 

radius may qualitatively change the response as they prevent a plasma be distorted 

with azimuthal numbers m 2 l .  The same should be valid if the entire plasma column 

will forced to  rotate by a transverse electrical field. Further theoretical considerations 

and experiments are needed to provide quantitative answers. Comparison of measured 

response to quadrupole perturbations apparently indicated that there should be a 

cause of its significant reduction comparing to ideal 31€ID-theor\-. 

The majority of data were taken when the magnetic field in the end tank was 

of the expander’s configuration. During these experiments the cusp coils have been 

already installed on the GDT. Thus, properly reconnecting outer and inner coils of 

the end tank we were able to choose the cusp or expander for use in a certain series of 

shots. A distinct feature of the cusp-anchored gas-dynamic trap is the singularity of a 

specific volume of flux tubes 1 near the axis. A theory that relevant to this case [13] 

deduces the equilibrium response quite different comparing to that for the trap with 

an expander end cell. The ellipticity vs amplitude of a quidrupole disturbance in the 

cusp is presented in Fig.3.7. The fitting curve for the experimental data reasonably 

agree with our theoretical estimates. 

dl 

. 
3.2 A neutral beam probe for measurements of 

density fluctuations in the GDT experiment. 

A.A.Ivanov, A.I.Rogozin 

.A neutral beam prvbe was developed to measure density profile and fluctuations 

in the central cell of the GUT. This diagnostics has been already used in the initial 

stage of the GDT experimental program [14]. Yet it was found that a current and an 

energy (15-30kV) of the ion source used are too small to obtain reasonable data with 



powerful neutral beam heating. Notwithstanding the diagnostics was located beyond 

the turning point of the sloshing ions, scattered particles provided too large noise 

signal to surface-barrier detectors. This was very difficalt to avoid since the energ!; 

of scattered particles were of the same order as in the diagnostic beam (-10-15keI;). 

Newly developed diagnostics has increased capabilities due to higher accelerating 

voltage and the beam current. Fig.3.8 is a schematic diagram of the major components 

of the system designed for GDT. The neutral beam probe incorporates a deuterium 

neutral beam and a secondary ion detectors. The detectors are collimated to see 

the ions borning from the beam particles on small segments of the beam trajectory. 

The collisional ionization rate of the beam atoms is almost independent on plasma 

temperature. Thus, the density profile can be deduced from detector currents data 

and knowledge of the large (with a scale of - 1cm)density fluctuations along the 

beam. Main parameters of the diagnostics equipment is listed in the Tab1.3.2. 

Parameters 

Species 

Beam energy 

Beam current 

Init i a1 beam diameter 

Beam divergence 

Spatial resolution (achieved in GDT) 

Time resolution (achieved in GDT) 

RF-power(27MHz) required to ion source 

Di, H' 

up to 60kV 

0.1-2.2mA 

1 omm 

-1 deg. 

-1cm - 20psec 

200w 

Table 3.2: Parameters of the source and power supply system. 

The parameters presented at the Tab1.3.2 are those achieved during tests before 

installing on the GDT midplane. Initial attempts to operate on GDT have shown that 

residual detector currents during neutral beam heating are small enough allowing to 
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start the measurements. 

3.3 Stability properties of a cusp-anchored gas- 

dynamic trap. 

V.Anikeev, P.A.Bagrianskii, P.A.Deichuli, A.R.Karpushov, 

A. A. hanov, T.V . S alikova, 'slu . X .Tsi dul ko 

3.3.1 Int ro duct ion. 

Theory predicts that it is possible to increase the safety factor over that for a single 

expander if one uses a cusp end-cell. The axial confinement time of a collisional plasma 

in a cusp is substantially large then that for the expander. This circumstance can 

be exploited to obtain more dense plasma for the same inward flus from the central 

ccll. A pressure-weighted curvature of the field lines corresponding to a maximum 

density gradient at the midplane is inversely proporilonal t o  ii magnetic pressure 

which is much higher in the cusp then in the expander. Hm-ever, increased density in 

the cusp overpowers the influence of this unfavorable factor. Simple particle balance 

model was developed to estimate the plasma parameters in the cusp. It was assumed 

that the density on a field line is determined by a balance of collisional flows through 

a point and an outer ring cusps. \Ire also assumed the entire volume of the cusp filled 

by the plasma of a constant density. To avoid the divcotron instability driven by 

a high speed ion drift in the layer of the ring cusp the  limitation was applied that 

the layer width should be large then two ion Larmor radii. Additional coils set were 

dctsigncd to generate optimal cusp configuration. In early 1992 the GDT facility was 

fitted by this coils set. Fig.3.9 shows a schematic diagrarn of the cusp end-ccll. hlain 

parameters of the cusp are summarized in the Tab1.3.3. 

The estimation of safety factor included in the Tab1.3.3 refers to the case of 50eV 

electron temperature. 
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Parameters 

Ring Cusp Field 

Minimum Field * 
Plasma 

Calculated Safety Factor 

Layer Width in Ring 

cusp 

Ring Cusp Radius 

Ion Larmor Radius 

in the Ring Cusp 

up to 1.76T 

0.04T 

0.1 

5 

0.12cm 

53.5cm 

0.06cm 

Table 3.3: Cusp Parameters. 

3.3.2 Experiments with Gun-Produced Plasma. 

X hydrogen-fed plasma giin located in the opposite expander was used for plasma 

build-up in the trap. The gun was normall?- operated within 3ms. The initial plasma 

density within the range of 5 - 10 x l O ” ~ c r n - ~  and electron temperature 5-lOeV can 

be established. The radial plasma profile in the cusp in the vicinity of the mirror 

throat is shown on the Fig.3.10. Local radial coordinates shown on the Fig.3.10 

are those that were mapped on to the midplane. The density was measured by a 

movable triple probe from shot to shot. Existence of a cavity in the profile can be 

explained by the fact that bundles of the field lines near the cusp axis have a larger 

volume to fill by the plasma flow from the central cell. We performed calculation 

runs to verify this assumption using by experimentally measured values of plasma 

density and temperature in the central cell during the plasma build-up. The results 

were found be quantitatively consistent with the data. They are also presentcd in 

the Fig.3.10. Outer half of the cusp was almost empty with the exception of the 

near-axis region. Possibly it was due to the  plasma penetration through the null 



of the cusp. The unfavorable consequence of the cavity existence is that since the 

local contribution to stability integral is determined by the local density gradient 

(particularly by its sign), the safety factor for global hIHD-modes will be decreased. 

Fig.3.11 shows plasma profile in the ring cusp. The width of the profile was in 

a good agreement with the measurements near the magnetic mirror. This indicates 

the absence of significant plasma losses in the layer. We were able to change plasma 

pressure in the cusp and its contribution to stability criterion by varying of the mirror 

ratio in the central cell. Similar procedure was used previously for measurements of 

safety factor for the GDT with the expander[9]. The plasma life time vs mirror 

ratio from the central cell to the cusp is plotted in the Fig.3.12. In contrast to 

our expectations, above the mirror ratio of -30 plasma lifetime rapidly falls down 

indicating enhanced plasma losses. All diagnostics also have shown a development 

of large scale perturbations in the central cell which would cause these losses. It 

was observed that the plasma motions in the central cell and in the cusp were not 

correlated. Plasma position in the cusp was absolutely insensitive to a large amplitude 

shift of the plasma column in the central cell. 11-e attributed this observation to the 

drive of the resistive ballooning instability [15:that had to occur for small plasma 

temperatures. Our study of the plasma heated by neutral beams demonstrates the 

importance of the electron temperature. There are some indications of a trend for 

the correlations to raise with T, in qualitative agreement with the theorytl51. Since 

we were not satisfied with the existence of the cavity on the density profile in the 

cusp we tried to fill it by making use of a plasma gun which fired directly into the 

cusp. Density profile and temporal evolution of on-asis plasma density which were 

measured with additional gun on is shown in Fig.3.13. Curve labeled a) in the Fig.3.13 

illustrates a time history of the on-asis density during the additional gun operation. 



3.3.3 Experiments with Neutral Beam Heating. 

As the gun-produced plasma was observed to be unstable we were continuing experi- 

ments with the neutral beam heating. Temporal dependence of absorbed power from 

the neutral beams operated with 15kV energy is presented in Fig.3.14. Also shown in 

the Fig.3.14 are total power of charge exchange losses, power transferred to plasma 

electrons by the drag of the sloshing ions and a growthrate of the sloshing ion’s energy 

content. Electron temperature of the plasma during the heating and energy content 

of sloshing ions are shown in the Fig.3.15i3.16. 

bIultichord attenuation data obtained from the main neutral beams are presented 

in Fig.3.17 for the shots with the cusp coils on and off. In the latter case, the plasma 

was strongly unstable. Rapid plasma perturbations with characteristic scales of order 

of the plasma radius were observed. In the former case, in contrast, the plasma profile 

was well defined although fast motions of the plasma were also monitored. Plasma 

density at the periphery was even increasing during the heating which we attributed 

to a gas release from the walls impinged by the beams. Unfortunately, because of the 

fast changes of the plasma parameters during the decay with the neutral beam heating 

and a significant shot-to-short variability we were not able accurately measure the 

safety factor of the cusp-anchored gas-dynamic trap. Nevertheless, the bulk plasma 

temperature in the range of 30-40eV and maximal density of the sloshing ions of order 

of - 1 x 1012cm-3were obtained. Thus we concluded that the plasma is globally stable 

at least for the large scale flute-like modes. Temporal behavior of the safety factor 

during the heating was calculated with the use of the plasma parameters measured 

in the central cell and in the cusp( Fig.3.18). For the hollow plasma profile the safety 

factor for the  entire plasma accounting contribution of the sloshing ions appeared to be 

above the instability threshold while for the filled profile it was favorable throughout a 

decay (curve b)). We suspect that the plasma behavior in these experiments may has 

’ a certain concern to the theory described in the first two-chapters of present report. 

It is very likely that effects of magnetic drift of the sloshing ions and an interaction * 



with a limiter result in significant difference of stability properties expected from ideal 

MHD-theory. 

, 
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Figure 3.2: Plasina centroid motion during stable dccays. 
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Figure 3.3: Centroid motion during unstable decays. 
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Figure 3.4: Experimental layout and diagnostics. 

1.Plasma gun; 2. Mirror coils; 3. Central cell coils; 

4. Expander coils; 5. Disturbing coils; 6. Linear 

probe array; 7. Movable triple probe; 8. 8mm- interferome ter. 
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Figure 3.5: Plasma offset vs amplitude of dipole disturbance 
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Figure 3.6: Elliptisity vs amplitude of quadrupole disturbance. 
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Figure 3.7: Elliptisity vs amplitude of quadrupole disturbance in the cusp. 
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Schematic diagram of the neutral  beam probe diagnostics 

1-vacuum chamber  ; 2-plasma cross section ; 3-region occupied 
by sloshing ions ; 4-ion source ; 5-deuteriuin beam ; 6- secondery 
ion trajectories ; 7-detectors ; 8-RF-discharge volume ; 9-magnetic 
coil ; 10-extracting electrode ; 11-electrostatic lens ; 12-neutrali- 
zation cell . 



t o  central cell - 

5-Plasma absorber 
6-Ti-pump 
7-Additional plasma gun 

Figure 3.9: Schematic of Cusp End Cell. 
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Figure 3.10: Plasma Profiles in the Cusp. 
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Figure 3.11: Plasma Profile in Ring Cusp. 
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Figure 3.12: Plasma Lifetime its a Funtion of Mirror Ratio. 
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Figure 3.13: Plasma Parameters in the Cusp with additional Gun. 

a.Tempora1 variation of on-axis Density;b. Plasma Profile in the Cusp. 
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Figure 3.14: Energy balance during neutral beam heating. 

1 .Pbeam- trapped power; 2.Pdrag-power transmitted to plasma electrons; 3. P,,-charge- 

exchange losses; 4. %-growth rate of sloshing ion energy content. 
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Figure 3.15: Electron temperature. 
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Figure 3.16: Energy Content of Sloshing Ions. 
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Figure 3.17: Plasma profile during neutral beam injection. 
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Figure 3.1s: Calculated Safety Factor During the Heating. 

a,For hollow profile in the Cusp.; b. With additional Gun On. 
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