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Abstract 

Ultra-short-pulse reflectometry is studied by means of the numerical integration of a 
one-dimensional full-wave equation for ordinary modes propagating in a plasma. The 
numerical calculations illustrate the potential of using the reflection of ultra-short-pulse 
microwaves as an effective probe of the density profile even in the presence of significant 
density fluctuations. The difference in time delays of differing frequency components of 
the microwaves can be used to deduce the density profde. The modification of the reflected 
pulses in the presence of density fluctuations is examined and can be understood based on 
considerations of Bragg resonance. A simple and effective profile-reconstruction algorithm 
using the zero-crossings of the reflected pulse and subsequent Abel inversion is 
demonstrated. The robustness of the profile reconstruction algorithm in the presence of a 
sufficiently small amplitude density perturbation is assessed. 
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I. INTRODUCTION 

Reflectometry has become a commonly used diagnostic for probing density profiles 
and fluctuations in laboratory plasmas. The primary reflectometry techniques have 
involved FM radar systems consisting of either a broadband swept-frequency source or a 
set of discrete narrowband frequency sources with matching multi-band detection 
systems.1-3 This paper is motivated by the recent innovation of using moderate pulse 
( T ~ Z  200 ps) or ultra-short-pulse ( T ~ Z  1-3 ps) microwave sources for advanced 
reflectometry applications.48 It is hoped that pulsed techniques might be found useful in 
probing density profiles where swept-frequency sources with much longer sweep times 
have had difficuties.991* Ultra-short-pulse reflectometry offers the advantages that a single 
short pulse replaces multiple microwave sources at discrete frequencies or a swept- 
frequency so=, and many pulses can be launched and detected over a time interval that is 
short compared to the typical time scales on which the plasma density and other profiles of 
interest evolve. 

. In ultra-short-pulse reflectometry, a very short pulse of microwaves is propagated 
into a spatially nonuniform plasma. The pulse has a frequency content governed by the 
shape and duration of the pulse. Because the reflection of an ordinary mode of a given 
frequency occurs where the local plasma frequency (which depends on the square-root of 
the electron density) equals the mode frequency, the various frequency components 
comprising a short pulse will be reflected by plasma layers of differing density and will 
experience differing time delays in returning back to a detector located in or near the 
microwave launching structure. From the observed relation between the frequency 
components and the corresponding time or phase delays, the plasma density profile can be 
inferred using asymptotic methods, such as Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) 
theory and an Abel inversion as in conventional swept-frequency reflectometry.11912 The 
validity of such a procedure can be checked by comparison with a direct numerical 
integration of the wave equation, and the experimental results can be checked by 
comparison with alternative diagnostic measurements of the density profile. However, the 
conventional phak integra€ and WKBJ techniques are unable to address the scattering of 
the electromagnetic waves in the presence of fluctuations localized near the reflection layer 
of the electromagnetic waves. In this case, the Born approximation may be used to model 
reflectometry for small amplitude fluctuations;ll and direct numerical solutions of a full- 
wave equation also have been undertaken.12.13.14 The work in Ref. 14 provides a 
comprehensive study of a direct numerical solution of a one-dimensional wave equation, 
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while Ref. 15 presents a complete analytical treatment based on the Born approximation of 
wave scattering by fluctuations. The validity limits of the analysis in Ref. 15 are delineated 
in Ref. 14, and extensions beyond the Born approximation are obtained. 

Research on short-pulse and ultra-short-pulse reflectometry has focused on the 
challenging technology aspects, the design and operation of the systems, and proof-of- 
principle experiments. There has been little or no analysis and modeling specific to short- 
pulse reflectometry. Here we present the results of one-dimensional numerical solutions of 
a full-wave equation describing the propagation and reflection of a short pulse of ordinary 
modes in a spatially nonuniform plasma. Our numerical studies address the influence of 
density fluctuations on the reflected pulse. The reflected pulse is spatially broadened by the 
spatially nonuniform density profile. The phase of a frequency component within the pulse 
is linearly perturbed by a small-amplitude fluctuation of a given wavelength if the Bragg 
resonance condition is satisfied (if the wavenumber of the density fluctuation is twice the 
local wavenumber of a frequency component of the probing microwaves at a particular 
density in the plasma). When.the density fluctuation amplitude becomes large, the 
scattering of the microwaves by the density fluctuation is more pronounced, and distortion 
of the reflected pulse occurs. The numerical solution of the full-wave equation can treat 
this when the Born approximations would have failed. Although the reflected pulse can be 
significantly distorted by scattering from density fluctuations, our results indicate that the 
spreading of the pulse may still provide a useful measure of the background density 
gradient and that accurateprof"lle reconstruction is possible for weak enough fluctuations. 

We present several numerical examples illustrating pulsed reflectometry and the 
effects of density fluctuations in Sec. II. Conclusions and questions for future research are 
offered in Sec .  III. 

. 

11. NUMERICAL MODELING OF ULTRA-SHORT-PULSE 
REFLECTOMETRY 

The one-dimensional numerical calculations presented here illustrate fundamental 
aspects of ultra-short-pulse reflectometry. We have numerically integrated the one- 
dimensional wave equation for an ordinary mode in a plasma with an adjacent vacuum: 

with specified initial conditions E(x,t=O) and (a /&)E(x,t=O)=-c( 8 /ax)E(x,t=O) for a 
right-going pulse launched in vacuum and outgoing-wave boundary conditions, We have 
adopted a second-order-accurate, central differencing scheme to solve Eq.( 1). In vacuum, 
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the algorithm has dispersion given by o=% kc; and electromagnetic pulses propagate 
without numerical dispersion, dissipation, or artificial reflection by the grid. h the plasma 
there are discretization corrections to the wave dispersion that scale as w2At2 and k2Axz. 
A more detailed elaboration of the numerical method used here and additional numerical 
examples are presented in Ref. 16. 

In all of the examples, a highly localized pulse, E(x,t=O) = exp[-(x-xp)2/zp2], is 
initialized in the vacuum region (see Fig. 1) and propagated into a monotonically incnxsing 
electron density profile. The density profile chosen is ~ ( x )  = n, exp[(x-xo)/Ls] for x<xo 
and n,(x) = n, [l+(x-xJLs] for xi&, where & is a reference point to the right of xp, n, is 
a reference electron density, and is a scale length. With this choice, the density profile is 
smooth and is linear over most of a domain within which we can locate density fluctuations 
at different positions. The parameters of physical interest are the ratios L&, and un,, 
where n, is the density where the 4ocal plasma frequency oPe=(4nn,e*/~)1/2 equals a 
characteristic frequency of the pulse, e.g., oo=d2zp. The shortest length scale in the 
computation is zp, which is set equal to 20 Ax (Ax=At=c=l in our units) to ensure adequate 
resolution in all of the cases reported. 

In Fig. 1 we present the results of a numerical calculation of the reflection of an 
ultra-short pulse by a monotonically increasing plasma density profile. The density scale 
length b=120, and no-. The initial pulse and the electron density profile are shown in 
Fig. l(a), and the reflected pulse is shown in Fig. l(b) along with the Fourier spectrum 
computed from E(x,t). The frequency half-width at half-maximum of the initial pulse is 
01/2~0.1~2n/3zp, and the Fourier amplitudes of the pulse are 4 %  of the maximum at 
o=O for o>2n/zp. We note that the pulse is significantly dispersed by the reflection 
process. The lowest-frequency components return first, because they are reflected first 
from the lowest densities; and the higher-frequency components experience increasingly 
longer delays. If we take as an effective maximum frequency component of the pulse 
o,,,=2n/zp, this highest-frequency component of the pulse will travel a distance 
approximateiy equal to (-/%)2b farther into a linear plasma profile than will the lowest 
frequency component. Thus, the reflected pulse will be broadened to a full width given 
approximately by z, - 2(~ax/00)2b,  which is -3800 in this case and is in fair agreement 
with the numerical calculation. With a more detailed analysis of the time delays of the 
frequency components of the pulse presented later in the paper, we are able to make 
additional inferences regarding monotonic plasma density profiles. 

An electromagnetic wave can be scattered by a density fluctuation under certain 
circumstances. Linear perturbation theory, in particular, the Born approximation (see Ref. 
15, and references therein), can be used to solve Eq.( 1) perturbatively to deduce the effect 

. 

4 



L 

of a small-amplitude density fluctuation. The lowest-order solution ignores the density 
fluctuation in Eq.(l) to obtain E@). In first Born approximation, the perturbation E(1) 
satisfies an equation like Eq.( 1) with just the unperturbed plasma density on the left side in 
the term a@2E(1) and a source term on the right side containing the beat of the perturbed 
density due to the fluctuation with the lowest order electromagnetic field, -&$E@), 

Consideration of this inhomogeneous wave equation for E(1) leads to the following 
observations. A finite-wavelength fluctuation can beat resonantly with E@) to produce a 
scattered wave E(1) that satisfies the local dispersion relation if a resonance condition is 
satisfied. From an asymptotic point of view, the one-dimensional resonance condition is 

so that a scattered wave with wavenumber -k(x) will propagate back to a detector placed at 
the source. Here, kf is the fluctuation wavenumber, and k(x) is the wavenumber of the 
.electromagnetic wave satisfying the local dispersion relation &k(x)2c2+op,2(x). Thus, a 
photon propagating up the gradient can be backscattered by a fluctuation into a photon . . 

propagating down the gradient when the Bragg resonance condition (see Ref. 15 and 
references therein) is satsifie 

For an ultra-short pulse, there is a range of frequency components (effectively up to 
%,=2.nlzp). We deduce from Fq.(4) that Bragg resonance is possible somewhere in the 

+k(X) 2 kf= -k(x), (3) - 

kf = 2k(x)= Z[&-Ope2(x)] 1/2/~ (4) 

plasma for some frequency component of tbe ultra-short pulse when kf i 2%=/c. 
To examine the effects of the scattering by density fluctuations on reflectometry, we 

superposed on the plasma density profile a coherent localized density perturbation modeled 
by Sn(x) = 6% exp[-(x-x$/xw2] cos[kf(x-~)]. We have undertaken integrations of Eq.(l) 
for various GnJq,. With kf> 2%=/c chosen to preclude Bragg resonance, and for small  
SnJq,, there was no discernible scattering; and the reflected pulse was unperturbed. For kf 
< 2%=/c and Q located within the plasma at a density corresponding to cope(%) i h, 
the Bragg resonance condition can be satisfied; and for Gn&,<cl, we observed small 
perturbations in the reflected pulse in consequence of the scattering (Fig. 2). In other . 

examples, we changed the value of Q, the location of the center of the density perturbation. 
For a fixed value of kf, localizing the fluctuation to larger values of G, which corresponded 
to higher plasma densities, forced the resonant frequency components of the pulse to higher 
values of o to satisfy E4.(4).16 We also studied the effect of changing the fluctuation 
wavenumber. The theory presented in Ref. 15 gives an expression for the scattering phase 
shift and shows that it is modulated as a function of the position of the center of the density 

c 

5 



perturbation x, with a wavenumber kf for kfx,>>l. This spatial modulation maps into the 
frequency modulation observed in the plot of the tangent of the scattering phase shift vs. 
frequency because of the Bragg resonance condition, Eq.(4), for fixed kf.16 Reference 15 
also concludes that the amplitude of the phase shift depends on kf1” and that the overall 
width in space (or frequency in Fig. 2) is determined mainly by xw. These parametric 
dependences are confirmed in the numerical examples of ultra-short pulse reflectometry 
reported by us in Ref. 16. 

For small-amplitude fluctuations, the perturbations in the reflected electric field due 
to the scattered wave E(’) can be iterated to higher order to obtain additional corrections 
within the Born approximation. This yields a power series in the appropriately scaled 
amplitude of the density perturbation,l5 the first term of which corresponds to the first 
Born approximation, Eq.(2). The higher-order terms satisfy their own resonance 
conditions. Thus, the scattering and pulse distortion increase in both magnitude and 
complexity as the amplitude of the density perturbation increases. For sufficiently large 
amplitudes, the Born approximation fails;l4 and the pulse propagation and reflection 
become quite complex. For example, tunneling and multiple reflection can occur. 

Figures 2 and 3 display results for. kf= 0.250max/c, xw=Ls, ~ = x o + L s ,  and . 
6 n d n 4 . 2  and 0.4, respectively. The distortion of the reflected pulses and the scattering 
phase shifts increase with the amplitude and the dependence of the phase shift on 
frequency deviates significantly from a sinusoid with a Gaussian envelope for 6n,,/n,,=0.4. 
However, the overall length of the reflected pulses, from which the slope of the 
unperturbed plasma profile can be inferred, does not appear to be very much altered from 
the case with no fluctuations in Fig. 1. The density perturbation 6n&,=0.2 corresponds 
to a normalized amplitude (S~,/n,,)(&)m=O.9 where b=0max/4. The results of Ref. 14 
indicate that when the normalized density perturbation approaches a value of unity, the first 
Born approximation begins to fail significantly. 

A monotonically increasing plasma density profile can be reconstructed from a 
reflected pulse using the following prescription. If the density scale length of the plasma is 
much longer than the typical vacuum wavelength of the microwaves in the pulse, the 
geometric optics approximation may be applied to the calculation of the time delays of the 
various frequency components.1 The time delay for a wave with a frequency o to 
propagate from a position x=O to its reflection point at X=Xr, where O=Ope, is given 
approximately by 
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For a monotonic density profile, Eq.(6) can be Abel inverted to obtain1 
Ope X I 2  

(6) 
C T ( C O = O I ~ ~ S ~ ~ ~ )  

7c 
0 0 

Equation (6) can be used to map Ope as a function of x given a knowledge of the time 
delays as a function of frequency. It is important to note that Eq.(6) only determines the 
location x corresponding to O+ relative to the edge of the plasma. Additional knowledge 
of the plasma density at a single point servesas a boundary condition that fixes the location 
of the entire profie. 

To use Eq.(6) to reconstruct the density profile, we have determined %(a) from the 
zero crossings of E(x,t) in vacuum after the reflection of the pulse. In our integations, we 
tabulate the times tj for which E(x,t) changes sign for a prescribed x (or at fixed time, 
tabulate the positions of the zero crossings). Because the values of E(x,t) are determined 
only at discrete values of x and t, the zero crossings are computed by linear interpolation 
using successive values of E(x,t) that have changed sign. From the separation of 
successive zeros in time, At=tj+l-tj, we take as an arkatz that OjdAt  is the characteristic 
frequency associated with the time delay ~jj=(tj+l+tj)/2. In order to ensure monotonicity, 
we sweep through the tabulated values of {Oj} and reorder the data so that the (Oj) are 
monotonically increasing before performing the integration in Eq.(6). This is equivalent to 
a smoothing of the data. We note that the density profile can be mapped over a density 
range, i.e., a range of plasma fiequencies, corresponding to the range of frequencies in the ' 

pulse. 
Figure 4 presents results for the application of Eqs.(S) and (6) to the integrations of 

the wave equation for two different values of Gn&, for a coherent density perturbation. 
The density profile obtained from Eq.(6) for the case of no fluctuation shown in Fig. 1 
agrees quite well with the actual density, Fig, 4. The resolution of the density profile 
reconstruction is constrained by the limited number of zero crossings (-50) on which the 
integration in Eq.(7) is based. With a 10-20% density perturbation present, the 
unsmoothed time delays vs. frequency relations exhibit significant deviations from the case ' 

with no density perturbation. Nevertheless, the smoothed data lead to a density profile 
reconstruction that agrees quite well with the true unperturbed profile. For relative density 
perturbations equal to or greater than 40% that satisfy Bragg resonance with the pulse, the 
distortions to the reflected pulse are profound and the density-profile reconstruction fails 
badly except at low densities where there is no Bragg scattering for these cases. The 
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density-profile reconstruction agrees with the unperturbed density profile with acceptable 
accuracy (error 4 0 % )  for density perturbations up to 20% relative magnitude. This 
density perturbation corresponds to a normalized amplitude (6r4Jn,,)(lq,Ls)2’3=0.9 where 
ko=mmax/4. Reference 15 first identified this parameter to be the dominant one in 
controlling the applicability of the Born approximation. The numerical calculations of Ref. 
14 corroborate this and show that the Born approximation fails only after this normalized 
density variable becomes of O( 1). 

An additional series of computations was performed with superposed density 
perturbations of the form 6n(x) = 6n, e x p [ - ( x - ~ ) ~ / x ~ ~ ]  Z ~ ~ ~ C O S [ ~ ~ ( X - Q ) ] ,  where there 
were four terms in the sum, aid.25, {ki/kf}={0.17, 0.37, 0.63, 0.881, and kf= 
O.25omax/c. Figure 5 displays the results of a computation with 6ndno=o.25. There is 
significant evidence of Bragg resonance and relatively strong scattering. However, the 
reconstruction of the density profile is quite good over the range of plasma densities 
accessible to the pulse subject to the monotonicity constraint. 

111. CONCLUSIONS 

In this paper we have studied the propagation and reflection of an ultra-short pulse 
of ordinary modes and their scattering by density fluctuations in a nonuniform plasma. We 
have demonstrated how the plasma density profile can be reconstructed from information 
contained in the reflected pulse using a simple algorithm. The numerical examples . 
presented illustrate the basic principle of ultra-short-pulse reflectometry in the absence of . 

significant density fluctuations and how density fluctuations modify the reflected pulse 
within the restrictions of a one-dimensional model. 

Our calculations demonstrate that an analysis of the Fourier spectrum taking into 
account Bragg resonance leads to an understanding of the effects of scattering by density 
fluctuations on the teflected pulses. For small-amplitude density fluctuations, it appears 
possible to reconstruct the average density profile from the information contained in the 
reflected pulse and to infer some of the characteristics of the superposed density 
fluctuations as well. For large-amplitude fluctuations that are Bragg resonant with the 
pulse, there is significant distortion of the reflected pulse; and the propagation and 
reflection process is much more complex. We speculate that by making multiple short- 
pulse reflectometry measurements, one may be able to average away some of the effects of 
scattering by density fluctuations. Alternatively, a smoothing of the time delay vs. 
frequency data based on a correlation analysis of the various components of the reflected 
pulse, in which the large, uncorrelated distortions of the reflected pulse due to large- 
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amplitude fluctuations could be systematically removed, might salvage the profile- 
reconstruction algorithm. 

The calculations presented here have been strictly one-dimensional. Elsewhere we 
have studied in detail the influence of multi-dimensional scattering and interference effects 
on reflectometry, and have addressed the important issue of apparent localization in using 
reflectometry to measure density fluctuations.17 Both multi-dimensional effects and the use 
of extraordinary-mode short pulses are important for laboratory applications and will be 
addressed in future calculations. 
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Figure Captions 

Figure 1. Pulse propagation and reflection with no density fluctuations present. (a) The 
initial configurations of the electromagnetic pulse and the plasma density (ope2 is plotted) 
as functions of position. (b) The reflected electromagnetic pulse vs. x at t=3000. (c) The 
moduli of the Fourier coefficients of the initial (1) and reflected (2) pulses as a function of 
frequency/wavenumber. (d) The tangent of the phase of the complex Fourier amplitudes of 
the reflected pulse as a function of frequency/wavenumber. 

Figure 2. Pulse propagation and reflection with density fluctuations present: 6@%=0.2, 
kf = 0.5.n/zp, x p L ,  and ~ = ~ + ~ .  (a) The initial configurations of the electromagnetic 
pulse and plasma density as functions of position. (b) The reflected electromagnetic pulse 
vs. x at t=3000. (c) The moduli of the Fourier coefficients of the initial (1) and reflected 
(2) pulses as a function of frequency/wavenumber. (d) The tangent of the scattering phase 
shifts of the complex Fourier amplitudes of the reflected pulse as a function of 
frequenc y/w avenumber. 

Figure 3. Pulse propagation and reflection with density fluctuations present: 6r4,/%=0.4, kf 
= 0.5x/zp, xw=Ls, and q=x0+Ls. (a) The initial configurations of the electromagnetic 
pulse and plasma density as functions of position. (b) The reflected electromagnetic pulse 
vs. x at t=3000. (c) The moduli of the Fourier coefficients of the initial (1) and reflected 
(2) pulses as a function of frequency/wavenumber. (d) The tangent of the scattering phase 
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shifts of the complex Fourier amplitudes of the reflected pulse as a function of 
frequenc y/w avenumber . 

Figure 4. Density-profile reconstructions. (a) Time delays ?; vs. a. (b) Reordered 
("smoothed") time delays z vs. a. (c) True (1) and reconstructed (2) plasma densities ope2 

vs. x. Data for GnJq,=O are shown above that for 6nJ~,=0.2. 

Figure 5. Pulse propagation and reflection with a multi-mode density fluctuation present: 
6n0/n0=0.25, xw=2Ls, and k=xo+Ls. (a) The reflected electromagnetic pulse vs. x at 
t=3000. (b) True (1) and reconstructed (2) plasma densities wpe2 vs. x. 
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