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MULTIFRACTURE OF CERAMIC COMPOSITES

Y. J. Weitsman®
H. Zhut

ABSTRACT

This work presents a mechanistic model for the multifracture process of
uniaxially reinforced fibrous ccramic composites under monotonically
increasing tension parallel to the fiber direction. The model employs an energy
criterion to account for the progression of matrix cracks, bridged by intact
fibers, and Weibull failure statistics to relate the failure of the fibers.
Consideration is given to the interactions between the foregeing faiiure
processes as well as to the effects of various material parameters on the
response of the composite.

1. INTRODUCTION

Ceramic materials exhibit superior performance at high temperatures, but their utilization
in critical structural components is severely curtailed by their excessive brittleness. Techniques
to alleviate this brittleness are the subject of intensive research, reviewed by several leading
investigators in the field (e.g., Schioler and Stiglich 1986, Hillig 1987, and Evans 1990). In one
such technique, continuous fiber-reinforced ceramic composites (CFCC) are formed; in these
composites, the reinforcing ceramic fibers are typically more ductile than the ceramic matrix. In
this case, fracture of the brittle matrix entangles the more compliant fibers in the failure process,
resulting in several energy-consuming mechanisms. If appropriately conceived, these mecha-
nisms lead to a gradual structural failure instead of catastrophic collapse.

Typical stress-strain curves are shown in Figs. 1.1 and 1.2, Figure 1.1 exhibits the ductile
behavior of unidirectionally reinforced SiC/CAS ceramics under uniaxial tension parallel to the
fiber direction, with comparison to results obtained by Daniel, Anastassopoulus, and Lee
(1989). Figure 1.2, obtained by Nardone and Prewo (1988), shows similar results for HMU-
7740 composites, with a significant reversal in the lateral strain.

Several striking differences exist between ceramic and, say, polymeric composites. In
polymeric composites, the fibers provide stiffness, while the polymer serves essentially as a
binder. Consequently, the ratio Ef/Ep, of the fiber and polymer moduli is typically of 0(10%). In

addition, to achieve high stiffness it is usually desirable to have strong interfacial bonding

*Oak Ridge National Laboratory/The University of Tennessee, Knoxville, Distinguished Scientist in Composite
Materials and Structures.
Tpostdoctoral Research Fellow, The University of Tennessee, Knoxville.
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Fig. 1.1. The uniaxial stress-strain response of 0° SiC/CAS continuous fiber-
reinforced ceramic composites.

between the fiber and matrix materials. In contrast, the primary role of the fibers in ceramic
composites is to enhance toughness. Thus, the ratio E¢|Ep, in ceramic composites is typically of
O(1). Moreover, it is usually desirable to have weak bonding between the fibers and matrix to
enhance interfacial slip, thereby increasing the amount of energy dissipation during the process
of matrix cracking. In addition, a weak interfacial bond will deflect matrix cracks around the
fibers and bring into play their larger ductility. Therefore, in spite of some similarities, the
modelling and analysis of failure of ceramic composites require a different approach than that
applied to polymeric composites. Among the several ceramic failure models worth mentioning,
we recall those of Aveston, Cooper, and Kelly (1971) and Budiansky, Hutchinson, and Evans
(1986). Both works model the fracture behavior of a brittle matrix reinforced by ductile fibers.
The former employs a stress criterion for failure, while the latter utilizes energy criteria. Both
analyses aim at predicting the onset of the first matrix crack, and both approaches are based
upon the shear-lag model.

The latter model assumes that the fibers carry all the tensile load and that the matrix re-
sponds in shear only. In addition, the model neglects all shear deformation within the fibers.
However, the above assumptions, which are reasonably accurate for Ef [Ep, ratios of 0(102) as
occur in polymeric composites, appear to be deficient in the case of ceramics. It is intuitively
obvious that for Ef/Em of O(1), the shears in the fibers and the matrix play equally important
roles and that, equivalently, the normal stresses in the matrix should not be neglected. In
addition, the normal stresses in the fibers in the vicinity of the matrix crack are expected to
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Fig. 1.2. Longitudinal and transverse strain against applied tensile load for 0°,
43 vol % HMU-7740 composites. Source: V. C. Nardone and K. M. Prewc, 1988, “Tensile
Performance of Carbon-Fibre-Reinforced Glass,” J. Mater. Sci., 23, 168-180.

exhibit a very pronounced radial variation that plays a critical role in the prediction of fiter fail-
ure. The importance of the foregoing stress distribution was alluded to by several investigators
(Sutcu 1989, Schwietert and Steif 1990), although they did not quantify or analyze it. Finally,
the evolution of multiple cracks within CFCC has not been modelled in the context of energy
considerations. A major obstacle in evaluating the energies consumed during the process of
progressive failure in CFCC can be traced to yet another inadequacy of the shear-lag model,
namely, its limited ability to express the interfacial slip between fibers and matrix and its
attendant incapacity to evaluate the dissipative energy.

Energy-based analyses of the multifracture behavior of laminated polymeric composites,
when progressive failure occurs at the ply level, were developed by Fang, Schapery, and
Weitsman (1986) and by Nuismer and Tan (1988). The latter work employs concepts of shear-
lag.

An important improvement in the analytical representation of mechanical fields asso-
ciated with a single matrix crack around a relatively ductile fiber was obtained by McCartney
(1989). That representation satisfied most of the field equations and boundary conditions
required by an exact solution. Nevertheless, in the present work it was found advantageous to
establish another representation more suitable to our purpose of analyzing the interactive effects
between fiber failures and the multifracturing process within the matrix. In particular, our repre-
sentation contains specific details of the stress distribution c{ (r, z) within the fibers, which are



predicting the ensuing fiber failure process. This aspect seems to be ¢f particular importance
because fiber flaws appear to occur more readily near the outer surface of the fiber, thereby
corresponding to a Weibull statistical representation that employs surface rather than volume
integrals. It turns out that statistical computations employing average values G, (z) predict
substantially lower failure probabilities than computations based on the stresses at the interface
r = a, namely o, (a, z).

The present formulation assumes that the slip process is caused by relative movement
over asperities at the fiber/matrix interfaces. Other considerations, such as Coulomb friction, are
obviously possible. These were considered by Dollar and Steif (1988), Steif and Dollar (1988),
and, in a broader context, by Hutchinson and Jentsen (1990).



2. FORMULATION OF THE APPROXIMATE MECHANICS SOLUTION

Consider a unidirectionally reinforced composite material, consisting of ceramic fibers
and a ceramic matrix, subjected to uniaxial tension parallel to the fiber direction. Beyond a
certain level of applied stress, the composite is assumed to develop matrix cracks in planes
normal to the fiber direction. These cracks are bridged by intact fibers and are spaced at an
average distance L. In addition, the composite is assumed to be cooled down by T degrees
below its stress-free temperature Ty,

Let r, 0, and z denote cylindrical coordinates, with corresponding displacements u, v, and
w, respectively; designate stresses by the standard symbols, ¢,, Gz, 7z, etc. In addition, let m
and f denote matrix and fiber properties, respectively.

The thermomechanical problem at hand will be formulated for the represcntative volume
element (RVE) shown in Fig. 2.1, The RVE occupies the volume 0 < r < b, -L/2 < z < L/2, and
contains two concentric cylinders. The fiber region is located within 0 < r < g, |2| S L/2, and the
matrix domain ranges over a < r < b, |z| < L/2. Matrix cracks are supposed to pre-exist at z =
+ L/2, and the interfacial shear stress T,,(a,z) is assumed to be limited by a slip stress of
magnitude Ts. At T,5(a,2) = T, relative displacement Aw; (slip) is supposed to occur by an
amount of Awg = w,(a,2z) - wy(a,z), which is yet to be determined. The slip mechanism is
assumed to occur as relative motion over interfacial asperities at r = a.

We assume that both fiber and matrix materials behave linearly elastic and that their
interfaces remain in lateral contact even in the presence of tangential slip. The maintenance of
lateral contact is intuitively justified for materials systems where o, > 0 and vy, > Vg, Where o
and v denote the coefficient of thermal expansion and Poisson's ratio, respectively, and when
slip occurs over interfacial asperities of sufficiently large amplitudes.

The boundary value problem for the RVE consists of the linear, isotropic, elastic field
equations within the fiber and matrix regions. Employing standard notation, these equations
read

1
efm :-ET[(l V)0l =V £ O L8y |+ oy TS (1)
m
where
285’”‘ = uif:}m + ujf-:'im . 2

Assuming rotational symmetry, we have v = 0, €, = €20 =C,9 = 0;9 = 0, whereby the
equilibrium equations read

bt A W « I + RNy § S (3a)

ofm_gfm . 3o/ . nlm
r or 0z

=0 . (3b)
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An exact elasticity solution satisfies the following boundary conditions for the RVE:

oy (b,z)=0 , L (4a)
't s
™ (b,2)=0 2 (4b)
o™(a,z)=0f(a,2) , (5a)
™ (a2)=1l(a2) |z|s-‘;‘- (5b)
Um(a,2) = ug(a,z) (5¢)
and
wm(a,2)=w(a.z) (62)
within the contact region (say |2l < L2 - ),
lem(a,2)= [z(a,z)| =1, (6b)
within the slip zone (say L/2 - Is < |z| < L/2).
In addiiion, the condition of “global” equilibrium gives
2n Ig 0{:’ dr+2n _[: 63’2"rdr=1tb2 s, , (7)
where 6, = G, is the average value of the applied stress.
The presence of matrix cracks at z = + L/2 implies
L
c’,"(r,i—z-) =0 , (8a)
L a<rsbh .
'c’,"z(r,ii)=0 (8b)

Finally, the planes z = £ L/2 may be viewed as symmetry planes for cylindrical RVEs stacked
vertically along the z-axis. Therefore,

wf(r,§)=cl and wf(r,-zli)=C2 , O0sr<a ©)
and
‘t{z(r,ié)=0 O<r<a . (10)

In the sequel, an approximate solution to the foregoing boundary value problem will be
developed by means of an “enhanced” kinematically admissible field. This field will provide
displacements Wj: B, W and w,,, that satisfy all the kinematic conditions of our problem,
namely, Egs. (5¢), (6a), and (9).



The paramount stresses in the present problem are 6/*™ and tfz'”', associated primarily
with the displacements wy, and their spatial derivatives. The in-plane stresses G, '™ and o{; m
are mainly due to the lateral contractions e{ *™ and Eg'm, associated with the displacements u,.
Their effect on o{ "™ are of O(v2), where v ~ vy ~ vy (see Appendix A).

Guided by these observations, we shall construct “enhanced” kinematically admissible
fields for us,, disparately from those for wy, ,,. Specifically, we shall initially consider an
uncracked RVE with uy(r) and upm(r) and assume wy = wy, = €oz [instead of a cracked RVE with
wr(r, z) and wy(r, z)]. For these displacements, we shall employ Eqgs. (1) and (2) to generate
stresses 6™ and 6§ *™, which satisfy Egs. (3b), (4a), (5b), as well as—obviously—(Sc). Note
that, with the foregoing choice of displacements, ‘c{z =1y, =0. As shown in Appendix A, the
uniform strain €, = €g is related to the applied stress 6, and to T. In the presence of matrix
cracks, we shall employ an iterative procedure to improve the above-mentioned approximation
by adjusting the value of gg to correspond to an appropriately modified equivalent modulus. The
modification will be updated with increasing crack density. We subsequently consider wy=
wr(r,z) and wp=wp(r,z) and substitute the already available expressions for c{ ™ and
o{; ™ in Eqs. (1) and (2) to relate c{ "™ 10 dwy,m/0z. Then, shear stresses 'rfz"" that satisfy
Eq. (3a) with conditions (4b), (5b), and (6b) are evaluated. For kinematic admissibility, the
condition (62) must of course be satisfied. In addition, we shall also fulfill conditions (7), (8a),
and (9).

Clearly, the above kinematically admissible fields ur(r), um(r), wy(r, 2), and wp(#, z) do
not provide the exact solution to the boundary value problem stated in Egs. (1) through (10).
The major inadequacy resides in the evaluation of T,,. The shear stresses 'tfz"" derived from the
equilibrium equation (3a) are inconsistent with expressions deduced from the stress-strain
relations (1) and contradict the premise that‘c,fz"" = 0, which was utilized in the approximate
construction of the displacements uf(r) and u,,( . Furthermore, theiie shear stresses do not
satisfy the boundary conditions (8b) and (10). These shortcomings are 110t surprising because an
approximate solution cannot handle the extremely intricate comer singularity that, under perfect
interfacial contact, occurs along the circle r = a, z = L/2, where the symmetry of the stress tensor
no longer holds and 1,, # 1,, (Bogy 1968)." On the other hand, the inadequacy of our solution is
mitigated by the fact that the approximation is optimized through the use of a minimum
potential energy principle and guided by a numerical solution to a simpler, but closely related,
problem.

‘However, this singularity may be eliminated when a crack impinges on a frictional interface (e.g., Dollar and
Steif 1989).



3. THE KINEMATICALLY ADMISSIBLE DISPLACEMENT FIELD

3.1 PERFECTLY BONDED INTERFACES (NO SLIP)

It is well known (e.g., Timoshenko and Goodier 1951) that the following radial
displacements

us =Ar ,

2
u,,,=Ar+B[r —%—) ,

11)

together with wy= wy, = €0z, generate stresses according to Eq. (1) that satisfy the equilibrium
equation (3b). In the sequel, expressions (11) represent the kinematically admissible
displacements up, and uy.

Tumning to the displacements wyand wy, introduce first the shape functions p(r), g(r), and
s(r) with the following stipulations: p(0) = q(a) = 0, p(a) = ¢(0) = s(a) = 1. In addition, denote

2 2 2 b
P=y Jo mrdr . 0== Jo radr . S=—r—s Jo rstryar .

Assume the following forms for the strains ;.

8{ = p(r)[f(2)+C]+q(r)g(2) ,

(12)
g7 =s(rf(2)+C .

These strains will generate displacements wy ,,, = Ige{ *™M(%,r)dz, which are continuous at the
interface r = a for all continuous functions {z) and g(z) and for any arbitrary constant C.
In view of Egs. (1), (11), and (12), we have

o{=Ef(1~vf){p(r)[f(Z)+C]+4(')8(z)} s 2ErviA __Ef a;T (13a)
(1+v)1-2vy) (irvrfi-2e) 1=2vs
and
om(re) = Enll=Vm SO +C) | 2E,vp(A+B) __Ep o 1 (g3

(14 v, )(1-2vp) (14vpY1-2vy) 1-2v,

To satisfy boundary condition (8a), the form of Eq. (13b) must be modified to read

o7 (r,z) ~s(r)f(z) with f(:t—[i‘-)=0.

Consequently, we have

C= 1+ v, T — 2v,,(A+ B)

“Vm 1-v,



10

and
E,(1- v,,,)s(r)f(z)
oz (rz)= (1+ v, X1-2v,,)
Denote now
. Ef(l-Vf) - Em(l—Vm)
= , E,n= .
Er (14vef1-2vg) © " 14V )1-2Va)
and

2
co=V/E;| CP~ —La re 24\
f=f —vf s 1- =Vy

with the volume fractions V= a2/b2 and V,, = (b2 — a?)/b2. Fmploying Eq. (7), the force balancr
in the z-direction gives

Ga = V/EF[Pf(2) + Q(2)] + VimEmSf(2) + S0 (14)
whereby g(z) can be expressed in terms of f{z) as follows
8(2)= [ 2020 - pf(z) - K”’E—Sf( )]/Q (15)
Vy f f f

Substituting expression (15) in Egs. (12) and (13a) yields

(
of = Ef(z)lip(r)—-g—(-r-)-LP+SVg ]wac[p(r) P)+ ;’[ q(’)]+9£i(—'l . (163)

Q ViEg Q VeQ
fo _40) p, o VmEnm .+ Ca=50)q(r)
34 f(ﬂl;’(") 0 ( +S VfE} +p(r) +—-Q';;E;— . (16b)
The latter equation gives
wy =F(z)| p(r) - 4L P+SV En ||y pirycos Ga=00da®z
Q VeEy QVyEy

Employing the equilibrium equation (3a) to determine the shear stress, we have

f *F
f_o_1ly 00 ,=_E£f(2), q(r*) 7% 0 | I
T, rjor e dr . fo| PCr*) - 0 P+SVf £ rrdr* . (16d)

As noted earlier, the result (16d) is inconsistent with the outcome derived from the stress-strain
relations (1).
Tuming to the matrix region a < r < b, Izl < L/2 we obtain

oF = Epf(2)s(r) , (172)
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ez =s(Nf()+C , (17b)
Wy =s(NF(2)+Cz , (17¢)
and
f m
m—-_ l a .+ a_oL * _ 1 r e 9_‘;{_
tre r bor oz dr Ja r 0z dr*
(18)

L @En |45 2S - J’ s(r*)r*dr*
r Vf
In Egs. (16¢) and (17c), we denoted F(z) = [§ f(z*)dz".

3.2 ANINTERFACIAL SLIP ZONE UNDER CONSTANT SHEAR STRESS

It is assumed that the absolute value of the interfacial shear stress It;(z)l = It,,(a,2)! cannot
exceed the limiting value of 1, and that interfacial slip in the amount of Aw(z) = wy,(a,z) -
wr(a,z) occurs when T;(z) = £15. The direction of Aw coincides with the sign of 1;. In this
circumstance, boundary condition (6b) replaces the displacement continuity condition (6a).

To focus ideas, assume slip to occur at the cylindrical interface r=a. /2 - l;<z<L/2.In
this case, we confine the range of applicability of the foregoing expressions for perfectly bonded
interfaces to the region 0SS z< L2 - I (instead of 0 <z < L/2) and construct a “‘slip zone
solution” for the region 0< r < b, L2 ~ ly < z< L2

The “slip zone formulation” will satisfy the same field equations and boundary wndmons
as the foregoing formulation for perfectly bonded interfaces, except that Eq. (6b; replaces
Eq. (6a). In addition, the two formulations must blend together to ascertain continuity of
tractions and displacements at z = L2 — I, namely, continuity of u, uy, Wm.‘Wf. of, c{ ,
and ¢ ¢ atz=L2-1,

In view of Egs. (3a) and (6b), we now have

aof L L |
’tf(az)———-jo —ts—t,z(az) E~IS<ZS5 . (19)
Guided by Eq. (19), we select
L . -
of = (3 - sz(’)+Q(’)+H(F.2) (20a)
and
o7 = (% - z) HR ‘ (20b)

with the following provisos:
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-‘1; Y rp(rdr =1, 21a)
a OH(r,z)
for 5= dr=0 21b)
Jo rB(rydr + j: ri(rydr=0 , 21¢)
a n b2
IO rq(rydr=0, 5 (21d)
[y rH(r2)dr=0 . @1e)

Conditions (21a) and (21b) satisfy Eq. (19), condition (21c) gives ':;'; (b,2) = 0, and conditions
(21d) and (21¢) with (21¢) satisfy Eq. (7).

Conditions (21b) and (21e) can be satisfied simultaneously by selecting H(r,2) = «(r)k(z),
with k(z) = (z - L2 + 15?2 and I{,’ rt(r)dr =0. The foregoing choice of k(z) also facilitates
the establishment of traction and displacement continuity at z = L/2 — l;, Traction continuity at
z = L[2 - I; between the expressions listed in Egs. (16a), (16d), (17a), and (18) that are
consistent with the forms proposed in Eq. (20) can now be established in a straightforward
manner. We obtain '

o;=zfs_¥sz.(£_z)[,,m_m[nS%J}E;c[mn-p]

aSVmE;, 2 Q rEf
(22a)
+ 99-[1 - i(’—)] + 840 ks
rLo21 Ve
2t.Ve (L
o7 =s(r) '&:g."i,'f’ (—2- - z) , (22b)
m
and
2T, V/Ey . .
of, = 2B )y 28O oy sEnVm || gt
aSVEpr 70 Q EfVy
(22¢)
2z-L/241) (T, w4
- S Jot(r )r*dr
m_ 20 (aS Vi oa e (22d)
Trs pre ': 5 v da rs(rdr | .

Note that continuity of normal tractions at z = L/2 — I 0 < r < b requires that
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L 21515.‘/,'
L) 2y
! (2 )" WSV E. (232)
while continuity of shear tractions demands
of(z=L/2 -1 21,V
( ) 2y (23b)
oz aSvV,,E,,

Equations (23a) and (23b) do not contradict each other, because any one of them can be
employed to determine the unknown value of /;. The remaining equation serves as a consistency
condition.

Employing Eq. (22a) with the stress-strain relations (1), we obtain

el = Z—“JT(—— )[p(r) (’)(NSVE ]]w(r)c

aSV, E Q ff

(Og = 00)4(r) , K = L/2+ I)?
QV/Ey Ey
which upon integration with respect to z yields

+ —4

T Vr[(L - 2)z -(L/2+l NL/2 - )] )
P s—m—?-
aSV,,Ep, P = o) * V/Ef
L_ an 'mEm \ .
+F(2 ls){ (rn- 0 [P+S VfEf H+p(r)Cz (24)
+(8a = S)q(n)z | KXz - L/2+l )
QV/Ef 3E; '

The boundary condition (9a), namely wy(r,L/2) = constant (0 < r < @), can be satisfied by an
appropriate selection of #(r). This is accomplished by utilizing Eq. (24) to evaluate the average
value of wy at z = L/2, then requiring that

wf(r.-;—)=wf(z=%) (0<sr<a) . (25)
The condition (25) yields
t5i2vy (L ) q(r) ViEm |, « VinEr
ry={—|—="=+F =~ -2 | PSR g —mom
D= asvEs TR )| [P0 VE; | VE}

[
Gy -0 (r) 3k,
ZC[P-p(n]+ =220 |1 - 2Ly
[P - p(r)] 2WE, ) . (26)
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Inspection of Eq. (26) shows that j(‘)’rt(r)dr=0. which satisfies the requirements stated in
Eqgs. (21b) and (21e).
Tuming to the matrix region (L/2 - [; < z S L/2, a < r £ b), Eq. (22b) yields

21Vy (L )
M=s(r) ——g-| =~z |+C .
()“ﬂ% E,\2 i

Whereby, upon integration with respect to z and imposition of continuity of wy, with wy(r,z =
LR2-1) given in Eq. (17c), we obtain

_V[(L - 2)z - (L/2 +1;)(L/2 -
" aSVyEp,

b) s(r)+s<r)F(§- ! )+ Cz. @D

Note that, within the slip zone, Wm(a.z) # wr(a,2).
The radial displacements us and u,, within the slip zone are assumed to coincide with
those given in Eq. (11). Consequently, we have within both contact and slip regions, namely for

0z LR,

eé:e{:A, Osr<a),

e;"=A+B[1+£‘- (28)

The thermomechanical stresses that correspond to Eqs. (11) and (28), together with
ey = 8{ =g, are evaluated in Appendix A. The constants A and B are also determined in
Appendix A, thus establishing the value of C that enters expressions (16), (17), (22), (24), and
(27). It can be shown that incorporating the in-plane stresses into this analysis affects the results
by an order of v2,

Also note that the in-plane stresses c{ "™ and cg'”' that correspond to the displacements
wrand wy, prescribed in Egs. (16¢), (17c), (24), and (27) are no longer statically admissible,
because those displacements depart from Wf =Wp = EQ2.

In the forthcoming analysis, we shall employ the minimum potential energy principle to
determine f{z) and utilize a numerical solution for analogous mechanical fields in Cartesian
geometry to guide our choice of the shape functions p(r), q(r), and s(r).

3.3 DETERMINATION OF THE FUNCTION fz)

The field equation that governs the function f{z) will be generated through minimizing the
potential energy functional I1(y) (Washizu 1975), where the displacements y: um, ¥ £, wm, and
wr are given by the kinematically admissible fields listed in Eqgs. (11), (16c), (17c). (24), and
27). Employmg expressxons (1) and (2), we generate the strains €. M =ul "™ [or,
eg =ul"fr, €/'™ = 3 w/™[3z, and yf = 9 w/™[or, which correspond to the above
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displacements, and stresses that accord with those strains, Noting that F(z) = [5 f(s)ds and
separdting the volume of integration in to the fiber and matrix regions, we write

N £l = [0 [P errdes [) [0 Eprdrds

L L/2
- IO ( ) wf(z = 2) rdr+ Li2-1g [wf(r =a) - wy(r= a)]a‘cs dz . (29)
The above functional also can be divided among the regions of perfect contact and slip, whereby

I = L/2 [ f(2) 2.l ) dz +jm [F(-éi—ls). z, 1S:| dz , (30)

where
ok [r ol (e E)el ) frar osesEon . o

while
ny = o |£f ~of e lrar+ [PEnrd
2—0 f-oz Z—E SZ rar j‘a m T ar

L Kr=a)z-L/2 +1)'t, L L

, —_——l.f2z2<—
4CEf 2 ° 2

(32)

In Egs. (30), (31), and (32),

]

£f=0.5E}[(e{)2 +(e{)2+(eg)2]+ O.Suf(y{;)z + Ervy (efef +ef ! +efe£)

1-vy
Ef(1
——Ll(_—i}v—f—lafAT(a{ +el +ef)
" . 2 2 2 2 Elv
Epy = O,SEm[(e;") + (e;") + (e{,") ]+ O.Sum(y',"z) + -IZ‘—V”‘— (e;"e;" +ereg + e;"eg‘)
m
- 5":’;—(15:—'") a,,,AT(eZ‘ +e + eg‘) .

Note, however, that the continuity conditions (23a, b) impose constraints on I'l. To comply with
those constraints, construct the modified functional m* expressed by

* L ZTIV
M =T+ (——1) L
‘{fz d aSVE:|

. M[&f(z:L/Z —ls)+ 21,V ] | )

oz aSVy,Ep,
where Ay, A2 are Lagrange multipliers.
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Evaluate now the variation 8IT* and set 8IT* = 0 for a stationary value of n* Rz2), Is, M1y
A2]. Performing the differentiations and integrations included in Eqgs. (31) and (32), substituting
the results in Eq. (30), and considering the independent variations 8F, 8ls, 8\, and 8\, of IT*,
we obtain

, .
81-[‘ (f'ls’kl'l‘2)=jl‘/2“ls{[ aul - d T :ISF(Z) +i1;l'61s} dz
£}

0 oF(z) df(z)0z d

=

N amy(z=L/2 - I) SF(L )_ ory(z = 0) 8F(0)

oF 2 oF
_[nl (z:%—ls)—nz (Zé-§-~ls):]51s
L/2 on L on
— 22 _§F=- 22
+ L/2-ls[ap(u2 =) SF(Z ls)+ A, 815] dz

_a 8f(z=L/2—ls)+ 21,Vy 5
! 3z aSVEp | °

9z%

L\ 2%V _ af'?'(z =L/2 - 1)
+ [f( ls) ————4—aSVmEm ]87\'1 A.z|: 51_,

+[3f(z=b/2-’s) L2

oAy . (34

Collecting terms that correspond to the independent variations &f, ..., 8A3, the goveming
equation for f{z) reads

2
PD _(8y/af 2+ fo(Bs/a) =0 .

9z*
(35)
0<:zs< L_ .
2
with the boundary conditions (23a) and (23b) restated as
L 21,V
Ly)- ,
r(54)- 36
of(z=L/12 - ) ZTSVf
== (36b)

0z aSV,Ey

Assuming wrand wy, odd in z [whereby f(z) is even in z], the solution of Eq. (35) with Eq. (36a)
reads
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274V, cosh(Brz/a
f(2)=fo-[fo— f] (212 @37
aSVyuEy, ) cosh|By (0.5L - I;)/a
The condition (36b) provides the expression that determines the length /; of the slip zone
o, [fo _ 2ukVy sinh B (0.5L - k;)/a] _ 21,¥; )
f a*SVEy, ) cosh[B; (0.5L = L)/a] ~ aSVuEp,

In performing the manipulations that lead to Eqs. (34), (35), and (37), we obtained

where. )
a|l , . g Vi
= P S dar ,
Ci=uy ,‘-0 [P - 0 [ + VfEf H rdr

2
Co =t [, [ rar

2
Ef (a .
Cy = ;{- jO |:p(r) (Qr) (P +8 szf ]il rdr ,

* 2
Cy= £2—'5‘— j: [s(M] rar ,

ml.i 0| p, g 4 (Ba=%0a |
(———501 1 G J.O [P( ) — [P+ -—’L;,—Vf fﬂ [p(r) + —-———-—-—————-.——-—Qvaf rdr

At this stage, it may be noted that adding a function G(r, z), say,to o7’ inEq. (20b),
analogous to H(r,z) in Eq. (20a), would lead to the requirements that G(r,z= L2 - Iy =
[0G(r,z= LR - I)]/0z = f r*G(r*, z)dr = 0, as well as G(r,z=L)= 0 . Upon
incorporating G(r, 2z) in the vanatlonal functional TT*, the resulting Euler's equation on G,
together with the above boundary conditions, would yneld G(r, z) = 0. Consequently, the choice
of o7 in Eq. (20b) is consistent with the remainder of the present formulation.

3.4 SELECTION OF THE SHAPE FUNCTIONS p(r), q(r), AND s(r)

The selection of the shape functions p(r), q(r) and s(r) is guided by numerical results,
obtained by means of the boundary element method, to a circumstance similar to the boundary
value problem stated in Eqs. (1) through (10), except that the RVE is defined in Cartesian
coordinates, namely —L/2 < z < L/2 with “fiber” and matrix regions extending over lx| < a and a
< Ixl € b, respectively. The scheme and results are presented in Appendix B. In addition, the
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choice of the above functions is influenced by analytical results obtained recently
(Wijeyewickrema et al. 1990) to the problem of a single fiber contained within a concentrically
cylindrical region of a multicracked matrix, but in the absence of interfacial slip. Accordingly,
we choose

p(r)=(§)n ' | (39a)
q(r)=1—({,-)n : (39b)

and
s(r)=1-1>1(1—§) : (39¢)

The unknowns at this stage are /s, D1, and n, as well as A and B in Eqgs. (A.1) and (A.2)
(see Appendix A). These five unknowns can be determined by iteration employing
Egs. (A.18a, b), (A.9), (23a), or (23b) and the requirement that d6,/0, = 0 at z = L/2, r = 0. The
latter condition derives from the observation that z = L/2 is a symmetry plane in the present
boundary value problem and should hold in addition to t,,(0, L/2) = 0. In an exact solution, we
would have 006,/0z =0, T,,=0atz=L/2 and 0 < r < a. However, the approximate character of
our solution restricts our ability to satisfy the stated symmetry condition over the full range of 7.

We have

oo/
-gzi(o, é’-):Dg+D3=O , (40)

where

21, VrES *

_6E VmE,, || tl2Vs L L{ o, -0
oot [ (-0 )
To achieve computational efficiency, the iteration scheme assumes sequential values for the
group of the unknowns (4, B, D1) and subsequently for the pair (n, ). For example, for a given
0q, we start with the uncracked state, whereby D1 = 0 and A and B are determined from
Eqgs. (A.18a) and (A.18b). These values are then used for a given crack spacing L to solve
simultaneouslg' for n and Iy in Eqgs. (23b) and (40). At this stage, we compute
€0 =8 =2 [ J'_Lﬁz €2(r.2) r dr dz and analogous values for G/ and G, redefining new Ef

and E,, in Egs. (A.18a) and (A.18b) as E; ='6{ /€, and E,, =G [€, and recomputing A and
B. The value of D) is determined by requiring that G/ computed with s(r), according to



w b

19

Eq. (39c), agrees with 7' evaluated from Eq. (A.9). The iteration proceeds until attaining
desired accuracy. For cracks spaced at distances L/2, it is possible to start with values of A, B,
and D1, which correspond to the spacing L.



4. ANALYSIS OF MULTIPLE MATRIX CRACKING

Consider a fiber-reinforced ceramic composite, subjected to an applied stress 0,4, with planar
matrix cracks spaced at distances L apart. Let new planar cracks propagate quasistatically in a
straight front in the x-direction midway between the existing cracks, namely at spacings of L/2
apart, as shown in Fig. 4.1.

Assume that the volume of the fiber-reinforced composite is filled completely by the RVEs,
as shown in Fig. 2.1. In this case, the criterion for the formation of new matrix cracks can be
derived by comparing energy levels in “upstream” and “downstream” RVEs. The upstream RVE
has cracks spaced at distances L/2, which we denote by “State II,” while the downstream element
has cracks spaced L apart, designated by “State L.”

Let g¢, be the critical energy release rate associated with matrix cracking, and let U denote
strain-energy density; then, in analogy with Budiansky, Hutchinson, and Evans (1986), the
transition from State I to State II is governed, formally, by the criterion

L2 ¢b
[ JWntr - U102} drdz = (b2 - a?)g, @41)
Let V and S denote the volume and outer surface of the RVE, and let ¢; be the tractions on S.
Employing the divergence theorem, we have

[Wn -vr)av —EI(GHEH -olel )dV =%I(:}Iu‘.ﬂ —tlu!
v 5

L Nas .

Splitting the left side of Eq. (41) between the fiber and matrix regions, we have

%j (el - ‘fu‘f)de'l- j' ull — bl )dS, = n(b2 - a2)gc, . (42)
Sf Sm

In State I, the surface Sy consists of the horizontal circular regions at z = L/2 and the
cylindrical boundary r = a, Izl < L/2, which consists of slip zones r =a, L/2 - ;< lzZl< L/, and a
contact region Izl < L/2 — [;. In State II, the cylindrical boundary of Sy contains a new slip zore at
r = a, Izl < I, whereby the contact region reduces to /s <1zl < L2 — I . Similarly, in State I, the
surface S,, consists of traction-free crack surfaces at z = + L/2, a < r < b, a cylindrical boundary
r=a, |zl < L2, of common features to S5, and a traction-free boundary at r = b, 1zl < L/2. In State
I1, the boundary S,, contains a new traction-free crack at z =0, a <r < b, as well as a new slip
zone at r = a, lzl < I, commensurate with Sx

Consequently, Eq. (42) reduces to the following expression:

L L
mbzoa[w}l(;':i-)—w}(z:—f)] Ustip = 1t(b2 —az) , (43)
where
Uslip = 21aTs {jL//ZZ i [awl(a,z) - Aw!(a,2)]dz + jé’ Awn(a,z)dz} : (44)

21
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Fig. 4.1. Two states of matrix fractures in continuous fiber-reinforced ceramic
composites. State I: Cracks spaced at distance L. State II: Cracks spaced at distance L/2.

where Aw(a, z) =wp, (g, 2) — wr (@, 2), as defined earlier in this work.
Equation (43) can be viewed as a criterion to determine the magnitude of 6¢ associated with
transition from State I to State II. Analogous transitions occur from “state (N + 1)” to “state (N +

2)," N =1,2,..., when average crack spacing increases from (L/2V) to (L/2N+1) with applied
stress value (a5), . Between transitions, namely for (a5), < 04 < (65), ., and under

monotonically increasing 64, the composite sustains monotonic, continuously increasing strains.
The formal criterion (41) and the attendant results expressed in Egs. (43) and (44) are
subjected to the thermodynamic requirements of irreversibility of dissipation. In the present case,
this requirement implies that Us);p must be a nondecreasing function of the applied stress 5.
Specifically, under monotonically increasing o, as well as during transitions between fracture
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states, the lengths I, of the slip zones cannot decrease in size. Consequently, our computational
solution to Eq. (43) included the requirement that the lengths /s of the slip zones associated with
State I (say) at 6,=0¢ — € do not decrease upon the transition to State II (say) at 6, =0¢ — e”

In the computations of the results exhibited below, we employed the following values for
the thermomechanical properties of the fibers and the matrix (unless stated otherwise): Ef =
200 GPa, E,, = 85 GPa, Vf=0.1, v, = 0.1, Vy= 04, a = 8.0 x 10-6 m, g5, =44 N/m,and T'=
~550°C. Also, when considering o> Oy, We took Oy= 6.0 x 10-6/°C, and o, = 3.0 x 10-6/°C,
while for a,,, > aywe employed o= 3.0 X 10-6/°C, and @, = 6.0 X 10-6/"C. These values
correspond to SiC/LAS ceramic composites.

Various values were selected for the 1, and g5, to demonstrate their influence on the stress-
strain response of the composite material. Furthermore, we chose (somewhat arbitrarily) the
spacing L = 30,000q as the initial distance between adjacent cracks to lead off the computations
of the stress-strain curves. For the specific examples considered herein, the earliest noticeable
departure from linearity occurred at L ~ 128a and larger values of L yielded stress-strain curves
indistinguishable from those shown below. Results are exhibited in Figs. 4.2 through 4.9.

The predicted stress-strain curves, with longitudinal and transverse strains denoted by &, and
g7, are shown in Figs. 4.2 through 4.5. The influence of Ty is exhibited in Fig. 4.2 (where oy =
o), the effect of g5, is shown in Fig. 4.3 (with 7, = 0.02 GPa and of = 0y, While the effects of
thermal mismatch are demonstrated in Fig. 4.4 (with T, = 0.02 GPa). Here, and elsewhere in the
present work, these effects are calculated for a temperature drop AT = -550°C below a stress-free
initial condition at an elevated temperature. Figure 4.5 shows that, for a certain combination of
material parameters, it is indeed possible to attain a sign reversal in the lateral strain, as observed
in Fig. 1.2. In this figure, 95, = 5 N/m and 1, = 0.2 GPa.

The radial variations of o{ at the plane of the matrix crack, and its dependence on the
residual thermal stress, are shown in Figs. 4.6a and 4.6b for two levels of applied load o, and
with 1, = 0.02 GPa. Note that all models based on shear-lag neglect this radial variation and,
when matrix cracks are present, cannot account for residual thermal stress effects. The effect of
T, ONn c{ (r/a, Z/a) is demonstrated in Fig. 4.7 by plotting profiles of these stresses at various
distances %/a from the plane of the matrix crack (i.e., Z = z + L/2) vs r/a. Thermal effects are
discarded in this figure.

Larger values of T4 arc associated with larger amplifications and higher peak values of o{
near the plane of the matrix crack, but these amplifications reduce more guickly to the
undisturbed background levels upon moving away from the matrix crack. In addition, larger
values of T, are accompanied by shorter slip zones /s and larger spacings L between matrix
cracks. Figures 4.8a, 4.8b, and 4.9 exhibit further details about factors that affect L and /.

Note that Figs. 2.1 and 4.1 represent a highly idealized circumstance of equal fiber spacings
L and L/2. It is more reasonable to assume that in realistic circumstances the crack spacings at
each stress level 6,4 range between L, and 2L,, with an average value of L = 3/2L,. This suggests
that the length L employed in this work should be interpreted to be 50% larger than the average
crack spacing. More refined considerations (Kimber and Keer 1982) suggest that L = 1.337L,.

*It turned out that at g = 05, the slip zones near the new cracks in State II (say) had lengths [g = [;.

#This observation explains why the occurrence of early matrix cracks cannot be detected from stress-strain
response. In addition, it appears that deterministic analyses that aim at predicting conditiens for the onset of first
matrix cracking may be futile, because the early state of cracking is entirely governed by stochastic parameters such as
the random geometry of initial flaws within the composite.
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Fig. 4.2. The effect of interfacial shear strength, T;, on the stress-strain response of
continuous fiber-reinforced ceramic composites (with &ts = 0p,).

The value of g5, was selected, ad hoc, to be the same as obtained in the monolithic ceramic
matrix. In principle, this value is stochastic rather than deterministic. In addition, it is not certain
that the in situ value of g¢, within a composite is in fact the same as for the monolithic material.

The stress-strain plots in Figs. 4.2, 4.3, 4.4, and 4.5 were terminated when Is = L/2, namely
when slip occurred over the entire fiber/matrix interface. It seems that beyond that range the
stress-strain behavior is govemed by fiber failures.
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Fig. 4.3. Effects of matrix fracture toughness on stress-strain response of continuous
fiber-reinforced ceramic composites (T, = 0.02, O = Cpy)-
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Fig. 4.4. Effect of thermal expansions on stress-strain response of continuous fiber-
reinforced ceramic composites (T, = 0.02).
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29

ORNL-DWG 92-2325 ETD
of of o
34 3] 3 ]
2 1 2t 21"
11 17
2 L, 1, | >
15 = 0.2 GPa 1g = 0.02 GPa 15 = 0.002 GPa
) Iy =089 a ls 10.17 a Iy = 62.9 a
N L = 4096 a L=512a L=128a
-]
S 1 f f
g v
= 1, 1, l >
»
<
4 i A
o0
n ~ ., 1,
A A 4
" 1. 1., Jl .
4 1 1 N
~ N ] R}
[ /‘ S A
(=] . » e
1 T T T > T T T T LI I | T 1 g
0 2 4 6 8 1.0 0 2 4 6 810 0 .2 4 6 8 1.0

Radial Position r/a

Fig. 4.7. Dependence of stress distributions within fibers on the interfacial shear
strength T, Shown are profiles of o S (rla, 7/a) (in GPa) at various distances, Z/a, from the
matrix crack, for 6, = 0.43 GPa.



30

ORNL-DWG 92-2326 ETD

OV O — N W o Ut ov
Yy 1 5 37 7 1.5 1

Log(L/a) /Log (2)
¥
R

P
-

--------------------------------------

O — N L h U1 O O
¥
-t

g
o

0.7 0.8 0.9 1.0

(a) Applied stress (Gpa)

16

e
w
1
.

Log(L/a)/Log(2)

7-
6 -

.
bevcoccaad

b -

0 4 1 ) 1

0.30 0.35 0.40 0.45 0.50 0.55

(b) Stress (Gpa)

Fig. 4.8. Crack spacing, L, in terms of log (L/a)/log(2) vs applied stress for (a) T; =
0.2 GPa. Cases of i, = 0ty (solid line) and 0., > 0t (dashed line). (b) T, = 0.02 GPa. Cases of
Oy > O (————)y Oy = O (=mmmmnee ), and Oy < Ol (- == -~ - ).



31

20 ORNL-DWG 92-2327 ETD
------- am = af
6F - ---- am < af
14 |- _—/ .
12 ™ ‘.-'-----"“-.
“ u-c.-"‘" - -
Q 10 - s —‘--“’
: ~
8t : .
: |
: \
6} : N
: |
: !
4 - H \
i \
5 |
2r E !
: ]
0 M | T s T —'4‘L v T v T Y v

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Stress (GPa)

Fig. 4.9. Length of slip zone, ;, vs applied stress for T, = 0.02 GPa. Cases of o.,, > 0
(—'—)! am = af( """ ), and (Xm < af(- - -).




5. STATISTICAL PREDICTIONS OF FIBER FAILURES

It is generally agreed that fiber failure is controlled by a statistical distribution of mi-
crostructural surface flaws (Thouless and Evans 1688, Sutcu 1989). The effect of these flaws on
the statistics of fiber strength is commonly represented by a Weibull distribution, which is also
adopted in the present case. Accordingly, the probability Py of fiber failure is expressed by

f M
Py =1-exp -ZnaNjflljz Iig!-o-(-%’-z—)} dzy (45)

where 2ral is the outer cylindrical surface of the fiber within an RVE of length L; N = L*/L is
the number of matrix cracks in a test coupon of length L*; M is the Weibull modulus that, for
ceramic fibers, has values between 8 and 10; and op is a Weibull parameter that represents,
approximately, the mean value of the failure stress,

Note also that, because M > 1, we have at any cross section Af= wa? within the RVE
| 4 [o{ (r;z) - B'zf ()M dA r >0, where 'c'zf (2) is the average stress at any z, It follows that fiber
failure predictions based on models that do not detail the radial variation of Ezf are likely to
grossly underestimate the failure probability. This occurs for the commonly employed shear-lag
model.

The probabilities Py of fiber failure under increasing levels of applied stress o, were
computed in accordance with Eq. (45), employing values for o*zf (a, z) and L determined by the
formulations in Sects. 3 and 4. We also employed the values M = 10 and 6, = 0.4 GPa m¥/M,

Some aspects of the dependence of Pron the interfacial shear strength T, are exhibited in
Fig. 5.1, where Pris plotted vs o4 for T, = 0.2, 0.02, and 0.002 GPa. In these computations, it
was also assumed that o= 0. The effect of residual thermal stresses, with T, = 0.02 GPa, is
shown in Fig, 5.2, while the significant effect of the radial variation of ozf on Pris demonstrated
in Figs. 5.3a and 5.3b. Note that computations based on radially averaged values 'o'zf (2) will
underpredict the probabilities of fiber failure.

As noted by Schwietert and Steif (1990), multiple failures may occur within a single fiber,
Such failures and, especially, denser crack spacing as Pr—>1 would necessitate the consideration
of fiber failure interactions. Fiber failures will modify the stress-strain curves shown in Figs, 4.2
through 4.5 and, most importantly, will introduce another energy-absorbing mechanism,
commonly referred to as “fiber pull-out,” that adds significantly to the toughening of the
composite.
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Fiber Failure Probability Ps

Applied Stress o, (in GPa)

Fig. 5.1. The effect of interfacial shear stress, T, (in GPa) on the probability of fiber
failure, accounting for radial variation in fiber stress distrihution (with 0= Q).
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6. SOME CONSIDERATIONS OF FIBER PULL-OUT ENERGY

It is now hypothesized that a negligible amount of energy is dissipated when a fiber break
occurs within the perfectly bonded contact region of an RVE, namely, at location z equal or
equivalent to 0 < z < L/2 - ;. In these circumstances, the load bome by the fiber is transferred to
the matrix, and the effect of the fiber break is localized within just a few fiber diameters (Kelly
and MacMillan 1986). In addition, because the site of such a fiber crack is somewhat far from the
location of any matrix crack, interactive failure is less likely to occur.

On the other hand, when fiber failure occurs within the slip zone, that is, at a location zp,
where L/2 - [; < zp, < L/2, the effect of the fiber break extends all the way to z = L/2. The reason
for this longer range effcct is demonstrated in Fig. 6.1.

Accordingly, at zp, < z < L/2, r = a, the shear stresses 1, due to a fiber break at z = zg, would
point in the same direction as the shear stresses T; caused by the pre-existing ma*:ix crack at z =
L/2, while for z> L/2 and z < zp, Tp, and Ty point in opposite directions. iiowever, because the
interfacial shear stresses cannot exceed 7, the fiber region zg, <z <L/2,0<r<a, will contract
without frictional resistance at r = a, namely as a “free-standing column.”

Because fiber failure in the slip zones is a random event, we now evaluate the probability Py
of such occurrence. This quantity is to be contrasted with Py, the probability of fiber failure
anywhere along its length, given in Eq. (45).

For that purpose, we introduce the function

M
f -
c,(az)| ..
Pr(0,z) =1-exp —21cajg[ 200 ] daz} , 46)
wiich expresses the probability of fiber failure within the interval (0,z).

Accordingly, the probability of failure within the interval z; < z < zp is given by

Pf(21,22)= J'Zz an(O,Z)

2] r4

dz

of (@) ol (@]
exp —ZMI;] |:-—ia(-)—’——~] dz } —exp —ZMI(? l:——zao-'—} dz @7

-

ol @zl ol @l
z ) ,
exp ——21(‘,aJ'01 [—ZG—O—-—J dzp| 1—exp —21caJ':l2 l:_laa——} dz

It can be readily verified that Pr(zy, 2p) possesses the required property that, for any z) < z; < z3,

Pf(zl.23)=Pf(zl,22)+Pf(zz,z3) , (48)

which is consistent with the Weibull statistical approach employed in the present framework
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Employing Egs. (47) and (48), together with mathematical induction, yields the following
expression for the probability of failure within the 2N slip zones, each of length /g, that exist

along the specimen of length NL:
L/2 M
1—- exp{_4na / [gz.(a'___f_).] dz}

_ L12-1s[ o4(a,2) Li-kL %o
Pfs-Pfexp{—Zua o [ oo ] dz } X

M
L2 6,(a,z2)
l—exp{—41ca o [—-———00 ] dz}

» (49)

with Py given in Eq. 45). :

In the derivation of expression (49), we utilized the periodicity of the o{ , namely, ozf (a,z
+ kL) = o{(a. z) (k = 1, £2, . . .). For 1, = 0.02 GPa and 1, = 0.002 GPa, Pgis
indistinguishable from Py, hence Pr;vs G, are the same as shown in Fig. 5.1.

For 15, = 0.2 GPa, Py, differs from Py. These failure probabilities are shown vs o, in Fig. 6.2.
Inspection of Figs. 4.2, 5.1, and 6.2 suggests that for T, = 0.02 GPa and 1, = 0.002 GPa, the
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incidence of matrix cracking antedates fiber failures, confirming the scenario illustrated in
Fig. 6.1. However, for the case of strong interface, that is, T, = 0.2 GPa, fiber failures precede
matrix cracking.

Employing Eq. (47), we obtain the probability of fiber failure within a single slip zone of a
single RVE:

M
f f
L2-1,| ¢ (a,2) L2 |ol(a,z)
Pf(%_ls.é-):exp -2Ta .[0 [—L——-—OO ] dz} 1—exp ZMJLIZ ’[—L‘%—:I dz} |. (50)

The most likely location z;b of a fiber break within the above slip zones can be evaluated as
follows:

o (04 (12 32Pr(L/2-1;,2) _(oq(Liz 9%Pr(L/2-1;,2)
2| e~ dzdo, = |, qu—z, 530, zdzdo, . (51)
Integration by parts yields
L L_, L\L_qL
szPf( -1, ) Pf( -1, 2)—- mle(7 ls,z)dz. (52)

Upon determining z;b. it is possible to evaluate U), the portion of the pull-out energy resulting
from the unresisted contraction of the fiber in the region z}b < z< L/2. We have

Pf(L/22;fls,L/2) J'Il‘-//:_ J'; {[G{(r. z)]2 _[o{(,,z)_o{(r,z;b)]z}rdrdz . (53)

Up =
In the evaluation of U, we accounted only for the release of o{ due to the creation of a fiber
crack at z =z;b. The contributions to all other stress components have been discarded in view of
their relative insignificance.

The nondimensionalized values of Up/m (b2 — a2)g¢, vs 0, are plotted in Fig. 6.3 for T, =
0.002, 0.02, and 0.2 GPa. Note the vast disparities between the magnitudes of U, for these
distinct values of 1. (The plots for Up were terminated at Pr= 1)

It is important to note that when a matrix crack at z = L/2 is accompanied by a fiber break at
2", within the slip zone, the RVE can no longer support the remote load tb26,. The unbalanced
load of magnitude

w20, - Pp{ % -1, &) [ of (1.2 )rar (54)

is transferred to the neighboring RVEs by shear at r = 4. The above unbalanced load will
overburden the neighboring RVEs and may bring about their premature failure. This process may
explain the observed clustering of failures in the form of fiber pull-outs. However, the local
failure of the RVE, accompanied by the overloading of its neighboring elements, leads us beyond
the scope of the present model and requires a separate analytical approach.
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7. CONCLUSIONS

The results presented in this work illuminate some aspects of the complex response of fiber-
reinforced ceramic composites. Figures 4.2 through 4.5 exhibit the effects of various individual
parameters, such as the interfacial strength T, the matrix fracture toughness ¢y, , and the thermai
mismatch (o, — af), on the stress-strain response of the composite as attributed to progressive
matrix cracking alone.

The failure of fibers is predicted by means of Weibull statistics; Figs. 5.1 and 5.2 show the
relations between fiber failure probabilities, under monotonically increasing load, and some of
the above-mentioned material parameters. The high sensitivity of the latter probabilities to radial
distributions of fiber stresses is shown in Figs. 5.3a and 5.3b. This sensitivity is amplified
because the “Weibull modulus” M for ceramic fibers has rather high values, namely 8 < M < 10.
As can be noted from Figs. 5.1 to 5.3, the probabilities of fiber failure remain very small at low
load level and take sharp upswings in the neighborhoods of some characteristic loads. It was
found that the conditional probability of fiber failures to occur within any of the slip zones near
the matrix cracks does not differ substantially from the probability of fiber failure anywhere
along its length. Consequently, in all realistic cases, the phenomenon of fiber pull-out can be
associated with fiber failures taking place within the slip zones. A certain portion of the irre-
versible fiber-fracture energy, Uy, which is surmised to be the major part of the energy dissipated
within an RVE due to fiber break, is exhibited in Fig. 6.3 vs the externally applied stress o, for
various values of t,. It is seen that U, is much larger for weak interfaces than for strong
interfaces. However, the combination of matrix crack and a fiber failure within the adjacent slip
zone brings about the local failure of the RVE and the overloading of neighboring fibers. This
transfer of load beyond the region of a single RVE requires a separate analysis.

It would seem from Fig. 4.2 that an increase in the interfacial strength T may lead to a better
composite. However, such an inference is contradicted by the results shown in Figs. 5.1 and 6.3,
When Figs. 4.2, 5.1, and 6.3 are viewed together, it can be seen that fiber strengths are likely to
be exhausted before matrix cracking at higher values of T, and material failure would occur in a
brittle manner. On the other hand, sufficiently low levels of 1, will give rise to matrix cracks,
fiber failures, and fiber pull-outs, resulting in departures from linear stress-strain behavior before
ultimate failure.

Finally, bear in mind that at elevated temperatures detrimental effects of oxidation may
bring about a brittle-like response of the ceramic composite. As can be seen from Figs. 4.7 and
4.8, smaller values of Ts cause a larger profusion of matrix cracks, which expose the composite to
faster oxidation. This factor must be considered when selecting a specific interfacial strength
among several available options,
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APPENDIX A

FORMULATION OF IN-PLANE FIELDS

Consider the following kinematically admissible displacements fields expressed in

cylindrical coordinates:

In the fiber: w=¢€pz, u=A4r, v=0,;

In the matrix: w =¢€yz, u=Ar+B(r—%), v=20 .
Consequently, in the fiber:

f_
€, =€0 ,
f oS =
€y =€, =4 ;
and in the matrix:
eM=¢gg ,

a2
E;"=A+B 1+-;._f , and

eft=A+ 3(1—%) ,
where A, B, and g are constants.
By the Hooke's law, the axial stresses in the fiber and the matrix are

fron Ef(l—vf)eo 2EvA K '
0’(”)—(1+vf)(1-2vf)+(1+va1—2vf) (1-2vy) .
om(r,z) = Epn(1-vp)eo 2Envu(A+B)  Ep gmth

where
gfth = ofT and emh = T .

The force balance along z-direction provides
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2v
0a=eOEc+(VfE}T:4\%;+Vm £ 2 ]A+V,,,E‘%:‘it3%

I Vy s pveran 1tV g mth (A11)
where
E,=VEp+VyuEy (A.12)

E* Ef(l—vf)

= ) A13
(14 vy f1-2vy) A13)
¢ o Em(1=Vm) (A14)
Em T 0F V) T=2Vp)
It follows that €y in Eq. (A.11) is given by
_ " 2Vf « 2V * 2VmB
€0 —[Oa —(VfEf-I:-VT+VmEmT:‘-\’—,;- A '—VmEm T=v,,
| (A.15)
+Vy 1+v
+ 1= Vs va}ef,:h + mﬁVmE;,e'""h ]/EC .
Tuming to the radial stresses o, in the fiber and matrix, we have
of =L A+ lvf L* V) et (A.16)
Sy 1- Vf f €0~ 1- Vf f '

and

(1 ~2Vp)alB  E,Vm _1+v h
m - m '

The continuity condition o{ =0 at r = a and the boundary conditionc =0 atr = b
yield the following equations for the unknowns A and B:

ClA+C;B=1f; , (A.182)
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CyA+CpB=1f (A.18b)
where
2v 2v,, |V
» L
iz =14+ Vp(1=2Vp) 2vm2Vn (A.19b)
L1z = f m -(1—_\,—'"—)5.‘5', .
Cyy =|1-(viEn 2 pv,Et 2m (YL E;
21 = TErT=vy T ImEm TN, JE: [T=V
f f
A.19¢)
" 2Vf A A E;t (
—I:l—(vafT_—Vf+VmEml—Vm B T8
»
_ VmVmE,, Elvm Epvy .
VO Vi [(1+V 14V
A= -—%c—i + (14 Vg Jemith — —Erf'(m?VfE}ef.fh +1o VZ VmE,’:,e’"""] , (A.20a)

1+vs 14V oo
fa=1z Ve Ejefith -2 e Ej emith
(A.20b)

1+
}(ca + -1—_-Vv—f;-va;.gf.zh 41t 32 va,;aM»fhj .

+ =

In addition, it may be noted from Egs. (A.18) to (A.20) that A and B depend linearly on o, g/ith,
and e™, namely

A(oa ,efith e"‘»”‘) =G, A +efithAy +emihAy (A.21a)
with
A = O(Vm)+0(vy) (A.21b)
and

B(c,,e/th emih) =, By +e/ By +emhBy (A.22a)
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with

By = O(Vpm)+0(vy) . (A.22b)

Consequently, it can be concluded that contribution to ozf in Eq. (A.8) and o in Eq. (A.9)
from the mechanical part of the transverse strains is of O(v2,), O(V}). or O(V¥V,,). The small
significance of this contribution would mitigate the effects of inaccuracies caused by our
cmployment of boundary conditions (4a) and (4b) in constructing the present model.



APPENDIX B

THE BOUNDARY ELEMENT SCHEME

~ Consider a two-dimensional representative volume element (RVE) in rectangular Cartesian
coordinates as shown in Fig. B.1. The RVE consists of two linear isotropic elastic materials,
loaded as shown in the figure. Assume perfect bond to exist at the interfaces | x| = a between the
two materials for It,,| < Ty, and let slip occur when It,,| =1, at those interfaces. Denote by /, the
length of the slip zone. ‘
The continuity of displacement and stress components at the nonslip interface 0<z < L/2 -
I, 1s expressed by
anduf =um (B.1)

=1, of=op, ul=up,

While at the slip interface L/2 - I, < z < L/2, the mechanical conditions are given by

[ = = f = [ = ym
Ty ==Ts» Th=-Ty, O, =0, andu; =u? . (B.2)

In addition, the continuity of 1,, at the interface imposed the following relation
(2 x=0a)=-1; , (B.3)

as z approaches L/2 — [, from the nonslip side.

The boundary element method was employed to solve for the stress and displacement
fields. The resulting stress components G{ were plotted vs x at several levels of z in Fig, B.2,

Notice that the value of /; is unknown a priori, Therefore, a guess initial value of [ is first
introduced into the boundary element method algorithm, leading to a certain solution which, in
general, does not match the requirement (B.3). This value of /; was then adjusted iteratively, with
corresonding values of [, until Eq. (B.3) was satisfied to within a desired accuracy.

For comparison, Fig. B.2 also contains plots of the values of c{ computed by the method
developed in this paper for the concentric cylindrical model shown in Fig. 2.1. Equivalent elastic
properties, geometrical parameters, and loading conditions were employed for both cases shown
in Fig. B.2,
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Fig. B.1. The Cartesian configuration employed for the boundary element method.
The computations employed L/a = §, a/b = 04.
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Fig. B.2. Profiles of fiber stresses o{ (z, 2) vs x/a computed by the boundary element
method (discrete points) compared with o{ (r, 2) vs r/a evaluated by the present model.
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