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NOMENCLATURE

a radius of fiber

- A, B, C constants associated with various displacements
b radius of representative volume element
E Young modulus

f(z), g(z), k(z), F(z) shapefunctionsof thecoordinatez
G shear modulus

i, j displacement stress and strain indices
L matrix crackspacing
Is length of slip zone along fiber/matrix interface

P, Q, S integrated values of p, q, and s

p, q, s,/_, _, t shape functions of the coordinate r

Pf probability of fiber failure
r, 0, z cylindrical coordinates
T thermal excursion temperature
u radial displacement

U energy
V volumefraction

w axialdisplacement

x,y Cartesian coordinates

- zfi, location of fiber break
a coefficient of thermal expansion

. Aw displacement discontinuity at fiber/matrix interface
strain

eo average axial strain in test sample
_, Lagrangemultiplier

II, II*,/I;1,/I;2 energyfunctionals
o normal stress

Oa average applied axial stress
o0, M Weibull distribution parameters
x shear stress

"ts maximal shear stress supported by fiber/matrix interface
Poisson's ratio

g,_ critical energy release rate for matrix fracture
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m matrix

!
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MULTIFRACTURE OF CERAMIC COMPOSITES

Y. J. Weitsman*
" H. Zhut

ABSTRACT

This work presents a mechanistic model for the multifracture process of

uniaxially reinforced fibrous ceramic composites under monotonically

increasing tension parallel to the fiber direction. The model employs an energy

criterion to account for the progression of matrix cracks, bridged by intact
fibers, and Weibull failure statistics to relate the failure of the fibers.

Consideration is given to the interactions between the foregoing failure

processes as well as to the effects of various material parameters on the

response of the composite.

1. INTRODUCTION

Ceramic materials exhibit superior performance at high temperatures, but their utilization
" in critical structural components is severely curtailed by their excessive brittleness. Techniques

to alleviate this brittleness are the subject of intensive research, reviewed by several leadingi

investigators in the field (e.g., Schioler and Stiglich 1986, HiUig 1987, and Evans 1990). In one

such technique, continuous fiber-reinforced ceramic composites (CFCC) are formed; in these

composites, the reinforcing ceramic fibers are typically more ductile than the ceramic matrix. In

this case, fracture of the brittle matrix entangles the more compliant fibers in the failure process,
resulting in several energy-consuming mechanisms. I,¢ appropriately conceived, these mecha-

nisms lead to a gradual structural failure instead of catastrophic c0Uapse.
Typical stress-strain curves are shown in Figs. 1.1 and 1.2. Figure 1.1 exhibits the ductile

behavior of unidirectionally reinforced SiC/CAS ceramics under uniaxial tension parallel to the

fiber direction, with comparison to results obtained by Daniel, Anastassopoulus, and Lee
(1989). Figure 1.2, obtained by Nardone and Prewo (1988), shows similar results for HMU-

7740 composites, with a significant reversal in the lateral strain.

Several striking differences exist between ceramic and, say, polymeric composites. In

polymeric composites, the fibers provide stiffness, while the polymer serves essentially as a

binder. Consequently, the ratio Ef/E m of the fiber and polymer moduli is typically of O(102). In

" addition, to achieve high stiffness it is usually desirable to have strong interfacial bond!ng

d

*Oak Ridge National Laboratory/Fhe University of Tennessee, Knoxville, Distinguished Scientist in Composite
Materials and Structures.

"]'Postdoctoral Research Fellow, The University of Tennessee, Knoxville.
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Fig. 1.1. The uniaxial stress-strain response of 0° SiC/CAS continuous fiber-
reinforced ceramic composites.

between the fiber andmatrixmaterials. In contrast, the primaryrole of the fibers in ceramic

composites is to enhance toughness. Thus, the ratioEf/E m in ceramic composites is typically of
O(1). Moreover, it is usually desirable to have weak bonding between the fibers and matrix to
enhance interfacial slip, thereby increasing the amount of energy dissipation during the process
of matrix cracking. In addition, a weak interfacial bond will deflect matrix cracks around the
fibers and bring into play their larger ductility. Therefore, in spite of some similarities, the
modelling and analysis of failure of ceramic composites require a different approach than that
applied to polymeric composites. Among the several ceramic failure models worth mentioning,
we recall those of Aveston, Cooper, and Kelly (1971) and Budiansky, Hutchinson, and Evans
(1986). Both works model the fracture behavior of a brittle matrix reinforced by ductile fibers.
The former employs a stress criterion for failure, while the latter utilizes energy criteria. Both
analyses aim at predicting the onset of the first matrix crack, and both approaches are based
upon the shear-lag model.

The latter model assumes that the fibers carry ali the tensile load and that the matrix re-
sponds in shear only. In addition, the model neglects ali shear deformation within the fibers.

However, the above assumptions, which are reasonably accurate for Ef/E m ratios of O(102) as
occur in polymeric composites, appear to be deficient in the case of ceramics, lt is intuitively
obvious that for Ef/E m of O(1), the shears in the fibers and the matrix play equally important
roles and that, equivalently, the normal stresses in the matrix should not be neglected. In
addition, the normal stresses in the fibers in the vicinity of the matrix crack are expected to
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. Fig. 1.2. Longitudinal and transverse strain against applied tensile load for 0°,
43 vol % HMU-7740 composites. Source: V. C. Nardone andK. M. Prewo, 1988, "Tensile
Performanceof Carbon-Fibre-ReinforcedGlass,"J. Mater. Sci., 23, 168-180.

exhibit a very pronounced radialvariation that plays a critical role in the prediction of fiver fail-
ure. The importance of the foregoing stress distribution was alluded to by several investigators
(Sutcu 1989, Schwietert and Steif 1990), although they did not quantify or analyze it. Finally,
the evolution of multiple cracks within CFCC has not been modelled in the context of energy
considerations. A major obstacle in evaluating the energies consumed during the process of
progressive failure, in CFCC can be traced to yet another inadequacy of the shear-lag model,
namely, its limited ability to express the interfacial slip between fibers and matrix and its
attendant incapacity to evaluate the dissipative energy.

Energy-based analyses of the multifracture behavior of laminated polymeric composites,
when progressive failure occurs at the ply level, were developed by Fang, Schapery, and
Weitsman (1986) and by Nuismer and Tan (1988). The latter work employs concepts of shear-
lag.

An important improvement in the analytical representation of mechanical fields asso-
ciated with a single matrix crack around a relatively ductile fiber was obtained by McCartney
(1989). That representation satisfied most of the field equations and boundary conditions
required by an exact solution. Nevertheless, in the present work it was found advantageous to
establish another representation more suitable to our purpose of analyzing the interactive effects

,'

between fiber failures and the multifracturing process within the matrix. In particular, our repre-
sentation contains specific details of the stress distribution o f (r, z) within the fibers, which are
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predicting the ensuing fiber failure process. This aspect seems to be c'Jfparticular importance
because fiber flaws appear to occur more readily near the outer surface of the fiber, thereby
corresponding to a Weibull statistical representation that employs surface rather than volume
integrals, lt turns out that statistical computations employing average values _zf(z) predict
substantially lower failure probabilities than computations based on the stresses at the interface
r = a, namely az/"(a, z).

The present formulation assumes that the slip process is caused by relative movement
over asperities at the fiber/matrix interfaces. Other considerations, such as Couiomb friction, are
obviously possible. These were considered by Dollar and Steif (1988), Steif and Dollar (1988),
and, in a broader context, by Hutchinson and Jentsen (1990).



2. FORMULATION OF THE APPROXIMATE MECHANICS SOLUTION

Consider a unidirectionally reinforced composite material, consisting of ceramic fibers

and a ceramic matrix, subjected to uniaxial tension parallel to the fiber direction. Beyond aml

certain level of applied stress, the composite i_ assumed to develop matrix cracks in planes

normal to the fiber direction. These cracks are bridged by intact fibers and are spaced at an

average distance L. In addition, the composite is assumed to be cooled down by T degrees

below its stress-free temperature TO.
Let r, 0, and z denote cylindrical coordinates, with corresponding displacements u, v, and

w, respectively; designate stresses by the standard symbols, _r, az, "rrz_ etc. In addition, let m

and fdenote matrix and fiber properties, respectively.
The thermomechanical problem at hand will be formulated for the rep_sentative volume

element (RVE) shown in Fig. 2.1. The RVE occupies the volume 0 < r < b,-/.,/2 < z < L/2, and

contains two concentric cylinders. The fiber region is located within 0 < r < a, Izl< L/2, and the

matrix domain ranges over a < r < b, Izl< L/2. Matrix cracks are supposed to pre-exist at z =

+ L/2, and the interfacial shear stress Xrz(a,z) is assumed to be limited by a slip stress of

magnitude xs. At Xrz(a,z)_-"Cs, relative displacement Aws (slip) is supposed to occur by an

amount of Aws = wm(a,z)- wf(a,z), which is yet to be determined. The slip mechanism is
assumed to occur as relative motion over interfacial asperities at r = a.

We assume that both fiber and matrix materials behave linearly elastic and that their

interfaces remain in lateral contact even in the presence of tangential slip. The maintenance of

. lateral contact is intuitively justified for materials systems where _m > O;f and Vm> rf, where _x
and v denote the coefficient of thermal expansion and Poisson's ratio, respectively, and when

slip occurs over interfacial asperities of sufficiently large amplitudes.

" The boundary value problem for the RVE consists of the linear, isotropic, elastic field
equations within the fiber and matrix regions. Employing standard notation, these equations
read

-- f ,m
Ef 'm =. l---_ [ (l + V f ,m )O fij'm V f ,m O kk _ ij ] + _ f ,m T_ ij , (1)

Ef,m t
where

2£ f 'm = tr.ft,)m + ufj,im . (2)

Assuming rotational symmetry, we have v = 0, er0 = ez0 =Or0 = Oz0 = 0, whereby the
equilibrium equations read

_(i f,,m _kzf ,m f ,m+-'rz +_=0 , (3a)
c)z Dr r

+ -+ =0 . (3b)
- r Dr bz
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An exact elasticity solution satisfies the following boundary conditions for the RVE:

arm(b,z) = 0 _ L (4a)'
" m _ 2 (4b)x,z(b,z)=O

c'_(a,z)= o: (a,z) ,] (5a)

I L (Sh)

Xrmz(a,z)=xfn(a,z), Izl__-
um(a,z)=uf(a,z ) (5c)

and

Wm(a,z)=wf(a,z) (6a)

withinthecontactregion (_ayIzl< L/2- Ix),

(6b)

within the s!ip zone (say/.12- Is < Izl_ L/2).
. In addition, the condition of "global" equilibrium gives

2_ _o a{r dr + 2_ iba m r,b2Ozrdr= t_a ' (7)

where o a = 5 z is the average value of the applied stress.
The presence of matrix cracks at z = :1:L/2 implies

Finally, the planes z = + L/2 may be viewed as symmetry planes for cylindrical RVEs stacked

vertically along the z-axis. Therefore,

wf(r,L]=c1 and wf(r,L)=c2 , O<_r<a (9)

and

In the sequel, an approximate solution to the foregoing boundary value problem will be

.' developed by means of an "enhanced" kinematically admissible field. This field will provide

displacements uf. urn, wf, and w m that satisfy all the kinematic conditions of our problem,
namely, Eqs. (5c), (6a), and (9).



The paramount stresses in the present problem are tsz/'rn and xfrzrn, associated primarily

wi',.h the displacements wf,m and theh" spatial derivatives. The in-plane stresses of 'm and a0f'm
are mainly due to the lateral contractions ef 'm and eft 'm, associated with the displacements uf_.

Their effect on ofz 'm are of O(v2), where v - Vm-- vf (see Appendix A).
Guided by these observations, we shall construct "enh_ced" kinematically admissible

fields for u/_ disparately from those for wj; rn. Specifically, we shall initially consider an

uncracked RVE with uf(r) and urn(r) and assume w/= wrn = eoz [instead of a cracked RVE with

wf(r, z) and wrn(r, z)]. For these displacements, we shall employ Eqs. (1) and (2) to generate
stresses t_rf"n and o f'm, which satisfy Eqs. (3b), (4a), (5b), as wen as---obviously----(5c). Note

m

that, with the foregoing choice of displacements, xf = "trz= 0. As shown in Appendix A, the
uniform strain Ez = eo is related to the applied stress Oa and to T. In the presence of matrix

cracks, we shall employ an iterative procedure to improve the above-mentioned approximation

by a,djusting the value of eo to correspond to an appropriately modified equivalent modulus. The

modification will be updated with increasing crack density. We subsequently consider wf =

wf(r, z) and Wm= win(r, z) a_,adsubstitute the already available expressions for t_f'rn and
-['rn that satisfyo_'rn in Eqs. (1) and (2) to relate of. 'm to 3wf,M3z. Then, shear stresses "_rz

Eq. (3a) with conditions (4b), (5b), and (6b) are evaluated. For kinematic admissibility, the
condition (6a) must of course be satisfied. In addition, we shall also fulfill conditions (7), (8a),

and (9).

Clearly, the above ldnematically admissible fields uf(r), urn(r), wf(r, z), and wrn(r, z) do
not provide the exact solution to the boundary value problem stated in F_AlS.(1) through (10).

-/'In derived from theThe major inadequacy resides in the evaluation of Xrz.The shear stresses Zrz
equilibrium equation (3a) are inconsistent with expressions deduced from the stress-strain

relations (1) and contradict the premise that xfrzm = 0, which was utilized in the approximate
construction of the displacements uf(r) and Urn(,_. Furthermore, the_',e shear stresses do not
satisfy the boundary conditions (8b) and (10). These shortcomings are l tot surprising because an

approximate solution cannot handle the extremely intricate comer singularity that, under perfect

interfacial contact, occurs along the circle r = a, z =/./2, where the symmetry of the stress tensor

no longer holds and Xzr * Xrz (Bogy 1968).* On the other hand, the inadequacy of our solution is
mitigated by the fact that the approximation is optimized through the use of a minimum

potential energy principle and guided by a numerical solution to a simpler, but closely related,

problem.

*However, this singularity may be eliminated when a crack impinges on a frictional interface (e.g., Dollar and
Steif 1989).



3. THE KINEMATICALLY ADMISSIBLE DISPLACEMENT FIELD

3.1 PERFECTLY BONDED INTERFACES (NO SLIP)

" lt is well known (e.g., Timoshenko and Goodier 1951) that the following radial
displacements

uf=Ar ,
(11)

.-A,.,(r-1.
together with wf--Wm--- c:.0z,generate stresses according to Eq. (1) that satisfy the equilibrium
equation (3b). In the sequel, expressions (11) represent the kinematically admissible

displacements Umand uf.

Turning to the displacements wf and win, introduce first the shape functions p(r), q(r), and
s(r) with the following stipulations: p(0) = q(a) = O,p(a) = q(O) = s(a) = 1. In addition, denote

2 a 2 a 2 b

P=a-a-a-a-_I'o rp(r)dr, Q=a'a'a'_So rq(r)dr, S= b-2_a2 _'a rs(r)dr.

Assume the following forms for the strains ez:

• e{ = p(r)[f(z)+C]+q(r)g(z) ,

(12)

m s(r)f(z)+C.

rZ f ,m
These strains will generate displacements wf, m = Jo_z (Lr)dL which are continuous at the
interface r = a for all continuous functions f(z) and g(z) and for any arbitrary constant C.

In view of Eqs. (1), (11), and (12), we have

a{ = Ef(1-v f ){p(r)[f(z)+C]+q(r)g(z)}
2E/vIA E[

(l+Vf)(l-2vf) + (l+vfXl_2vf) l_2vfOtfT (13a)
and

Gm(r,z)= Em(1-Vm)[s(r)f(z)+C] 2EmVm(A+B) Em amT. (13b)
(1+ Vm)(1-2Vm) I"(l+VmX1- 2Vm) 1-2V m

TO satisfy boundary condition (8a), the form of Eq. (13b) must be modified to read

om(r,z)-s(r)f(z) with f(-l-2)=0 .

Consequently, we have

" C = 1+ vm CtmT _ 2Vm(A + B)
1- Vm 1- v m

9
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and

Em(1-Vm)S(r)f(z) .

omCr'z) (l+VmXl_2vm) '

Denote now

Ef(l-vf) . Era(I-vm)

P-;f=II+vf_I-2vf). ,. . ' Fm= (l+Vm)(l_2Vm) '

arid

;I l+v/ 2vfA 1oo=V.f E CP-l_vfafT+l_vf ,

withthe volumefractionsVI= a21b2 and Vm = (b2 - a2)/bLEmploying F-xi.(7), the force balanep
in the z-direction gives

,,:;[Oa = Pf(z) + Qg(z)] + VmEmSf(z) + o0 , (14)

whereby g(z) can be expressed in terms off(z) as follows

[o,-oo v:: ]//Qg(z)= L VfE; -Pf(z) VfE; Sf(z) . (15)

Substituting expression (15) in F_zlS.(12) and (13a) yields

ofz =E;f(z) p(r)-q-(r)-[P+sVmE_, l]+E;C[p(r)-P]+°o [1-q-_)]+°gq(r)
(16a)

v:e:)] vl v:o
9

e{ =I(z) p(r)- T P+s +p(r)C+V.fE/ QVfE; " (16b)

The latter equationgives

[ "_q(r)I VmEm)l (°a-°o)q(r)zWf = F(z) p(r) - P + S v;E; + p(r)Cz 4 QVfE; • (16c)

Employing the equilibrium equation (3a) to determine the shear stress, we have

"cf =-l_or* _'_f dr*=- E;f'(Z)_o[P(r*)-_lp+sVmEm'_]r*dr* . (16d)r
As noted earlier, the result (16d) is inconsistent with the outcome derived from the stress-strain
relations (1). •

Turning to the matrix region a < r < b, Izl< L/2 we obtain

m =E*mf(Z)s(r ) (17a)t3 z
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8zm= s(r)f (z)+ C , (1719)

. Wm = s(r)F(z) + Cz , (17c)

and

"  Sg,r"= - r r
(18)

[ ' ]
In Eqs. (16c) and (17c), we denoted F(z)- [_f(z*)dz*.

3.2 AN INTERFACIAL SLIP ZONE UNDER CONSTANT SHEAR STRESS

lt is assumed that the absolute value of the interfacial shear stress Ixi(z)l= IXrz(a,z)lcannot

exceed the limiting value of Cs and that interfacial slip in the amount of Aw(z) = wm(a,z) -

wf(a,z) occurs when xi(z) = :_,s. The direction of Aw coincides with the sign of xi. In this
circumstance, boundary condition (6b) replaces the displacement continuity condition (6a).

• To focus ideas, assume slip to occur at the cylindrical interface r = ao1.I2 - Is < z < L/2. In

this case, we confine the range of applicability of the foregoing expressions for perfectly bonded
. interfaces to the region 0 < z < L/2- !s (instead of 0 < z < L/2) and construct a "'slip zone

solution" for the region 0 < r < b, L/2 - is < z < L/2.

The "slip zone formulation" will satisfy the same field equations and boundary conditions

as the foregoing formulation for perfectly bonded interfaces, except that Eq. (6b;, replaces
Eq. (6a). In addition, the two formulations must blend together to ascertain continuity of

tractions and displacements at z = 1.22- Is, namely, continuity of urn, uf, win, wf, tf 'vjz, of ,
m fand xrz, X at z = Ll2-1s.
In view of Eqs. (3a) and (6b), we now have

%f(a,z)= I igrOafZdr=_Xs=xm(a,z), L is<z<L '- a _)z _" - - _" • (19)

Guided by Eq. (19), we select

tffz = ( L- z)P(r)+q(r)+ H(r,z) (2Oa)

and

. (3z = - z ._(r) , (20b)

•.' with the following provisos:
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I fO_r_(r)dr = "rs , (2la)a °

_'0' _H(r,z)r _z dr=O , (21b) ,

SO r_(r)dr + fba rg(r) dr = 0 , (21c)

b2
SO rO(r)dr = t_a W ' (2ld)

ra

J0 rH(r,z)dr- 0 . (2le)

Conditions (2la) and (21b) satisfy Eq. (19), condition (21c) gives "Crz(b,z) = 0, and conditions
(21d) and (21 e) with (21c) satisfy Eq. (7).

Conditions (21b) and (2le) can be satisfied simultaneously by selecting H(r,z) = t(r)k(z),

with k(z) = (z - L/2 + Is)2 and f_ rt(r)dr = 0. The foregoing choice of k(z) also facilitates
the establishment of traction and displacement continuity at z = L/2 - Is. Traction continuity at

z = L/2- Is between the expressions listed in Eqs. (16a), (16d), (1Ta), and (18) that are

consistem with the forms proposed in Eq. (20) can now be established in a straightforward
manner. We obtain

' I ")]_ _r__ _, -_m_ma{ =- , - z p(r)- e + s + e*fC[p(r)- el_VmEm Y 6E*_1.
(22a)

0 0 [ q(r)] aaq(r)VfQ+ -_f 1 - --_-j + + t(r)k(z) ,

2xsVf z) ,om= s(r) "_----_m(2 - (22b)

and

rE qr"I  :Vmllr.,.Zfrz= aSVmEm r SO p(r*) _ P + SE_-_-j]
(22c)

2(z-L/2+ Is) f0 *- t(r )r'dr*
r

I ] "m 2z s a2S Vf rr,s(r,)dr, . (22d)
T'rz = aSr 2 Vm

,,q

Note that continuity of normal tractions at z = L/2 - Is, 0 <_r <_b requires that
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,_ f -/s = _- , (23a)
MVmE,_

while continuity of shear tractions demands
t

_:'(_=L/2-t_) 2_,vI
a_ =- aSVme_" (23b)

Equations (23a) and (23b) do 'not contradict each other, because any one of them can be
employed to determine the unknown value of Is.The remaining equation serves as a consistency
condition.

Employing Eq. (22a) with the stress-strain relations (1), we obtain

_:,= p(,-_ e+sv:e': +p(rW

+ (C_a-Oo)q(r) + t(r)(z- L/2+ls) 2
Qv:e': e:"

whichuponintegrationwithrespecttozyields

: [ (wf _sVf[(L-z)z-(L/2+Is)(L/2-1s)]p(r)--_ P+S. _Vme_

+ (Oa - oo)q(r)z t(r)(z-L/2+ls) 3
Qv:e':+ 3::

The boundary condition (9a), namely wf(r,L/2) = constant (0 g r < a), can be satisfied by an
appropriate selection of t(r). This is accomplished by utilizing Eq. (24) to evaluate the average
value of wf at z = L/2, then requiring that

wf(r,21=_f(z=2) (0<r<a) . (25)

The condition (25) yields

I [xsl2vf' )][ q(r)(VmEmlVmE_n]t(r)= -[aSVm--ZT-:_.+F(2- ls p(r) - --_ P+ S VfE*f + S V_f J

L C[P - p(r)] + aa - aO q(r) L
" + 7 2Vf E*f 1 Q l_s . (26)
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Inspection of Eq. (26) shows that J'_rt(r)dr = 0, which satisfies the requirements stated in
Eqs. (21b) and (2le). _,

Turning to the matrix region (L/2 - Is < z < 1.,/2,a < r < b), Eq. (22b) yields

":: 1Ez aSVmE. - 7, +C .

Whereby, upon integration with respect to z and imposition of continuity of Wm with Wm(r,z =

L/2-1s) given in Eq. (17c), we obtain

"tsVf[(L-z)z-(L/2+ls)(L/2-1S)]s(r)+s(r)F(L-lsl+Cz. (27,W m = aSVmE*

Note that, within the slip zone, win(a,7`)# wf(a,z).
The radial displacements uf and Um within the slip zone are assumed to coincide with

those given in Eq. (11). Consequently, we have within both contact and slip regions, namely for
O< z<_L/2,

do- _:=A , (0_ , <a) ,

m( ar__ll

er =A+B 1+ (28)

(a<r_b) . "

_'=a+B 1-7

The thermomechanical stresses that correspond to Eqs. (11) and (28), together with

em = e f =e0, are evaluated in Appendix A. The constants A and B are also determined in
Appendix A, thus establishing the value of C that enters expressions (16), (17), (22), (24), and
(27). lt can be shown that incorporating the in-plane stresses into this analysis affects the results
by an order of v 2.

Also note that the in-plane stresses Orr'm and Ore'm that correspond to the displacements
wfand w,n prescribed in Eqs. (16c), (17c), (24), and (27) are no longer statically admissible,

because those displacements depart from wf = Wm= eOZ.
In the forthcoming analysis, we shall employ the minimum potential energy principle to

determine f(z) and utilize a numerical solution for analogous mechanical fields in Cartesian

geometry Ix_guide our choice of the shape functions p(r), q(r), and s(r).

3.3 DETERMINATION OF THE FUNCTION_z)

The field equation that govems the functionf(z) will be generated through minimizing the

potential energy functional I1(2/.)(Washizu 1975), where the displacements u: urn, u f, win, and

wf are given by the kinematically admissible fields listed in Eqs. (11), (16c), (17c), (24), and

(27). Employing expressions (1) and (2), we generate the strains ef'm=3uf'm/3r, "

<6":u:"l., w:,'laz,andr£,m:a w/'m/ar,whichcorrespond to the above
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displacements, and stresses that accord with those strains. Noting that F(z) = _ f(s)ds and
separating the volume of integration in to the fiber and matrix regions, we write

rI(F,f , ls) = So J0rL/2Efrdrdz+ ;ab ;LoI2Emrdrd z
|

a fz( L)(23 [L/2- fo° z- wr_-- ,.,_r+,,__,,[wrI,'--al-w,,,I,''al]a_,az._:29_
The above functional also can be divided among the regions of perfect contact and slip, whereby

rI Jo gl[f(zl'z'ls]dz + JL/2- ls r_2 F - Is , z, Is dz , (30/

where

Sol_1 = Ef -Of z=_ eJz rdr+ Emrdr, O<z<L2 -Is ' (31)

while

t(r=a)(z-L/2 +ls)4"Cs L L (32)
+ 3 * ---ls_z<-- '

41sEf ' 2 2

" In Eqs. (30), (31), and (32),

'II. _,-o_ _) .(_;/.(4) .o_(,_) __v,_ _ _o,

1 - vf

and

_ .[(o +(_m)+(_)1+0,_o(,:/+1-_

1 - Vm

Note, however, that the continuity conditions (23a, b) impose constraints on H. To comply with
those constraints, construct the modified functional rI* expressed by

. n*=n+_.l f -ts aSV_e;.

" + _2 3f(z = L/2 -1s) + , ,
bz aSVmEm J (33)

where _.1,_.2 are Lagrange multipliers.
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Evaluate now the variation sri* and set SH* = 0 for a stationary value of H* If(z), Is, M,

X2]. Performing the differentiations and integrations included in Eqs. (31) and (32), substituting
the results in Eq. (30), and considering the independent variations BF, Sls, 8_1, and 8_2 of II*,
we obtain

fLI2-1s{[_l _2*tl SF(z)+/}_1 )SH* (f,ls,Xl,_2)=jO _F(z) _f(z)_z -_s Sls dz

_l(Z-L/2-ts) KF(L_ls'_ ig_l(Z--0)
+ 3F (,2) - 3F

BF(0)

[( L ( L- _1 Z='_-ls -_2 Z='_-

+ JL/2-,_LBF(LI2 _ ts) al,

kl [ _f(z = L 2 - Is) 2XsV,f ]az + aSVmE m ] 81s

+ 3f(z = LI2 - Is) 2XsVf 1Oz + aSVmE: 8X2 • (34),,,8

Collecting terms that correspond to the independent variations Bf, ..., 8K2, the governing
equation forf(z) reads

a/2(z)
-(_f/a) 2 f(z)+ fo(_f/a) 2 = 0_z2

(35)

O<z< L
2 Is '

withthe boundary conditions (23a) and (23b) restated as

( LI ) 2_slsV[f "_-s = aSVmE: , (36a)

af(z = L/2 -Is) 2"CS]'E_maZ =- aSVm • (36b)

Assuming wfand Wm odd in z [whereby f(z) is even in z], the solution of Eq. (35) with Eq. (36a)
i reads
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2XslsVf _ cosh(_f z/a), f(z)= fo - fo asvmE_m) cosh[_/(0.5L- ls)/a] ' (37)

The condition (36b) provides the expression that determines the length Isof the slip zoneIi

_f(fo_ 2,_slsVf_ slnh[l]f(O,5L-Is)la] 2XsVf
9 • = , . (38)

a a SVmEm) cosh[_f (0.5L - Is)la] aSVmEm

In performing the manipulations that lead to Eqs. (34), (35), and (37), we obtained

ICl + C21°'5_f= '_33+C4 '

where

CI = IX/ So p'(r) q'(r) p + s VinE* r dr ,Q v:e;

c2 =g., [s'(r)]r dr ,

"a[ IV:: l. c3=Ea--_fIo p(r)-_-_ P+S V-_fjj rdr ,

" * b [s(r)]2
C4 =-_ _a r dr ,

[ ( VinE*m)] I (aa-t_o)q(r)l

-_t f a q'(r) P + S + , r dr .
f0 : (C1 + C2) I'0 p'(r) Q VfE*.f p(r)C QVfEf J

m
At this stage, it may be noted that adding a function G(r, z), say, to Oz in Eq. (20b),

analogous to H(r,z) in Eq. (20a)., would lead to the requirements that G(r, z = LI2- Is) =
[OG(r,z= L/2- ls)]/Oz=O, _Var*G(r*,z)dr=O, as well as G(r,z= L)= 0 . Upon
incorporating G(r, z) in the variational functional FI*, the resulting Euler's equation on G,
together with the above boundary conditions, would yield G(r, z) - O.Consequently, the choice
of o m in Eq. (20b) is consistent with the remainder of the present formulation.

3.4 SELECTION OF THE SHAPE FUNCTIONS p(r), q(r), AND s(r)

" The selection of the shape functions p(r), q(r) ands(r) is guided by numerical results,
obtained by means of the boundaryelementmethod, to a circumstance similarto the boundary

. value problem stated in Eqs. (1) through (10), except that the RVE is defined in Cartesian
coordinates, namely-L/2 < z < L/2 with "fiber" and matrix regions extending over Ixl< a and a
< lxl < b, respectively. The scheme and results are presented in Appendix B. In addition, the
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choice of the above functions is influenced by analytical results obtained recently

(Wijeyewickrema et al. 1990) to the problem of a single fiber contained within a concentrically
cylindrical region of a multicracked matrix, but in the absence of interfacial slip. Accordingly,
we choose

i

Iu)p(r) = , (39a)

q(r) = 1- , (39b)

and

s(r)= 1-Di(l-a). (39c)

The unknowns at this stage are Is, D1, and n, as well as A and B in Eqs. (A.1) and (A.2)

(see Appendix A). These five unknowns can be determined by iteration employing

Eqs, (A. 18a, b), (A.9), (23a), or (23b) and the requirement that/)az/Oz = 0 at z =/.,/2, r = 0. The

latter condition derives from the observation that z = L/2 is a symmetry plane in the present

boundary value problem and should hold in addition to X,rz(O,L/2) = 0. In an exact solution, We

would have 3t_//)z = 0, Xrz= 0 at z =/.I2 and 0 < r < a. However, the approximate character _of

our solution restricts our ability to satisfy the stated symmetry condition over the full range of r,
We have

---_L0, =/92 +/93 = 0 , (40)

where

O2=anSVmE l + S

_ls {( e VmE*II _.sl2VI'm )1 ('_a'7't_O 1} ' :6e vee})Lasv.E:+ F(_-Is +_L VfE*f -c

To achieve computational efficiency, the iteration scheme assumes sequential values for the

group of the unknowns (A, B, DI) and subsequently for lhe pair (n, ls). For example, for a given
Oa, we start with the uncracked state, whereby D 1 = 0 and A and B are determined from

Eqs. (A.18a) and (A.18b). These values are then used for a given crack spacing L to solve

simultaneously for n and ls in Eqs. (23b) and (40). At this stage, we compute
- 2 b L/2 f

eO = ez = _ _ft_C/2 Ez(r,z ) r dr dz and analogous values for _ and 5_, redefining new Ef

and Em in_-_s. (A.18a) and (A.18b) as Ef =-_I/E z and Em = "_m/Ez and recomputing a an'd "

B. The value of D1 is determined by requiring that 5zm computed with s(r), according to
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Eq. (39c), agrees with _m evaluated from Eq. (A.9). The iteration proceeds until attaining
desired accuracy.For cracks spaced at distancesL/2, it is possible to startwith values of A, B,#

and D1, whichcorrespondto the spacing L.

i '1 1

m



4. ANALYSIS OF MULTIPLE MATRIX CRACKING

Consider a fiber-reinforced ceramic composite, subjected to an applied stress Cia,with planar

• matrix cracks spaced at distances L apart. Let new planar cracks propagate quasistaticaUy in a
straight front in the x-direction midway between the existing cracks, namely at spacings of L/2

apart, as shown in Fig. 4.1.
Assume that the volume of the fiber-reinforced composite is tinea completely by the RVEs,

as shown in Fig. 2.1. In this case, the criterion for the formation of new matrix cracks can be

derived by comparing energy levels in "upstream" and "downstream" RVEs. The upstream RVE
has cracks spaced at distances/./2, which we denote by "State n," while the downstream element

has cracks spaced L apart, designated by "State I."

Let gc be the critical energy release rate associated with matrix cracking, and let U denote
strain-energy density; then, in analogy with Budiansky, Hutchinson, and Evans (1986), the

transition from State I to State,,II is governed, formally, by the criterion

__L/2 ibo[UiI(r,z)_Ui(r,z)]rdrdz= lt(b 2 _a2)g c . (41)L/2

Let V and S denote the volume and outer surface of the RVE, and let ti be the tractions on So

Employing the divergence theorem, we have

- f(VlI - UI)dV __._!( 1I,ClijEij _GijF=ijII )di/.-1 !(t_u/l]I_ - t#u_)dS .V

- Splitting the left side of Eq.(41) between the fiber andmatrix regions, we have

tr_uff-tlifuI_) dSf+12 Jf('rlurit'imim- t_nuimII )dS, = _(b2_a2)gc . (42)
Sm

In State I, the surface Sf consists of the horizontal circular regions at z = ± Li2 and the
cylindrical boundary r = a, Izl _<Ld2, which consists of slip zones r = a, L/2 - Is < Izl< LPL and a

contact region izl < L/2 - Is. In State II, the cylindrical boundary of Sfcontains a new slip zone at

r = a, Izl < Is, whereby the contact region reduces to ls < Izl < LI2 - ls. Similarly, in State I, the
surface Sm consists of traction-free crack surfaces at z = ± L/2, a < r < b, a cylindrical boundary

r = a, Izl< L/2, of common features to Sf, and a traction-free boundary at r = b, Izl< Li2. In State
II, the boundary Sm contains a new traction-free crack at z = 0, a < r < b, as well as a new slip

zone at r = a, Izl< ls, commensurate with Ssa
Consequently, Eq. (42) reduces to the following expression:

- /r.b2Cla wII .,_ _ _(b 2 a2)ge (43)[ i,=
" where

Uslip = 2_a_s iJLI2-ts'I'fL/2[Awri(a,z)- AwX<a,z)]a:+t AwlI(a'z)dz} . (44)

21
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State I State II "

Fig. 4.1. Two states of matrix fractures in continuous fiber-reinforced ceramic
composites. State I: Cracks spaced at distance L. State II: Cracks spaced at distance U2.

where Aw(a, z) =wm (a, z) - wf (a, z), as defined earlierin this work.
Equation (43) can be viewed as a criterion to determine the magnitudeof oca associated with

transitionfrom State I to State II. Analogous transitionsoccur from "state (N + 1)" to "state (N +
2)," N = 1, 2..... when averagecrack spacing increases from (L/2N) to (L/2N+I) with applied

stress value (oC)/_,. Between transitions, namely for (oc)N < Oa < (oc)N+l, and under
monotonically increasing Oa,the composite sustains monotonic, continuously increasing strains.

The formal criterion (41) and the attendant results expressed in Eqs. (43) and (44) are
subjected to the thermodynamic requirementsof irreversibility of dissipation. In the present case,
this requirement implies that Uslip must be a nondecreasing function of the applied stress oa.
Specifically, under monotonically increasing Oa as well as during transitions between fracture
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states, the lengths ls of the slip zones cannot decrease in size. Consequently, our computational

• solution to Eq. (43) included the requirement that the lengths Is of the slip zones associated with
-- C _ E.*c _ e do not decrease upon the transition to State II (say) at Oa -o aState I (say) at Oa= o a

In the computations of the results exlfibited below, we employed the following values for

" the thermomechanical properties of the fibers and the matrix (unless stated otherwise): Ef=

200 GPa, Em= 85 GPa, rf= 0.1, v,n = 0.1, Vf=O.4, a= 8.0x 10-6 m, gc =44 N/na, and T=

-550"C. Also, when considering t_f> tzm, we took o_,= 6.0 x 10--6rC, and tzm = 3.0 x 10--6rC,

while for tzm > tzfwe employed etf= 3.0 x 10-6rC, and tzm = 6.0 x 10--6rC. These values
correspond to SiC/LAS ceramic composites.

Various values were selected for the xs and gc to demonstrate their influence on the stress-

strain response of the composite material. Furthermore, we chose (somewhat arbitrarily) the

spacing L _=30,000a as the initial distance between adjacent cracks to lead off the computations
of the stress-strain curves. For the specific examples considered herein, the earliest noticeable

departure from linearity occurred at L ~ 128a and larger values of L y_elded stress-strain curves

indistinguishable from those shown below.t Results are exhibited in Figs. 4.2 through 4.9.

The predicted stress-strain curves, with longitudinal and transverse strains denoted by eL and

eT, are shown in Figs. 4.2 through 4.5. The influence of xs is exhibited in Fig. 4.2 (where tzf =

tzm), the effect of gc is shown in Fig. 4.3 (with xs = 0.02 GPa and etf= tzm), while the effects of
thermal mismatch are demonstrated in Fig. 4.4 (with xs = 0.02 GPa). Here, and elsewhere in the

present work, these effects are calculated for a temperature drop AT = -550°C below a stress-free
initial condition at an elevated temperature. Figure 4.5 shows that, for a certain combination of

material parameters, it is indeed possible to attain a sign reversal in the lateral strain, as observed

in Fig. 1.2. In this figure, gc = 5 N/rn and Xs = 0.2 GPa.

The radial variations of ozf at the plane of the matrix crack, and its dependence on the
- residual thermal stress, are shown in Figs. 4.6a and 4.6b for two levels of applied load oa and

with x s = 0.02 GPa. Note that all models based on shear-lag neglect this radial variation and,
when matrix cracks are present, cannot account for residual thermal stress effects. The effect of

x s on of(r/a, "i/a) is demonstrated in Fig. 4.7 by plotting profiles of these stresses at various
distances "i/a from the plane of the matrix crack (i.e., _"= z + L/2) vs r/a. Thermal effects are

discard.*d in this figure.

Larger values of xs arc associated with larger amplifications and higher peak values of o_z

near the plane of the matrix crack, but these amplifications reduce more quickly to the
undisturbed background levels upon moving away from the matrix crack. In addition, larger

values of xs are accompanied by shorter slip zones Is and larger spacings L between matrix
cracks. Figures 4.8a, 4.8b, and 4.9 exhibit further details about factors that affect L and Is.

Note that Figs. 2.1 and 4.1 represent a highly idealized circumstance of equal fiber spacings
L and L/2. lt is more reasonable to assume that in realistic circumstances the crack spacings at

each stress level Oa range between Lz and 2Lz, with an average value of L = 3/2Lz. This suggests

that the length L employed in this work should be interpreted to be 50% larger than the average

crack spacing. More refined considerations (Kimber and Keer 1982) suggest that L = 1.337Lz.

c the slip zones near the new cracks in State I1 (say) had lengths is = ls.*It turned out that at Oa = oa ,
o "PThis observation explains why the occurrence of early matrix cracks cannot be detected from stress-strain

response. In addition, it appears that deterministic analyses that aim at predicting conditions for the onset of first
matrix cracking may be futile, because the early state of cracking is entirely governed by stochastic parameters such as
the random geometry of initial flaws within the composite.
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Fig. 4.2. The effect of interfacial shear strength, xs, on the stress-strain response of

continuous fiber-reinforced ceramic composites (Mth (If= am).

The value of gc was selected, ad hoc, to be the same as obtained in the monolithic ceramic
matrix. In principle, this value is stochastic rather than deterministic. In addition, it is not certain

that the in situ value of gc within a composite is in fact the same as for the monolithic material.
The stress-strain plots in Figs. 4.2, 4.3, 4.4, and 4.5 were terminated when Is = L/2, namely

when slip occurred over the entire fiber/matrix interface, lt seems that beyond that range the

stress-strain behavior is governed by fiber failures.
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Fig. 4.3. Effects of matrix fracture toughness on stress-strain response of continuous

fiber-reinforced ceramic composites (xs = 0.02, aI = am).
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Fig. 4.4. Effect of thermal expansions on stress-strain response of continuous fiber-
reinforced ceramic composites (gs = 0.02).
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Fig. 4.5. Stress-strain response at Gmc = 5 Nim and "cs= 0.2 GPa for tzm > ¢xf (_)
and (Xm= af (.... ).
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strength %. Shown are profiles of ozy (r/a, i./a) (in GPa) at various distances, i./a, from the
matrix crack, for t_a= 0.43 GPa.
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5. STATISTICAL PREDICTIONS OF FIBER FAILURES

lt is generally agreed that fiber failure is controlled by a statistical distribution of mi-
,, crostructural surface flaws (Thouless and Evans 1988,Sutcu 1989). The effect of these flaws on

the statistics of fiber strength is commonly represented by a WeibuU distribution, which is also

adopted in the present case. Accordingly, the probability Pf of fiber failure is expressed by

Pf = l-exp -2_lI_L/2 . dz , (45)

where 2_aL is the outer cylindrical surface of the fiber within an RVE of length L; N = L*/L is
the number of matrix cracks in a text coupon of length L*; M is the Weibull modulus that, for
ceramic fibers, has values between 8 and 10; and a0 is a WeibuU parameter that represents,
approximately, the mean value of the failure stress,

Note also that, because M > 1, we have at any cross section A/= _a 2 within the RVE

fAf[Cr{(r;z)-S/(z)]n dAf > 0, where 5_z(z)is the average stress at any z. lt follows that fiber
failure predictions based on models that do not detail the radial variation of _zf are likely to
grossly underestimate the failure probability. This occurs for the commonly employed shear-lag
model.

The probabilities Pf of fiber failure under increasing levels of applied stress Oa were
• computed in accordance with Eq. (45), employing values for o_z (a, z) and L determined by the

formulations in Sects. 3 and 4. We also employed the valuesM = 10 and c_o = 0.4 GPa m 2/n.

t Some aspects of the dependence of Pf on the interfacial shear strength xs are e_ibited in
Fig. 5.1, where Pf is plotted vs Oa for xs = 0.2, 0.02, and 0.002 GPa. In these computations, it
was also assumed that c_f= t_m. The effect of residual thermal stresses, with xs = 0.02 GPa, is
shown in Fig. 5.2, while the significant effect of the radialvariation ofof on Pf is demonstrated
in Figs. 5.3a and 5.3b. Note that computations based on radially averaged values 7[ (z) will
underpredict the probabilities of fiber failure.

As noted by Schwietert and Steif (1990), multiple failures may occur within a single fiber.

Such failures and, especially, denser crack spacing as Pf_ 1 would necessitate the consideration
of fiber failure interactions. Fiber failures will modify the stress-strain curves shown in Figs. 4.2
through 4.5 and, most importantly, will introduce another energy-absorbing mechanism,
commonly referred to as "fiber pull-out," that adds significantly to the toughening of the
composite.
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6. SOME CONSIDERATIONS OF FIBER PULL-OUT ENERGY

,lt

It is now hypothesized that a negligible amount of energy is dissipated when a fiber break

occurs within the perfectly bonded contact region of an RVE, namely, at location z equal or

" equivalent to 0 ,: z < L/2 - ls. In these circumstances, the load borne by the fiber is transferred to
the matrix, and the effect of the fiber break is localized within just a few fiber diameters (Kelly

and MacMillan 1986). In addition, because the site of such a fiber crack is somewhat far from the

location of any matrix crack, interactive failure is less likely to occur.

On the other hand, when fiber failure occurs within the slip zone, that is, at a location zfb,

where LI2 - ls < zfb < L/'2, the effect of the fiber break extends ali the way to z = L/2. The reason
for this longer range effect is demonstrated in Fig. 6.1.

Accordingly, at ztl)< z < L/2, r = a, the shear stresses xfbdue to a fiber break at z = zfb would
point in the same direction as the shear stresses Xs caused by the pre-existing matrix crack at z =

-, L/2, while for z > L/2 and z < zfb, "Cfband "Cspoint in opposite directions, iiowever, because the

interfacial shear stresses cannot exceed "Cs,the fiber region zfb < z < L/2, 0 < r < a, will contract
without frictional resistance at r = a, namely as a "free-standing column."

Because fiber failure in the slip zones is a random event, we now evaluate the probability Pfs

of such occurrence. This quantity is to be contrasted with Pf, the probability of fiber failure
anywhere along its length, given in Eq. (45).

For that purpose, we introduce the function

Pf(O,z)= 1-exp -2_.a oz/.(a,_,) Mo0 d_ , (46)

,,f.

which expresses the probability of fiber failure within the interval (0,z).

Accordingly, the probability of failure within the interval z1< z < z2 is given by

pf(al,Z2)= _zZ21_Pf(O,z)3z dz

:'x'I-'°'o'I°':'a'z>l''o,zl-,xp.-'O,o'r°:''z>l',,oo. <4,>
_ I rio .z>i ,z}1exp _00 ] dz 1-exp-27r.afZ12 [ _0

lt can be readily verified that Pf (z 1, z2) possesses the required property that, for any z1 < z2 < z3,

pf (zl ,z 3)= pf (zl , z2)+ pf (z2,z 3) , (48)

which is consistent with the Weibull statistical approach employed in the present framework
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Employing Eqs. (47) and (48), together with mathematical induction, yields the following

. expression for the probability of failure within the 2N slip zones, each of length/s, that exist
along the specimen of length NL:

• .. --4 tL/2 [°z(a'z)] M }
:L/2-1s Oz(a,z) M 1 1-exp, rtaJL/2_t s oo dz

Pfs=Pfexp''_aJo [ o0 ] dz'xj [__ tLI2[oz(a,z)'lM } '(49) - xPl-"'aJ0Lo J

with Pf given in Eq. (45).
In the derivation of expression (49), we utilized the periodicity of the o f , namely, o f (a, z

+ kL) = ozf(a,z) (k = +1,+2 .... ). Forx s = 0.02 GPa and x s = 0.002 GPa, Pfsis

indistinguishable from Pf, hence/'fs vs (riaare the same as shown in Fig. 5.1.

For Xs= 0.2 GPa, Pfs differs from Pf. These failure probabilities are shown vs Oa in Fig. 6.2.
Inspection of Figs. 4.2, 5.1, and 6.2 suggests that for Xs= 0.02 GPa and X,s= 0.002 GPa, the
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incidence of matrix cracking antedates fiber failures, confirming the scenario illustrated in

Fig. 6.1. However, for the case of strong interface, that is, Xs = 0.2 GPa, fiber failures precede

matrix cracking.

Employing Eq. (47), we obtain the probability of fiber failure within a single slip zone of a

single RVE:

.. ¢L/2-t,[c{(a,z) M " .. rL/2 [o,(a,z)]Loo ,,0,L a0

The most likely location z_ of a fiber break within the above slip zones can be evaluated as
follows:

z* f°af LI2 b2p[(L/2-1s'z) I_ _L/2 O2p[(L/2-1s,z)fbJ0 Sl2-1 s _z_ a dzdOa=joa r/2_ls _z_ a
z dz do a (51)Q

Integration by parts yields

• L

'212 JL/2-t s

Upon determining z_,, it is possible to evaluate Up, the .portion of the pull-out energy resulting
from the unresisted contraction of the fiber in the region z a, < z < L/2. We have

= , az(r, zlb) ' • (53)2El JLl2-z_,_O Ozf(r'z)]-[ Oz/'(r'z)- f . 2

In the evaluation of Up, we accounted only for the release of oz/ due to the creation of a fiber

crack at z =z_. The _mtributions to ali other stress components have been discarded in view of
their relative insignificance.

The nondimensionalized values of Ut,/_ (b2 - a2)g c vs Oa are plotted in Fig. 6.3 for xs =
0.002, 0.02, and 0.2 GPa. Note the vast disparities between the magnitudes of Ut, for these

distinct values of Xs. (The plots for Up were terminated at Pf= 1.)
lt is important to note that when a matrix crack at z = L/2 is accompanied by a fiber break at

z/z, within the slip zone, the RVE can no longer support the remote load _b2aa. The unbalanced
load of magnitude

r'd92Oa- Pf (_ - ls ,_)foOf (r, z*lb)r dr (54)

is transferred to the neighboring RVEs by shear at r = b. The above unbalanced load will

overburden the neighboring RVEs and may bring about their premature failure. This process may

explain the observed clustering of failures in the form of fiber pull-outs. However, the local
failure of the RVE, accompanied by the overloading of its neighboring elements, leads us beyond

the scope of the present model and requires a separate analytical approach.
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7. CONCLUSIONS

The results presented in this work illuminate some aspects of the complex response of fiber-
,, reinforced ceramic composites. Figures 4.2 through 4.5 exhibit the effects of various individual

parameters, such as the interfacial strength xs, the matrixfracture toughness gc, and the thermal
mismatch (am- _), on the stress-strain response of the composite as attributed to progressive
matrix cracking alone.

The failure of fibers is predicted by means of Weibull statistics; Figs. 5.1 and 5.2 show the
relations between fiber failure probabilities, under monotonically increasing load, and some of
the above-mentioned material parameters. The high sensitivity of the latter probabilities to radial
distributions of fiber stresses is shown in Figs. 5.3a and 5.3b. This sensitivity is amplified
because the "Weibull modulus" M for ceramic fibers has rather high values, namely 8 < M < 10.
As can be noted from Figs. 5.1 to 5.3, the probabilities of fiber failure remain very small at low
load level and take sharp upswings in the neighborhoods of some characteristic loads, lt was
found that the conditional probability of fiber failures to occur within any of the slip zones near
the matrix cracks does not differ substantially from the probability of fiber failure anywhere
along its length. Consequently, in ali realistic cases, the phenomenon of fiber pull-out can be
associated with fiber failures taking piace within the slip zones. A certain portion of the irre-

, versible fiber-fracture energy, Up, which is surmised to be the major part of the energy dissipated
within an RVE due to fiber break, is exhibited in Fig. 6.3 vs the externally applied stress oa for
various values of xs. lt is seen that Ut, is much larger for weak interfaces than for strong

. interfaces. However, the combination of matrix crack and a fiber failure within the adjacent slip
zone brings about the local failure of the RVE and the overloading of neighboring fibers. This
transfer of load beyond the region of a single RVE requires a separate analysis.,lr

lt would seem from Fig. 4.2 that an increase in the interfacial strength Xsmay lead to a better
composite. However, such an inference is contradicted by the results shown in Figs. 5.1 and 6.3.
When Figs. 4.2, 5.1, and 6.3 are viewed together, it can be seen that fiber strengths are likely to
be exhausted before matrix cracking at higher values of xs and material failure would occur in a
brittle manner. On the other hand, sufficiently low levels of xs will give rise to matrix cracks,
fiber failures, and fiber pull-outs, resulting in departures from linear stress-strain behavior before
ultinaate failure.

Finally, bear in mind that at elevated temperatures detrimental effects of oxidation may
bring about a brittle-like response of the ceramic composite. As can be seen from Figs. 4.7 and
4.8, smaller values of xs cause a larger profusion of matrix cracks, which expose the composite to
faster oxidation. This factor must be considered when selecting a specific interfacial strength
among several available options.
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APPENDIX A

" FORMULATION OF IN-PLANE FIELDS

" Consider the following kinematically admissible displacements fields expressed in
cylindrical coordinates:

In the fiber: W=eoz, u=Ar, v=0; (A.1)

In the matrix: w=eoz, u=ar+BIr-a), v=O , (A.2)

Consequently, in the fiber:

ef =ao , (A.3)

eof=e;=A ; (A.4a,b)

and in the matrix:

e7 = eo, (A.5)

. erm=A+B l+r-- _- , and (A.6)

e_ = A+B 1- , (A.7)

where A, B, and eo are constants.
By the Hooke's law, the axial stresses in the fiber and the matrix are

Ef(1-v f )e0 2Efv fA Ef el,rh (A.8)
af(r,z)= (l+vf)(l_2vf)4-(l+vf)(l_2vf) ,(l_2vf i ,

Era(I-Vm)aO + 2EmVm(A+ B) Ern gm,th (A.9)
°m(r'z) = (1 + vm)(1- 2Vm) (1 + Vm)(1 '- 2Vm) - (1 - 2Vm)

where

gf,th = _fT and £m,th = O_mT _ (A.10a,b)
.o

The force balance along z-direction provides

w
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( Z-_vf , 2vm _A 2vmBOa--e0Ee+ VIE*I 2v +VinE;ni,Vm) +VmE_n,l._)m

_ l+ Vf VfE,f£f,th_ I+ Vm VmE.gm,th (A,|I)1 - vI 1 - Vm '

where

Ec = VIE*I + VINE*m , (A,12)

.
E/- (I+vIXI-2vI) ' (A.13)

, Era(l-Vm). (A.14)
En*= (i+ Vrn)(1-2Vm) '

It follows that eo in Eq. (A. 11) is given by

80 = (la- VIE*f 1-vi + VmE_n1-Vm A- 1-vm

(A.15)

1+ Vf.viE,fei,th+ I+ vrn 7E c+ 1 - Vr 1 - Vm VmE*ml3m'th "

Turning to the radial stresses tsr in the fiber and matrix, we have

E w , _

af=l__vfA+.__._e." l+vf E,Ief,th (A,16)1-Vi u l_Vf

and

* E_(1- 2Vra)a2B * 1+ vo_Emem,th (A.17)Em (A + B)+ .. + E_Vm 80 - .
csm=.i_Vm (1-Vm) r2 1-Vm 1-Vm

The continuity condition csf = csm at r = a and the boundary conditionarm = 0 at r = b
yield the following equations for the unknowns A and B:

CllA +C12B =._ , (A.18a) _'
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C21A +C22 B = f2 , (A,18b)

where

Cii 1 (VfE*f 2__vf * 2Vm 1"-_"c (A,19a)= - +VmEml-Vm '

2vm2VmE_ (A,19b)
CI:_= 1+ Vf(1-2vm)- (1-vm)Ec '

v:*rE-3ZL+1-Vr 1-Vm Ec 1-Vr

(A,19c)

[ ( 2rf * 2vm__.Y.ta.1 *- 1- VfE*_fl_vf+VmE_l_VmjEcjl Era '_Vm ,

C22 =(l_vm)Ec_l,vm--i_vf)-2E* , (A,19d)

'" fl= Ec +(1 + Vm -'_c Vf 1-V--"--_ '

1+ Vf E_ef,t h 1 + Vm E,mgm,th
f2 = 1-rf 2 1-Vm

(A.20b)

li 1+ '(1-Vm)Ec-(1-vf)Ec oa+l'_vfVff_e,f'th+l_Vm

Inaddition,itmay be notedfromEqs.(A.18)to(A.20)thatA andB dependlinearlyon oa,el,th,

and £m,th, namely

A(aa,Ef ,th,Em,th ) =OaA1 + Ef ,thA2 + Em,thA3 , (A.21a)

with

A1 = O(vm)+ O(vf) (A.2 lb)

and
w

B(Oa,Ef ,th,Em,th )= taB1 + Ef ,thB2 .+.Em,thB3 , (A,22a)
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with

B1= O(vm)+ O(vf) . (A,22b)

Consequently, it can be concluded that contribution to az/" in Eq, (A,8) and a_n in Eq, (A,9)

from the mechanical part of the transverse strains is of O(vXm),O(v_), or O(v/vm). The small
significance of this contribution would mitigate the effects of inaccuracies caused by our
employment of boundary conditions (4a) and (4b) in constructing the present model.



APPENDIX B

" THE BOUNDARY ELEMENT SCHEME

" Consider a two-dimensional representative volume element (RVE) in rectangular Cartesian

coordinates as shown in Fig, B.1. The RVE consists of two linear isotroptc elastic materials,

loaded as shown in the figure. Assume perfect bond to exist at the interfaces Ixl= a between the

two materials for IX,xzl < Xs, and let slip occur when IXxz[= xs at those interfaces. Denote by ls the
length of the slip zone.

The continuity of displacement and stress components at the nonslip interface 0 < z < L/2 -

Is is expressed by

" ,'xi=or, = and = ,_f = _xz '

While at the slip interface L/2 - ls < z < L/2, the mechanical conditions are given by

xfz ,n =_,l;s , axf = a m and Uxf = Uxm (B.2)T, "---'_s , _XZ ' '

In addition, the continuity of Xxzat the interface imposed the following relation

_xz(Z,x = a) = -_s , (B,3)

as z approaches/_,/2- ls from the nonslip side.

" The boundary element method was employed to solve for the stress and displacement

fields. The resulting stress components a { were plotted vs x at several levels of z in Fig. B.2.
-, Notice that the value of ls is unknown a priori. Therefore, a guess initial value of ls is first

introduced into the boundary element method algorithm, leading to a certain solution which, in

general, does not match the requirement (B.3). This value of ls was then adjusted iteratively, with
corresonding values of Is, until Eq. (B.3) was satisfied to within a desired accuracy.

For comparison, Fig. B.2 also contains plots of the values of c f computed by the method
developed in this paper for the concentric cylindrical model shown in Fig. 2.1. Equivalent elastic

properties, geometrical parameters, and loading conditions were employed for both cases shown
in Fig. B.2.
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Fig. B.I. The Cartesian configuration employed for the boundary element method.

The computations employed Ua = 8, a/b = 0.4.
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method (discrete points) compared with o:_ (r, z) vs r/a evaluated by the present model.
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