
ORN L/TM-11899

OAK RIDGE
NATIONAL
LABORATORY

Discrete Pearson Distributions

MAR;rIA MARIE'IrA

K. O. Bowman
L. R. Shenton

_ M.A. Kastenbaum

MANAGEDBY

MARTINMARIE'IrAENERCYSYSTEMS,INC.
FORTHEUNITEDSTATES
OEPARTMENTOFENERGY

IT(_,._iF';_ElUT10N 0 F Ti.--i;_ _ 0 (:..i. :._:i!:.;._,' _,'.::,,.__.',;i. ;_,.,'; E:',',



This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni-

cal Information, P.O Box 62, Oak Ridge, TN 37831; prices available from (615)
576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S,

Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by sn agency of

the United States Government Neither the United Stt2tes Government nor any •

agency thereof, nor any of their employees, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy, corn-

pletene88, or usefulnes_ of any information, apparatus, product, or procea8 dis- •

closed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, proca88, or service by
trade name, trademark, mar, ufacturer, or otherwise, does not necessarily consti-.

tute or imply _ts endorsement, recommendation, or favoring by the United '_;ate8

Government or any agency thereof. The view_ and opinions of &uthors
expressed herein do not necessarily state or reflect those of the United States

Government or any agency thereof.

Q,

,6,



ORNL/TM--1 1899
O]

DE92 004700
, Engineering Physics and Mathematics Division

Mathematical Sciences Section
w

DISCRETE PEARSON DISTRIBUTIONS

K.O. Bowman t
L.R. Shenton

M.A. Kastenbaum *

* Mathematical Sciences Section

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6367
University of Georgia
Athens, GA 30602

* P.O. Box 315
m.

Basye, VA 22810

Date Published: November, 1991

Prepared by the

Oak Ridge National Laboratory

m Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc..
- for the

U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-84OR21400



Contents

G

1 INTRODUCTION ................................ 1
2 BASIC FORMULAE FOR THE SEMI-INFINITE CASE ....... 1

2.1 Development of Formulae ........................ 1
2.2 Examples .................................. 3

2.2.1 Poisson distribution ........................ 3

2.2.2 Stuttering Poisson Distribution ................ 3
2.2.3 Binomial distribution ....................... 4

2.2.4 Ord's Example of Type I Distribution ............ 4
3 BASIC FORMULAE FOR THE BOUNDED CASE .......... 5

3.1 Development of Formulae ........................ 5

3.2 Examples .................................. 7
3.2.1 Triangular Distribution ..................... 7
3.2.2 Non-Symmetric Distribution .................. 8
3.2.3 Truncated Poisson Distribution ................ 9

4 THE DOUBLY INFINITE CASE ..................... 9
4.1 Formulae .................................. 9

4.2 Examples .................................. 10
• 4.2.1 Pearson Type IV Moments .................. 10

4.2.2 Discrete Pseudo-Normal Distribution ............ 10

- 4.2.3 Pearson Type VII Moments .................. 11
4.2.4 Bessel Distribution ........................ 11

4.2.5 Bessel Distribution with Bias ................. 12

5 A GENERALIZATION ............................ 13
5.1 Formulae .................................. 13

5.2 The Hansmann Distribution ...................... 13
5.3 Further Comments on the Models ................... 14

5.4 Examples .................................. 15
5.4.1 Discrete Pseudo-Normal Distribution ............ 15

5.4.2 Discrete Pseudo-Normal with the First 8 Moments . . . 15

5.4.3 Discrete Pseudo-Normal with the First 10 Moments... 16
5.4.4 Discrete Pseudo-Normal with the First 16 Moments . . . 17

5.4.5 Discrete Bessel Distribution with the First 10 Moments 17

6 THE ALGEBRAIC STRUCTURE FOR THE DOUBLY BOUNDED
CASE ........................................ 18

6.1 First Order Equations .......................... 18

6.2 Second Order Equations ......................... 19
7 THE EXPONENTIAL AND THE NORMAL .............. 20

7.1 The Continued Fraction ......................... 20

7.2 Relation to Whittaker Functions ................... 21

7.3 Application to the Normal ....................... 22

- iii -



7.4 Moments of the Discrete Normal Distribution ........... 22
8 CONCLUDING REMARKS ......................... 23
9 References ...................................... 23

iV-



Acknowledgements

A research supported under contract ERD-89-828 with the Center for Indoor Air Re-

". search by Martin Marietta Energy Systems, Inc., under contract DE-AC05-84OR21400
with the U.S. Department of Energy.

- V-



. DISCRETE PEARSON DISTRIBUTIONS

K.0. Bowman

• L.R. Shenton

M.A. Kastenbaum

Abstract

These distributions are generated by a first order recursive scheme which equates

the ratio of successive probabilities to the ratio of two corresponding quadratics.
The use of a linearized form of this model will produce equations in the unknowns
matched by an appropriate set of moments (assumed to exist). Given the moments

we may find valid solutions. There are two cases; (a) distributions defined on the
non-negative integers (finite or infinite) and _(b) distributions defined on negative
integers as weil. For (a), given the first four moments, it is possible to set this up as
equations of finite or infinite degree in the probability of a zero occurrence, the sth

component being a product of s ratios of linear forms in this probability in general.
For (b) the equation for the zero probability is purely linear but may involve slowly

. converging series; here a particular case is the discrete normal. Regions of validity
are being studied.
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1. INTRODUCTION

. Being confronte_ with several sets of extensive data of a discrete nature organized

into cells, we founcl that none of the classical structures (Poisson, Binomial, Negative
Binomial) came near to acceptability from a goodness-of-fit point of view. A search

" seemed to suggest that even though there are several generalizations, the fitting problem
using moments implied fairly serious complications. Since we had 20 or more cells, it

appeared that 4 or more parametered discrete distributions would be needed. It was

natural to consider the Pearson discrete family generated by the 1st order recurrence

1,2,...) (1)

Ps and Qt being polynomials in r, and the probabilities being Yo, Yl, Y2, "" of oc-

currences in corresponding cells. If we are confronted with experimental (or even

mathematically defined) data, then we can think of utilizing a set of moments (data
moments will certainly exist). Now (1) is not carefully defined, for it requires yo, yl,

y2, " ", and these must be non-negative and sum to unity. The linearization of (1) with

multiplication by a power of r (including r °) leads to a required set of equations to
determine the parameters in Ps(r) and Qf(r) in terms of yo in general. We then have

an equation for yo, for determining Yo assuming there is a solution.

The corresponding c_e of a doubly infinite set of probabilities (yo, y+l, Y+2, ...)is
treated in a similar fashion and is sometimes referred to as the Type IV case. We show

,b

here that potential solutions are easily set up, given a set of moments and assuming

that y0 _ 0; transfers of the origin may take care of this case.
- We found the studies of Ord quite illuminating and reference may be made to his

[5], [6], and [8] papers. There is also his book [7] on frequency distributions with many
references to generalizations.

Of course it would be amiss to omit the name of Karl Pearson [9] to whom the basic

notion is usually attributed.

2. BASIC FORMULAE FOR THE SEMI-INFINITE CASE

2.1. Development of Formulae

Let the model be

( )Yr = 1+ Co + Clx + C2x 2 yr-1 = k,.yr-1, (2)

(r= 1,2,...;x = r-#_;# i = E(r))

" subject to

Yo + klYo + k2klYo + .." = 1.

" It is assumed that ks >_0, s = 1,2,... The form in (2) is similar to that used by Ord

[5], [6], [8]. Our interest is fitting (2) to statistical data defined as frequencies no, al,
• ..; ns being the frequency in the sth cell. The approach is computer oriented; it is
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readily generalized.

The four parameters can be determined by moments using

oo oo

_(c0+ c._ + c:_)(_.- y__.)_"=X:_'(.- _)_.__.(_=0.1.2.3)
r----1 r----1

The right hand component may be defined in terms of (a - #_ - x). Basic elements
are;

Oo Oo oo

(i) _ _'(y, - y,_,) = _ _'_, - (-_i)o_0- _(_ - 1- _i + _i)'y,-, (3)
r--1 r--0 r--1

= -(-.i)'y0 - ..

in terms of the mean and central moments, where

.. = S(_ + 1)'- E(_)'.

For example, v0 = 0, Pi -- 1, /22 "- 1, /23 -- 3_2 -]- 1.

(ii) _ x_y__l = y'_(x- 1 + 1)_y,._l = #_ + #_-1 + "'" = A_. (4)
r--1 r--1

For example, Ao = 1, A1 = 1, A2 = #2 + 1, A3 = #3 + 3p2 + 1.
The equations now appear as •

Co(us + ksyo) + Cl(vs+l + ko+lyo) _ C2(us+_ + ks+'2yo) + C3As -" A,+I (5)

where ks = (-#_)s , C3 = a - #_ and s = 0, 1, 2, 3. By elementary operations on (5),
we find

a_C_CoYo+(1-yo#_)Cl+(l+yott 1/ z+C3= 1 (6)

and the remaining three equations, in matrix form

M[C,,C2, C3]'= [h,,h:,h3]'-Co [1,v, + #i,v2 + #i l'. (7)

where

v_+#_ v_+#_v_ ,h4.#_Ao']M -" v2 + _I/11 /'3 + _Iv2 AS "_" Pl AI ] ,v3 + #'_v2 v4 + #'_v3 A3+ _'1A2
and

I

hl = A2 + tt_ Al, h2 = A3 + #_ A_, h3 = A4 + tq A3.

From (7), [C1,C2, C3] / is used in (6) to determines Co, and a return to (7) to
determine C1, C2, and C3. Then y0 and subsequent probabilities follow from (2).
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2.2. Examples

2.2.1. Poisson distribution
4

Poisson distributions are those with yr = e-°Sr/r! For this Co = 8, e1 - 1, C2 = 0,
and C3 = 0. Once Y0 is evaluated accurately, then subsequent ._r turn out to be all

• exact Poisson probabilities. For example,

yr
r 0 1 2 3 4

8 = 0.25 0.7788 0.1947 0.0243 0.0020 0.0001

8 = 0.5 0.6065 0.3033 0.0758 0.0126 0.0016
0-- 0.75 0.4724 0.3543 0.1329 0.0332 0.0062

2.2.2. Stuttering Poisson Distribution

Stuttering Poisson distributions are those with prgbability generation function

e-a-b-c+at+bt'+cta; we restrict attention here to a = 1, b = 1/2, c = 1/3. The moments
are _u_= 3, #2 = 6, P3 = 14, and #4 = 144. The solutions are

Co = (-2.476 + 14.35y0)/A

C1 = (-0.6993 + 4.421yo)/A

C2 = (0.01748- 0.!206yo)/A
• C3 = (0.3217- 1.904y0)/'A

A = -0.3601 + 2.177y0

- Using 75 terms in (2) gives yo = 0.15527298. True probabilities are generated by

1
Pr+l = {aPt + 2bPr-1 + 3cPr-2}. (r = 0, 1,2,...'Pr = 0 r < 0)

r+l

r Discrete Model True Value

0 0.1553 0.1599

1 0.1678 0.1599
2 0.1650 0.1599

3 0.1476 0.1599

4 0.1204 0.1199

5 0.0899 0.0879
6 0.0619 0.0613

7 0.0396 0.0384

8 0.0238 0.0235
9 0.0135 0.0137

Q

10 0.0074 0.0075

11 0.0039 0.0041

12 0.0020 0.0C21
D
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2.2.3. Binomial distribution

BinomiaJ distributions are those with probability (n) pr(1 - p)n-r; here we examine
the case n=10. Here Co = npq, C1 = q, C2 = 0, C3 = p, and frequencies

yr
r 0 1 2 3 4 5 6 7 8 9 10

p= 0.25 0.0563 0.1877 0.2816 0.2503 0.1460 0.0584 0.0162 0.0031 0.0004 0.0000 0.0000
p =0.5 0.0010 0.0093 0.0440 0.1172 0.2051 0.2461 0.2051 0.1172 0.0440 0.0093 0.0010
p= 0.75 0.0000 0.0000 0.0004 0.0031 0.0162 0.0584 0.1460 0.2503 0.2816 0.1877 0.0563

The recursion is y,. = {p(n- r + 1)/(qf)} Yr-1, and the derived probabilities are
correct.

2.2.4. Ord's Example of Type I Distribution

Using a model noted by Ord [5]

( C_-_)y,. = 1+ Co + Clz Yr-1

(r = 1,2,3,...,oo; z = r - _;c2 = a - _)
and moments #_, P2, #3 gives the equations

a

CoYo + C1(1 - #_yo) + C2 = 1

Co+ c1(1+_ )+ c2(1+_ ) = _z+ _ + 1
Co(I+p_)+C,(3p2+I+p_)+C2(I+p2+#_)= 1+3#2+#3+p2#_+#_

and solutions, when #3 = 0

Co = .2 {2 + ._yo [1 - (i+ ._)2/g2] } lA

c, = (_+ yo[_ - (_+ _)_]}/a
c_ = {1- yo[3._- u__- 2,_+ i+ ,_(1 + u_)/._]}/_
i% -- 2- YO [2 A- #_ q- #_2(1 q- ._)/.2].

As an exar.ple, take the triangular distribution

r+ 1 2n - r+ 1

Yr= (n+l) 2, (r=0,1,...,n), Yr--- (n+l) 2 " (r=n+l,n+2,...,2n)

with moments

._ = n, .2 = n(n + 2)/6, #3 =0.
,t

For n = 4,
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r True Value 1 2 3

0 0.0400 0.0432 0.0425 0.0495
• 1 0.0800 0.0774 0.0766 0.0742

2 0.1200 0.1211 0.1204 0.1096
3 0.1600 0.1632 0.1626 0.1535

- 4 0.2000 0.1861 0.1852 0.1910

5 0.1600 0.1750 0.1739 0.1910
6 0.1200 0.1311 0.1300 0.1363

7 0.0800 0.0742 0.0734 0.0644

8 0.0400 0.0289 0.0287 0.0215
9 - 0.0064 0.0062

10 - 0.0004 0.0018

11 - -0.0000 0.0006
12 - 0.0000 0.0002

13 - 0.0001
14 - 0.0000

#_ 4.0 3.9649 3.9999 3.9999
#2 4.0 3.8616 4.0001 3.9977

0 -0.0661 0.0003 -0.0094

/32 1.77 2.3460 2.4493 2.8069

The basic series for Yo was taken to 9, 13, and 21 terms in computing the probabilities
- in columns 1, 2, and 3. For the parameters,

Co = (32- 336yo)/A

" C, = (4 - 84yo)/A

Cs = (4- 36yo)/A
A=8--104yo.

3. BASIC FORMULAE FOR THE BOUNDED CASE

3.1. Development of Formulae

Let the model be

y_= l+Co+Clx+C2x _ Y_-_ =k_y_-l'

(r = 1,2,...N;x = r- #'1;#_ = E(r))

subject to

. Yo + klyo + k2klYo + "" + kNkg-1 "" k3k2klyo = 1,

and

YN = kN - klyo.
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It is assumed that ks >_0, s = 1,2,-..,N . We use

N

r=l

N

• __,y,._lx s=AS-TSyN (T=N-/z I+I,A.=E(x+I)')
r--I

N

Z(yr - Yr_l)X s = -u, - (-#'l)Syo -}"T3yN (rs = E(x + 1) s - f(xs))

The six parameters can be determined by moments using

(yr - _,--,)(Co+ C,x + C2x2) = (Ca- x)yr_,

Co(-yo + YN) + Cl(-vl + I_'lyo+ TyN) + C2(-v2 -/z_2yo + T2yN)

- C3(Ao- YN) = --()_1-- TyN)

Co(-vl + #_yo + TyN) C1(-'J2 - #TYo + T:yN) + C2(--v3 + #_3yo + T3yN)

- 63(A1 - TyN) - -(A2- T2yN)

Co(-v2 - #_yo + T2yN) + C1(-v3 + #_3yo + T3yN) + C2(-v4 - #_4yo + T4yN)

-- C3(A2 - T2yN)= -(A3- T3yN)

Co(-v3 "Jr ]2_3y0 q- T3yN) "Jr C1(-v4 - ]2_4y0 q- T4yN) "Jr C2(-vs -t- ]2_Syo "b TsyN)

-- C3()_3- T3yN)= -(A4 - T4yN).

From the ]astthreeequations,setup Co, CI, C2 in terms of C3, insertthesede-

rivedforms inthefirstequationand thusfindCo, CI,C2, and C3 in termsof yo and

YN. Then Yo -i-klyo+ --.= l or Yo = i/(l+ kl . k2kl . ...+ ]gNkN-] """kl) and
kNkN-I kN-2 """klYO -- ,qN.

Ifthemodel is

9r = 1+Co+C12: Y_-I

then the general solutions are, assuming existence

Co - (-212_ -t- yoA, q- yNA2 -t- yoYNA3)/A

C1 - (-P2 - #3 + yoB1 -{-yNB2 -t- yoygB3)/A

C2 : (-]22 -_ ]23 -[- yoD1 q- yND2 q- yoYND3)/A

A = -2]22 + yoE1 q- yNE2 q- YoYNE3
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where

A_ = _i(m+2ulm+m +_lu_+_Tm- _)

. + m(-m +2m+2,1m- ,i +z,lm +3,1b:)
• -- m2(]22 -+"]_3+ 312_]22)+ m3122

A_ = -,i {m(m- 1):+m[-3(m+ ,i +_7+Ui,_)- _ - _7]
+ m:(4,i+2m+ 2,7) -m3,_j'_.

I

B1 = ]22 + 2_,]22 + ]2_2122+ _#3 - ]2_+ _3

B2 = ro(m- 1)2 - #I(1 + 212i + ]22 + #i2 + _I#2 + ]23) + ]22(1 + ]22)

+ m(4,1+m +3u7+m +2,1m)- m_(3_i+m)
B_ = -m(_- 1):- m(3,1(1+m + ,i)+ ,i_+3,: + m)

+ m_(4,1+ :,7 +2m)- m_,i
DI = ]21(]21 + #_2 _ 2]22 - ]21_u2- 2]23) -k-#2 "k-31222- ]23

D2 = -]2211 + #I(1 - ]21) + 3]22]+ ]23+ 2#I#3 + m(]22 - 2]23 - 2121122)+ m2122

D3 = m]2111 + 3(#2 + ]2] + #7)] + m2(-2#I - 4]27 + 2#I#2 + #3) + m3(]21 - #2)

Sa = ]21(]21+ ]27 + ]22)+ 2#2

E2 = m(m - 1)2 - ]21[#2 + (1 + ]21)2] + #2 + mi#i(4 + 3#I) + #2]- 3m2121

" E3 = -m(m - 1)2- 3mbi(1 + ]21)+ m] + m2[]21(a + Ul) + ]22]- m3121

andre=N+1.

3.2. Examples

3.2.1. Triangular Distribution

For the discrete triangular distribution of 2.2.4. with N = 8, #] : 4, _u2 = 4, and

#3 = 0 using the fundamental equations

Co(-yo + ys) + C;(-1 + 4yo + 5ys) + C2(ys - 1) = -1 + 5y8

Co(-1 + 9yo) + C1(4 - 36yo) + 4C2 = 0

C0(4 - 36yo) + (-8 + 144yo) = 12

we find solutions

Co = [8 -- 84yo + y8(-88 + 612yo)]/A

C, = [1 - 21yo + ys(-5 + 153yo)]/A

" C2 = [1 - 9yo + y8(-17 + 153yo)]/A
A = 2 - 26yo + ys(-26 + 306yo)

k,=l+(C2-z)/(Co+C,x). (x=r-4, r=l,2,...,8).
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If we assume the true probabilities in the parameters, then

Co=5.125, C1 =0.5, C2=0.5, A=0.4096. .

We use our scheme for Yo and YN (N = 8) iteratively and we find the 15th iteratives
to be yo - 0.0394944261, and Y8 = 0.0394944261 with the recursive parameters

Co = 5.102939, C1 = 0.500000, C2 = 0.500000, A = 0.423591678.

The evaluated probabilities (symmetric to 6 significant figures) are,

r 0 and 8 I and 7 2 and 6 3 and 5 4

yr 0.039494 0.07786 0.125302 0.166136 0.182414
True 0.040000 0.08000 0.120000 0.160000 0.200000

and computed moments

#_ = 4.000000, tz2 = 4.000000, _3 -- --0.000001.

From numerical evidence it appears that ksk4 = k6k3 = kTk2 = knk1 = k9ko. From

the formulas for Co, C1, Cs we find this leads to C1 = 1/2, Cs = 1/2 and Yo = ys.
Hence

2Co+ ._- r

kr = 2Co + r- 4 (r = 0, 1,...,8)

and
8 - 172yo + 612yo_

Co =
2- 52yo + 306yo2 '

-" The equation for Yo is

yo(2 + kl + 2klk2 + 2klk2k3 + klk2k3k4) = 1.

Using it iteratively with Yo = 0.04 initially, the 14th iterate is yo = 0.039494425.

3.2.2. Non-Symmetric Distribution

Consider another example with #_ = 2.2, #2 = 1.56 and #3 - -0.144, which has
probabilities

Yo = 1/10, Yl = 2/10, Y2 = 3/10, Y3 = 2/10, Y4 = 2/10.

The model is

Yr = 1 + Co + C_x Y_-_ (r = 1,2,3,4; x = r- 2.2)
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and given the moments, solutions are

. _ Co = 4.8672- 28.776y0- y4(20.16- 105.6y0)/A
C1 = 1.4160- 13.080yo- y4(4.80- 48.0y0)/A
C2 = 1.7040- 10.712y0- y4(8.40- 51.2yo)/A

". A = 3.1200- 22.040yo- y4(15.0- 104.0yo).

After 107 iterations, we have Yo = 0.09276122, and y4 = 0.19184435, with computed
moments, 2.2001, 1.5596, and -5.1498.

3.2.3. Truncated Poisson Distribution

The truncated Poisson distribution may be considered as a doubly bounded distribution

6r

Pr=k*g_., (r = 0,1,2,...,N, 6 > 0)

and k*N = (1 + 8/1! +... + 6N /N!) -1, Po = k_v, PN = k*g6N /N!. Recurrence is

(yr= l+Co+Clx]y__l (r= 1,2,...,N;x=r-#_)

where e0 = #_, C1 = 1, C2 = 6- #_, and #_ = 8(1 - k_v6N/N!).
For another example, we take Ps = k*6s+2/(s + 2)!, (s = 0, 1,2,3,4), with 6 = 1.

" The moments are #_ - 0.390716, #2 = 0.446954, _3 "- 0.549920, and #4 - 1.303602.
We find Co = 2.390716, C1 = 1, and C2 = -1.390716, and computed Y8 identical to

_ the true probabilities Ps.

4. THE DOUBLY INFINITE CASE

4.1. Formulae

Suppose the probability y_ now includes the negative integers and r = 0, +1, :t=2,.-..
Then

• - =
r'---oo

XSyr_ I _ _k s.

In other words the new equations for (Co, C1,C2,C3) are those in (5) with Y0 taken

to be zero (this does not mean that the actual Yo is zero). We have after elementary
. operations,

C1+C2+C3= 1,

- Co + 3,u2C2 = #2,

3#2C_ + (4#3 + 3#2)C2 + #2C3 = P3 + 2_2,

3#2Co + (#3 + 3#2)C, + (5#4 + 6#3 + 4#2)C2 + (2#_ + #3)C3 = #4 + 3#3 + 3#2.



10-

leading to the solution (if valid)

e0- p2(4_2- 3_j - 1/D2)//k,

C1 + c_ = #_ + (8Z2 - 9_1 - 12 + 1/#2)/A,

C2 = (2Z2 - 3Zl - 6 + 1/#2)/A, (8)
= + 1/2- + 3-

A = 10_2- 12D1- 18 + 2/#2,

" with _ = #3/# 3/2 and Z2 = #4/#_. We have then

-1 -1 . .}-1Yo = {l+(kl+ko')+(k2kl+k-lkol)+(k3k2kl+k_2k_lkol)+ • (9)

involving in some cases a slowly converging series.

4.2. Examples

4.2.1. Pearson Type IV Moments

Consider the case, p_ = 1, #2 = 2, v/-/J1= 1.5, _2 = 12. Using (8)

Co = 1.072368, C1 = 0.750120, C2 = 0.154605, C3 = 0.095274,

and using 75 terms of (9), the returned computed moments are

p_ = 0.999998, #2 = 1.999805, V_I = 1.4930, _2 = 11.3460.

4.2.2. Discrete Pseudo-Normal Distribution

Next consider the discrete pseudo-normal distribution, using the moments for the con-

tinuous case, #_ = 0, #2 = 1, x/_ = 0, _ = 3. Here Y0 = 0.3974 ( using 100 or so terms

of (9)) and 1/v/2-_ = 0.3989. Moreover Yl/Yo = 0.6112 and e-l/2 = 0.6065. Using the
probabilities from the recursion, the first four moment parameters check to at least five
significant digits and

Yr = (r+3)2+2 Yr-1. (r=O, ii, ...)

For a general normal case, with #_ = #, #2 = a 2, _ = 0, _2 = 3, we find

{ x2- (6a2 + 2)x +12a4 + 5a2 + l }Y_= x2+6a2x+(12a__ 1)o. 2 Yr-1. (r=0, +1, ...; x=r-#l ).

Now define

yr = ke -r_/2 (r=0, ±1 ...)
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Then direct calculation finds #2 = 0.999999788, tta = 3.00007069. Using these mo-
ments, we retrieve Y0, y+x, etc. and the recurrence

11.9980855 - 7.999362604r + r 2Yr = 10.9987 + 5.999362608r + r2 ] Yr-1 (r = 0, =t=l, ...),

with Y0 differing slightly from 0.3974 found by taking #2 = 1, tt4 = 3 (tt] = 0, tt3 = 0).

4.2.3. Pearson Type VII Moments

Suppose a distribution has moments

#_ =0, #2=3, tt3=0, #4 =75.

The Type IV model yields the results:

( 12-4r + r2 )yr = 9+2r+r 2 yr-1. (r=0, 4-1, -i-2, ...)

The first few values of the probabilities are (there being symmetry)

r 0 1 2 3 4 5 6 I

ry 0.2751 0.2063 0.09709 0.03641 0.01324 0.00512 0.00215

" Note that yl/YO = 0.75, Y2/Yl = 0.4706, Y3/Y2 = 0.375. The returned moments are

#_ = 0, #2 = 2.9997, P3 = --0.0008, /z4 "- 70.2831,

using Y-75 to Y75 in the computations. Note that kl_r = k71.

The fit is poor when the distribution used is Yo = P, Y=l:_= pql_l/2 (r # 0), with
p = q = 1/2, and Y_/Yr-1 = 1/2, r > 2. The example serves as a reminder that some
structures will fail in this Type IV and other similar models.

4.2.4. Bessel Distribution

Bessel Distribution (see Johnson and Kotz, [3]; SkeUam, [10]) can arise as the distri-

bution of the difference between two independent Poisson variables (means 81 and 82)

and probability generating function (P.G.F.); exp(81t + 82/t - 81 - 82) with recurrence
82Ps+2 = 81Ps - (s + 1)Ps+l, then

Pr(r1- r2 -- g) -- e-o'-o2(O1/O2)'/2h(2 _x//_l_2) (01,02 > O)

. in terms of the Bessel function/t(').
The cumulant generating function is

" _le _ + O_e-_ - 01 - 82
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so that

{ _1=01-02,

_2 = 01 + 02,
/_3 = O1 -- 02,

/Z4 -" 01 @ 02.

• and if 01 =02 = 0, then/_ = 0,#2 = 20,#3 =0, and/z4 = 20+ 1202 . Moreover, in
this case

• Yo = e-2elo(20) •

If 0 - 1, then the doubly infinite model

y,. = 1+ Co + Cir + C2r 2 Yr-1, (r = 0,-t-1,+2,...)

with Co = 1.5, C1 = 5/12, C2 = 1/112, C3 = 1/2 and

yr= ig+5r+r2 yr-1,

and from Yo = (1 + 2kl + 2klk2 + ...)-1, we find Yo = 0.294427 (true is 0.308508).

r Pearson Discrete Bessel

Distribution Distribution

0 0.294427 0.308508
1 0.220820 0.215269

2 0.096609 0.093239
3 0.027603 0.{)28791

4 0.006134 0.006865

5 0.001263 0.00].330
6 0.000271 0.000217

7 0.000064 0.000030

8 0.000017 0.000004

9 0.000005

10 O.0000O2
11 0.000001

4.2.5. Bessel Distribution with Bias

We have 01 - 4, 02 = 1, then, #_ = 3, #2 = 5, #3 = 3, and #4 = 80, Basic model is

y,.= 1+ Co+Clx+C2x 2 Y,.-1 (r= O,+1,:t:2,...,x=r-3) b

and solutions are Co = 4.574468, C1 = 0.7375589, C2 = 0.028369, and Ca = 0.234043.

Pearson estimates Yo is 0.076536 and true is 0.076152.
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5. A GENERALIZATION

5.1. Formulae

Suppose in the recursive scheme in (2) that the numerator is of degree t(>_ 1) whereas

. the denominator is of degree r > t, both in the variable x = r - #_. Then 2r + t - 1
• moments will be required, the model being

y,. = 1-1- __,_=oCAX:_ Y,--1 (r = 1,2,...;y0 _ 0)

where CA and CA are rational fractions with numerator and denominator of degree 1
and linear in Y0.

The equations become

Co(rs + ksyo) -* C1(v8+1 + ks+lyo) +'" + Cr(vr+_ + kr+sy0) (10)

+ ¢oA_ + ¢1A_+, + ... + ¢,A_+t = O.

((_1 = -1; s = 0, 1,..., r + t)

We consider the case for which the probabilities are zero on the negative real axis.

The r + t + 1 equations are linear in the unknown yo (5 0). By multiplying the sth

equation (s = 0, 1, ..., r + t) by #_ and adding to the (s + 1)th equation, there will
be one equation only involving y0 explicitly, namely when s = 0. The remaining r + t
equations will involve r + t + 1 unknowns. By a simple matrix inversion, we can find

r + t of the parameters C and C in terms of an excluded parameter. A return to (10)
with s = 0 determines the r + t + 1 unknowns.

The type IV case equations follow by taking yo = 0 in (10) but not in the equation
analogous to (9).

5.2. The Hansmann Distribution

Hansmann [2] considered the Pearson Type symmetric family defined by

1 dy -x
= (-oy < x < o0) (11)

y dx Co "_- C2 x2 "_- C4 x4

and gave explicit solutions for seven different forms. A discrete form of this would be
y,. = k,.y,._l with

( )y,. = l+ Co+Clx+C_x 2+C3x a+C4x 4 Y,'-I (12)

" (r = = = - .i)
in the doubly infinite case; recall that here y-1 = yo/ko, y-2 = yo/(kok__) etc. In

" (11) there is no contradiction when positive and negative values of the argument are

considered, whereas an exact discrete form would clearly be invalid; however it could

be considered when yr refers to the positive axis only. In the doubly infinite case, C1
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and C3 in (12) play an important role.

There are six parameters in (12) determined from
B

Coy0+c.(_. - y0_) + c_(._+ y0_7)+ c_(._- yo_?) (la)
@ C4(/24 _- YoPl) _ C5Ao -- A1

,m

and

t b,Co(rs -b P'Ivs-1)'{-C'(vs+l"f#1 s)q-C2(vs+2+/_vs+,) (14)

(s = 1,2,3,4,5)

These 5 equations (14) in 6 unknowns are used in (13) to determine the 6 unknowns.

For the double infinite case, use the modified parameters given in section 4.

5.3. Further Comments on the Models

We can not say what further forms of the fundamental recurrence w:'l turn out to be

useful for practical situations. Much will depend on sample sizes and the range of r in
the probability yr; another important factor is the response of the model to sampling

errors in higher sample moments (note, for example, that for a quartic denominator and

cubic 1Lumerator ten moments are required). If we are not dealing with experimental
data but with theoretical structures for which a set of moments are available then a

model may prove of some use although perhaps difficult to gain insight from.

There are several choices available for the numerator if we extend models like (12).
Consider the case of a cubic. Then

Co+ C,x+ (_2x2 + d_3x3
]gr --

Co + Cim + C2z2 + Caza + C4x4

and one parameter is available for disposal. The basic form in (1) and its extension

in (12) would suggest using C'1 = -1. Then for the eight unknowns we have in the
semi-in finite case

Coyo+ c,(,,-_lyo)+c:(_:+,Tyo)+c_(_3-,Tyo)
@ C4(be4 -{--#_4yo) + C'oAo + C1A1 -[- C'2A2 -[- C'3A3 -- 0

along with the seven equations (eight unknowns)

/ Iv tCo(v_+ /_,v__1)+ C_(v_+_+/_, ,)+ C2(v_+2+ #,v_+,)+
+ c3(_+_+_;_,+2)+c,(_+,+,_,,+3)+Co(A,+,_A_-I)
+ C'I(A_+,+,_A,)+_2(_+2+,_A,+,)+C3(A_+3+,_A_+2)= o.

a.

(s = 1,2,..., 7; C, = -1,A, = E(x + 1)s, us = E {(x + 1)* - x*})
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5.4. Examples

5.4.1. Discrete Pseudo-Normal Distribution

Take #_ = 0, #2 = 1, #3 = 0, #4 = 3, #5 = 0 and #6 = 15. The model is

• yr'- _1+ (C0)-x+C'2x 2Co + Clx + C2x 2,] y'- 1.

(r = 0, ±1, ±2,.,Co - c_- I'i)

Evaluated values are

Co = 0.785715 := 11/14

Ca = 0.428572 := 6/14

C2 = 0.071429 := 1/14
^

Co = 0.5
^

C2=0 •

This is identical to the earlier case 3.2.2 with C,_ taken to be zero.

5.4.2. Discrete Pseudo-Normal with the First 8 Moments

The equations in matrix form are:
l

0 1 1 4 7 '- Co 1 1 l

1 1 4 7 26 1 C, [ 2[

" 1 4 7 26 61 2 C2 = 4[
4 7 26 61 232 4 C3 10 I1

7 26 61 232 659 10 Ca 26 ]26 61 232 659 2610 2(]; . Co J 76

kr = 1 + _],-_-__ob;r" . (r= 0, +l, :k2, . . .)

The solution is

k,. = ¢(-n)/¢(n), (R = r- 1/2)

and

¢(R) = 7430.0625 + 3710R + 605.5R 2 - 7R 4,

with a negative coefficient of R 4. The probabilities are

lr 0 +1 =k2 =i=3 =t:4 +5 I

[ Yr 0.4006 0.2432 0.05419 0.004454 0.0001375 0.517 x 10 -e J
with sum 1.0046; Y6 is negative.

A curiosity is the comparison of this case with the approximation Yr _ e- /v/_,

for which Y,./Y,.-1 = e½-"
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Ratio y,./y,.-1
r Discrete Model Normal Approx.
1 0.606825 0.606531

2 0.222874 0.223130

3 0.082410 0.082085
. 4 0.030319 0.030197

5 0.003759 0.011109

-0.5 2.718164 2.718282 (e)

5.4.3. Discrete Pseudo-Normal with the First 10 Moments

We take R = r - 1/2 and

OO

ps = ___(y_-yr_l)R s=O if siseven
--00

O0

= - 1/2)"- +1/2)'],
oo Oo

--(X) --Oo

Thus P2s+l = -2q2s+l. New "enriched model" is

Yr -- Yr-1 ----Yr-1 .
A o + A_R + A_R 2 + A_R 3 + A_R 4

and

k_ = A_ + (A T - 1)R + A_R _ - A_R 3 + A_R 4 = _(R).
A_ + A_R + A_R _ + A_R 3 + A_R 4

(R = r- 1/2;r = 0,+1,=t:2,...)

Then ¢(R)¢(-R)= 1 provided A_ = 1 - A_ or A_ = 1/2.
The equations in matrix form with four parameters are:

P3 P5 2q6 P7 A_ = -q4
- Pr, P7 2qs 199 Ai -q6 "

P7 P9 2q10 Pll A_ -qs

The solution is

/ A_ = 31025/(8. 3878)

A_ = 1939/3878

A_ = 411/3878

A_ = 44/3878

A_ = 2/3878.
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5.4.4. Discrete Pseudo-Normal with the First 16 Moments

The "enriched model" is

Ao - A1R + A2R 2 - A3R 3 + A4R 4 - AsR 5 + A6R 6

kr = Ao + A1R + A2R 2 + A3R 3 + A4R 4 + AsR 5 + A6R 6"
,t

(R = r- 1/2;r = 0,+1,:t:2,...)

The equations in matrix form with six parameters are:

Pl P3 2q4 P5 2q6 P7 Ao" -q2 "]
P3 Ps 2q6 P7 2qs P9 A2 - q4 /
P5 P7 2q8 P9 2q10 Pll A3 = -q6 [
P7 P9 2q10 Pll 2q12 Pl3 A4 -qsl"

P9 Pll 2q12 Pl3 2q14 P15 A5 -q 1011
Pll P15 2q14 P15 2q16 Pl7 A6. -q12 J

The solut,on is
Ao = 1.00000002049

A1 = 0.5
A2 = 0.113276449857

A3 = 0.014971578751
A4 = 0.001224410918

. As = 0.000059007755

A6 = 0.000001311283.

. The probabilities are

r with 10 moments with 16 moments e-r_/2/v/2"_
0 0.39894030 0.39894228 0.39894228

:t=l 0.24197226 0.24197072 0.24197072

+2 0.05399025 0.05399097 0.05399097

+3 0.00443204 0.00443185 0.00443185

+4 0.00013381 0.00013383 0.00013383
+5 0.000001486 0.000001487 0.000001487

1.0000 1.0000 1.0000

Note that Y-1/2/Y-3D for the 4, 10, 16 moments model has the values 2.697, 2.718278,
and 2.718281840 respectively as approximants to e.

5.4.5. Discrete Bessel Distribution with the First l0 Moments

• We consider the case with 01 = 02 = 1/2. The first 10 moments are 0, 1, 0, 4, 0, 31, 0,
379, 0, and 6556. The basic model with four moments is

gr = (2R + 4) 2 + 1 yr-1 (R = r- 1/2)
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and "enriched model with 10 moments is

fAo - A1R + A2R 2 - A3R 3 + A4R 4";

yr = l\To + A1R + A2R 2 + A3R 3 "4"A4 R4) Yr-1.

The solution is
t

Ao = 1145/(8.236), A1 = 118/236, A2 = 115/236, A3 = 24/236, A4 = 2/236.
i

Basic Model 10 moments 16 moments e-l/r(1)
r yr Yr Yr Yr

0 0.422312 0.455065 0.464351 0.465760

:kl 0.234617 0.213919 0.208621 0.207910

+2 0.046923 0.049170 0.049910 0.049939
:i=3 0.006120 0.008246 0.008177 0.008155

=k4 0.000927 0.001026 0.001007 0.001007

=1=5 0.000185 0.000098 0.000100 0.000100
+6 0.000047 0.000008 0.000008 0.000008

+7 0.000014 0.000001 0.000001 0.000001
+8 0.000005

=k9 0.000002
+lO 0.000001

Yr 1.000000 1.000000 1.000000
i

6. THE ALGEBRAIC STRUCTURE FOR THE DOUBLY BOUNDED
CASE

{}.1.FirstOrder Equations

From the fundamentalmoment parameterin (3)we deduce thefollowing:

N

_(y_- y__i)(_- T__-_) = -t, (_= 1,2,...)
r----1

= - II, + (-1)_#7-1(N + 1)yo] (15)
N

Z Yr-l(XS -- Txs-l) = ns
r=l

= As- rx,_, (16)
N

r-1

= - [k,- T'-I(N + 1)yN] (17)
N

_y__,(_ +.i_ _'-_)= m_
r--1
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= fns- Ta-t(N + 1)yN (18)

, where

{ is = vs - T Vs_l
ks "- Vs _- fllVs-1

". Ths = As +/A'I A_-I

6.2. Second Order Equations

N N

r--1 r--1

-- I T- v, + (T-/A_)v,-1 + li Vs-2

= -Ls (19)

N N

_-a Yr-l(X" -}- /Ai)(X- V)x s-2 -" E Yr--lXS--2 [x2"[- (/Ai -- T)X- AI T]
r=l r=l

= Ms (s = 2,3,...)

= As + (/A_- T)A,_I -/AITAs_2 (20)

It wi]] be seen from (15-16) that the moment-parameter involved eliminates YN as an

" explicit component; similarly the moment operator in (17-18) eliminates Yo. Again the
"quadratic" moment parameter in (19-20) eliminates yo and YN as far as they appear

explicitly. These formulas show that, in the general discrete model, the parameters of

the multiplier ks will be ratios of polynomials each involving a constant, and terms in
yo, YN and YoYN only. We illustrate using the basic model for which

(_0 -- X

kr = 1 + Co + Clx + C2x 2" (r = 1,2,...,N) (21)

Using (15-20) the equations now become

[[1- (N + 1)y0]C0+ [i2+ #i(i + 1)y0]C1+ [/3-/AT(N+ 1)yo]C2+ hl00 = n:
[++t- (N "I"I)yN] Co-l- [+2-" T(N "I- I)yN] C1 "I- [+3- T(N -I- I)yN] C2

-[- [ml -- (N + 1)yN] (_0 = la2 - T(N + 1)yN
L2Co + L3C1 + L4C2 "1-M2Co = Ma

L3Co + L4C1 + L5C2 + M3Co = M4

(Note that the powers of/A_ in the first equation of (22) alternate in sign, whereas those
of T in the second equation do not.)

Th last two equations do not contain Y0 or YN; Yo is linear in the first equation, and

YN linear in the second equation. Again it will be seen that the first three columns of
the underlying matrix refer to the denominator of k_. Clearly the determinant of the

system A involves only a constant, Yo, YN and YoYN; similarly for the numerators of Co,
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C1, C2 and (%. Algebraic solutions of (22) and similar generalizat; )ns should present
no problem using a computer language such as Maple; one would ,ssume the existence

of moments, and non-singular matrices. Numerically one would use y_ and Y_v as seeds o
: in (22) and attempt iterative solutions of )._N Yr = 1, and YN "- YN " YN-1 .... YO.

To study generalization of (21): _uppose the denominator is Co + ClX . ... C,\x )',

and the numerator C0 + Clx . ... . Cux _. We elect which parameter shall be unity;
suppose it is C_ for simplicity; then A . u . 1 equations are needed. The linearized

model is then operated on by (15) and (16); then (17) and (18) and finally (19) and

(20). The first A + 1 columns of the matrix will contain ([,]¢,L), and the remaining u
columns will contain (n, m, M).

7. THE EXPONENTIAL AND THE NORMAL

7.1. The Continued Fraction

Recalling that for the discrete normal we assume there is the approximation Yr -

e-r2/2/V/_, s9 that k_ = Y,'/Y,'-I = el/2-r = e R. But there is a continued fraction
(c.f.) for k_, namely

en,_ 1.__.R R R R R..... (IRI < ct) (23)1- 1+2- 3+2-5+

with convergents xs(R)/ws(R), where

0 0 1

1 1 1
2 1 1-R

3 2.R 2-R

4 6 + 2R 6 - 4R . R 2
5 12 + 6R + R 2 12 - 6R . R 2

6 60 . 24R + 3R 2 60 - 36R 4- 9R 2 - R 3

9 1680-t-$40R4-180R 2.20R 3.R 4 1680-840R.180R 2-20R 3.R 4

It will be seen that there is a subset of convergents of the form [¢(R)/¢(-R)], ¢(-)

being a polynomial. In fact the subset is X4s+l(R)/w4s+l(R). And these consist of
polynomials which are positive for all real R; they are thus compatible with the desired
structure of k_.

It is of some interest to note the de_,nite integral form (not apparently given in the

standard textbooks on c.f.s):

Z1 e_tt_( t + R)__ld t
X2_(R) = (s-- 1)!

1 e_tt__l( t _ R)_d ¢
= 1)!

Z1 e_tt_( t + R)Sd t
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1 e_tt_( t _ R),d t_,+_(R) =

* These can be proved by integration by parts and reference to the c.f. in (23).

. 7.2. Relation to Whittaker Functions

There are asymptotic forms for R --_ oo and R --, -oo. From Whittaker and Watson

[11] we fi_:st of ali consider positive R. Now

e-Z/2 z k ._ oWk'm(Z) -- r(1/2- k + m) .. e-tt-k-1/2+m(l+t/z)k-1/2+mdt (_(k-1/2-Fm) < O)

for all z except negative reals. Hence

w2s(-R)= Rs-1/2eR/2w1/2,_(R)w2_+l(-R) = RSeR/2Wo,,+I/2(R) (R > O)

When R > 0 there are two components in the integrals. Here

1 e- t
w2s(R) = (s- 1)! ts-l(t- R)_dt

(-1)s f0R e-R f0_= - e-ttS(R _- t)'-ldt
(s- 1)! e-tts-l(n- t)" + (s- 1)!

The first term relates to the confluent hypergeometric

r(b) fo_e_t"-l(1- t)b-a-ldt, (_b > _a > O)
M(a, b;z) = r(b - a)r(a)

and the second to Whittaker's W. In fact,

F(s + 1) M(8 2s + 1;-R) + sR'-_/2e-R/2W__/2,_(R). (R < O)W2s( R )
(-1)'R2_ r(2s + 1) '

Similarly,

w2s+l(R) = (-1)_R 2s+1 F(s + 1) (8 -R) + e-lt/2R_Wo,_+l/2(R)
F(2s+2)M +1,2s+2;

Whittaker and Watson [11] give the asymptotic form for IRI large, the basic asymptotic

being

" In our present context it will be seen that

lim (X4s----_4-1-(-R))=e-R= lim (w4,+l(R_)_-o_\w4_+_(-n) _--.o_\_4.+1( )
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7.3.Application to the Normal

We can now setup thediscretenormalnotusingmoments but appropriateconvergents

of (23).Fo,'example,we may use "

kr = k(_ ) = 12 - 6R + R 2
• 12 + 6R + R 2

and the equation

2k(S)k (5) (24)y0[1 + 2k_5) + 2 1 "l-'' "] = 1,

to determine Y0. Note however there is a small error in using Y_oo Yr = 1; incidentally

Aitken [1] gave __o% e__/_ = 2.506628288 (nearly) or __o% y_ _, 1.000,000,005.
An alternative is to assume Y0 = 1/v/_" and determine the sum from (24). For the

former choice, y0 = 0.397466120 and 1/v/_ ,,_0.398942280.

Higher order convergents, such as

kr4s+l = W4s+l(R)/W4s+l(-R) (s = 2.3....)

lead to using the limiting value exp(-R) so that y,./yo is seen as the product

r

I] 1)/2],
s'-I

a very interesting interpretation, providing a link between c.f.s and the discrete normal.

7.4. Moments of the Discrete Normal Distribution w

We use Hermite polynomials (Hs(x)}, an orthogonal system with respect to the basic

normal density exp(-x2/2)/v/_, and for which

Hs(x) = e-D_/2x s, (25)x s = eD_/2Hs(x). (D, - d/dx; DxHs(x) = sHs_l(X))

Consider then the evaluation of

(X)

Hs(r)e -_:/2h_s
.

Then the Euler summation formula (see Konrad Knopp), [4] shows that

h_8 :/_x)oo H2s(x)e-X_/2dxv/_ +_1, b

where

_o - - ax "_d3" _-x2 /2 ]
oo H_8(x)e dx,= ( )
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and
oo

P3(z) = _ 2sin(2nrz)
" n=l (2rtr)3 "

Integration by parts, with assumptions regarding uniform convergence, leads to

• k_ = _,,o + h2s, (26)

where
oo

h2, = 2(-1) s _'_(2rt)2% -2(rt)_.
t=l

For examples,

h_ = 1 + 2(e -2_2 + e -8r2 + e-18'_2 +... ) ,

h_ = -8r2(e -2r_ + 22e -8r_ + 32e -18r2 q-... ),

with regard to h_. Dr. Robert Byers using a variable precision package "Derive", gives

v/_h_ = 2.506,628,288,042,905,544,830, 67,

and

v/_(h_ - 1) = 0.000,000,013,411,905,042,414,91.

. From (25) and (26) we now have the general formula for the central moments of

the discrete normal distribution, namely

(28)(2m) (_2s-2m_,O'_'_h2s-2m)#2s = 2mm! \ 1 + ho "
m--0

For examples,

#2 = [h2 + (1-I- h0)]/(1 + h0),

#4 = [h4 + 6h2 + 3(1 + h0)]/(1 + h0).

8. CONCLUDING REMARKS

We have studied various aspects of the Pearson discrete model in generalized forms, in-

cluding the doubly infinite case, semi-infinite case and the bounded case. The examples

chosen have been directed at gaining insight into the models and their implementation.

New interesting properties have been discc,vered with respect to the normal case; on
the one hand using the standard normal moments as against the corrected moments.

• Applications to empirical data and estimation problems are not undertaken at this
time.
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