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ABSTRACT

All types of blood cells are formed by differentiation from a small population
of pluripotent stem cells in the bone marrow. This population should maintain the
balance between self-renewal and differentiation, even under severe perturbations,
e.g. the massive cell death caused by chemotherapy or irradiation. We constructed
a cellular-automata model for bone marrow dynamics, which retrieves its home-
ostatic capabilities even under periodic perturbations with constant or random
amplitude. However, temporally stochastic perturbations result in a chaotic-like
behaviour. Several methods of analysis failed to distinguish between the time se-
ries in this case and a chaotic time series, although the chaotic-like behaviour has
no deterministic source.



I. INTRODUCTION

In the process of hemopoiesis, a small population of pluripotent stem cells
continuously produces the whole variety of mature blood cells, while maintain-
ing the stem cell pool through self-renewal. The hemopoietic system is a good
example of a homeostatic, self-organizing, biological system. The probabilities of
self-renewal, i.e., cell divisions that generate daughter cells identical to the mother
cell, and of differentiation of daughter cells into blood cell precursors, are adjusted
according to the demands of the organism. The balance between self-renewal and
differentiation is maintained even under harsh cytodestructive (cell killing) treat-
ments, e.g., cheniotherapy or irradiation. Some of the relevant features of this
system are reviewed in the next section.

In a previous study [1] we used a cellular automata model of hemopoiesis to
study the dynamics of blood cell production under various regimens of treatment.
Our model showed an ability to maintain homeostasis under periodic treatment
regimens, even when the dose administered was random. However, chaotic-like
behaviour was observed when we introduced stochasticity in the time intervals
between treatment “perturbations”. These results are reviewed in section III.

The chaotic-like behaviour observed in our simulations has a significance that
is not limited to models of blood cell production. Lately there has been a multi-
tude of publications announcing the observations of chaotic behaviour in various
biological systems. Research efforts have been directed to explaining why chaos
should be an essential part of the dynamics of heart or brain function (reviewed in
section IV). However, our results - showing a behaviour that is indistinguishable
from chaos on the basis of several statistics, in spite of the fact that this “chaos”
is generated by temporal noise alone - suggest that stochastic driving may be the
cause of the “chaos” observed in some of the other cases as well.

II. THE DYNAMICS OF BLOOD CELL PRODUCTION

Bone-marrow stem cells give rise to precursor cells that are irreversibly com-
mitted to differentiate into one of the various hemopoietic lineages. Committed
cells further differentiate into immature, lineage-restricted cells that mature into
eight main types of specialized cells. Proliferation and differentiation are controlled
by protein signals (cytokines) that are secreted by hemopoietic cells themselves,
by bone marrow stromal cells, and by other organs [2, 3]. The spatial structure
of the bone marrow plays a role in the control process: a neighbourhood of cells
committed to differentiation seems to favor differentiation, while a stem-cell neigh-
bourhood favors self-renewal [4]. This poorly understood feedback [5-7] modulates
the balance between the number of stem cells that differentiate and those that
self-renew, ensuring the existence of required numbers of any cell type [8]. Consid-
erable research efforts have recently been directed towards the identification of the
most primitive hemopoietic stem cell, which is possibly the one bearing the CD34
surface antigen [9-12], and assessing its self-renewal capacity [13, 14]. The most
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studied, though probably not the most primitive, are the spleen colony-forming
units (CFU-8). In a steady state, 90% of these cells are proliferatively quiescent
[15, 16], but after a severe depletion, which may be caused by chemotherapy or
irradiation, as few as one or two dozens of CFU-S suffice for complete regeneration
of bone marrow and blood cells [6, 17].

Homeostasis of bone marrow cell populations, in particular the stem cell pop-
ulation, is essential for the normal function of the organism. When this home-
ostasis is not maintained, as in some pathological situations, various hemopoietic
and immune disorders may occur. One specific type of these disorders was termed
“dynamical diseases” [18]. An example of this type of diseases is cyclic neutrope-
nia — a condition in which the levels of neutrophils (one of the white blood cell
types) in the blood exhibits large fluctuations over time [19, 20].

How the bone marrow homeostasis is maintained and under which condi-
tions it is upset are questions of major importance, especially now when drug
therapy is considered in conjunction with bone marrow reconstitution [21]. Drug
therapy or irradiation are used in a variety of blood cell and other malignancies.
An effective treatment should not only maximize the damage to malignant cells
but also minimize the damage to the patient’s normal cells [22-28]. In addition,
when bone marrow transplantation is considered as a means of restoring the pa-
tient’s hemopoietic and immune systems, drugs and irradiation are used prior to
transplantation to eradicate the patient’s diseased cells. Hence the most efficient
eradication regimen should be used [21, 29].

I1I. A COMPUTER MODEL OF STEM CELL DYNAMICS

The aim of the present work is to study the property of homeostasis that
characterizes the bone marrow, and to analyze the effect of different drug regi-
mens on its regeneration ability. The rationale of our mathematical modelling is
to find the minimal assumptions necessary to retrieve the observed phenomenon.
Accordingly, we assumed that each cell may be in one of three possible states: one
is the stem cell, and the two other states are cells already committed to one of
two branches of differentiation. A “stem cell” in our model represents the most
primitive stem cell, which has a high capacity (infinite, in the model) of self-
renewal (the exact identity of the stem cell is irrelevant). A “stem cell” in the
model switches from self-renewal into differentiation according to the states of its
neighbouring cells. Thus, the balance between self-renewal and differentiation is
controlled only through communication between neighbouring cells, while prolif-
eration is controlled only by available space. We assumed that additional factors
which are involved in the global control of the system, and not in the local cell-cell
interactions, are of secondary importance relative to local interactions [7]. For this
reason, in our model we did not include such factors - again striving to construct
a minimal description. Inter-cell interactions in real bone-marrow may be stim-
ulatory [14, 30-33] or inhibitory [6, 7, 34-37). However, the existence of growth
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inhibitors in the bone marrow is as yet to be fully understood. No specific inhibi-
tion on stem-cell proliferation or differentiation is assumed in our model: the stem
cell tends to “decide” its next move according to the principle that an environ-
ment composed mainly of stem cells encourages self-renewal, and an environment
of more mature cells, committed to differentiation, encourages differentiation. We
did not argue that there is no inhibition, but, rather, we examined the possibil-
ity that the basic properties of hemopoiesis can be retrieved without assuming
inhibition.

The above assumptions were realized in a cellular automata model [1], con-
sisting of a two-dimensional lattice containing 10,000 cells. Each automaton cell
represented a real-life stem cell or differentiated cell in the bone marrow. Initially,
the automata are populated by 10.000 stem cells, and those cells then evolve in
time according to local rules. Each simulation step corresponds to a cell division
cycle, so that time is measured in multiples of the cycle time of bone marrow cells.
The maximum lifetime of a differentiated cell in the bone marrow is T, Meaning
that a differentiated cell dies 7 simulation steps after it was generated by differ-
entiation from a stem cell. Thus 7 turns out to be the characteristic time scale
of our system. As long as the system is unperturbed, and its differentiation rate
is not larger than the stem cells’ self-renewal rate, it evolves to a steady state
where the proportion of the various cell types in the population stays roughly the
same. If the differentiation rate exceeds the stem cells’ self-renewal rate, the pool
of stem cells is exhausted and all cells eventually “die”. The results of the sim-
ulations of our model are reviewed in the following. We present the dynamics in
terms of one variable, s, which is the fraction of stem cells (out of the maximum
possible number of cells) in the simulated population. For the system to be able
to return to its steady state after perturbations, this fraction should not go down
to near-exhaustion levels.

Homeostasis was exhibited in our model by a full recovery from severe (up to
97%) stem-cell loss. The number of stem cells, s, exponentially recovers towards
the steady state, which we denote by . On this exponential recovery, damped
oscillations of period 7 are superimposed. These oscillations were generated by the
synchronization of cell death and proliferation in a large fraction of the population,
occuring after a single sharp depletion. Similar waves of synchronized proliferation
were observed in bone marrow stem cells of mice, and explained as the result
of a hypothetical autoregulation of stem cells through a proliferation-inhibiting
factor [38, 39]. Our work suggests that there need be no such factor, since the
synchronized cell death following each perturbation can in itself result in such
oscillations.

Simulating various regimens of toxic-drug administration by repeated deple-
tion “perturbations”, we have shown that homeostasis can be maintained when
drug administration is fully periodic (Fig. 1). In contrast, when time intervals
between administrations become stochastic, chaotic-like behaviour emerges (Fig.
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2), and the stem-cell pool is eventually depleted. The temporal behaviour of the
stochastically-perturbed system was highly sensitive to initial conditions: a change
in the state of as little as 0.001 of the cells in the initial configuration results in to-
tally different time-series. Our system also exhibits almost complete memory loss,
measured by the Gade-Amritkar method [40]: ;ji(:—f—f%ﬁ.o + 0.1, where doubling

of the generalized exponent v indicates complete memory loss, characteristic of
chaotic time-series. The periodically-perturbed series exhibit only partial memory

loss, which is due to intrinsic noise in the system: %:1.5 +0.1.

We performed an analysis of this behaviour, via the time-evolution equations
for the stem-cell pool. We looked only at averaged quantities (averaged over the
whole grid of cells), which is equivalent to making the simplifying assumption of
homogeneity. The behaviour of the average stem cell fraction turned out to be
described by a logistic-type equation, with parameters in the one steady state
regime [1]. To examine the source of the chaotic-like behaviour, we studied the
stem-cell fraction on the instant just prior to the perturbation. Define S; as the
value of s at the instant prior to the j’th perturbation. Between perturbations s
recovers exponentially with some characteristic time § (which can be calculated
from model parameters). After each perturbation, which eliminates a fraction D
of the stem cells, s equals (1~ D)S;. Hence S; (which is a Poincaré mapping [41]
of the original time series) evolves in time through:

(1) Sj+1 = [(1 - D)S; —3le™P + 3,

where t; is the time between the j’th perturbation and the (j+1) perturbation.

In the periodically perturbed case, t; = T = constant. The mapping is linear
and as such has only one (stable) fixed point:

A —e— BT o
@ S = t(i-pyrr?

This resembles the “mode locking” phenomenon characteristic of periodically-
driven systems, appearing also in neural network models [42, 43].

In the chaotic-like case, t; in Eq. (2) is a random variable, normally dis-
tributed with an average T and a standard deviation o. The value of S;, which
depends on t;, may fluctuate faster than the system can adjust, i.e. the pertur-
bation “hits” at a different point of the recovery to equilibrium every time, so
that the system is unable to settle onto periodic dynamics (unless T is so large -
of the order of 200 simulation steps - that the system returns to the steady state
before each perturbation). This noise in ¢; can never drive the stem cell fraction to
the chaotic regime, because the calculations are performed only in the one fixed-
point regime. The source of the chaotic-like behaviour we see must then lie in the

-6 -



stochastic driving itself. Driven by temporally stochastic perturbations, the sys-
tem constantly “jumps” between periodic orbits with different periods, and this
results in a behaviour that looks chaotic. Thus, these stochastic perturbations
destabilize the system in a way comparable to the case described by Newhouse
[44-46], where there are many complex attracting periodic orbits of arbitrarily
high periods, with very narrow and convoluted domains of attraction, so that any
amount of noise leads to chaotic behaviour.

IV. CHAOS IN BIOLOGICAL SYSTEMS

Low-dimensional erratic behaviour has recently been observed in several bi-
ological systems [47-50]. This was assumed to indicate that the underlying be-
haviour was deterministic chaos, e.g., in blood flow or heart rate [51]. In some
cases, €.g., in the nervous system, it was furthermore conjectured that the chaotic

mechanism plays the role of a maximal-information basic state of the systeins
considered [47, 52).

We suggest, based on our model for hemopoietic stem-cell dynamics, that
a behaviour that looks chaotic may sometimes result from stochasticity in the
intervals between successive perturbations, and is not necessarily deterministic.
It is worth noting that -}- noise does not always imply deterministic chaos, and
fractal dimension measurements are also problematic as a means of distinguishing
deterministic chaos from stochasticity [53].

Results presented here support previous conclusions [54, 55] that the distri-
bution of inter-disturbance intervals is the major factor in determining population
persistence. The possibility that random intervals between high-dose drug ap-
plications may impede bone-marrow regeneration should be further investigated.
In this context it should be noted that our mathematical work and laboratory
experiments also suggest that fully periodic drug application may minimize the
cytotoxicity to the bone-marrow [22-28, 56].
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FIGURE CAPTIONS

FIG. 1: The cellular automata simulations, performed on a square grid of 10%
cells. Drug treatment is initiated after the system has reached a steady-
state. Time series of the fraction of stem cells is shown here for a periodic
drug treatment (T = 30). (Inset) Part of the series enlarged to show the
periodicity. Figures are reproduced rom Mehr and Agur, 1992, where the
parameters of the simulations are given.

FIG. 2: Simulation of a stochastic drug treatment (T = 30 £ 1) resulting in a
chaotic-like time-series.
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