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Abstract

We show how randomly scrambling the output cl~ses of varioua
fractions of the trdning data may be ud to improve predictive
-curecy of a clwification algorithm. We prment a method for
calculating the “noise 8enaitivity signature” of a learning algorithm
wh:ch is H on scrambling the output CIMECS.TNISsignature can
be umd to indicate a good match between the complexity of the
clwifier md the complexity of the data. Use of noine sensitivity
signatures is distinctly different from other scbemm to avoid over-
training, uuch w cr~vtildation, whlcb ues only part oft he trtin-
ing data, or mious penalty functions, which are not datwadaptive.
Noim semitivity signature methods uae all of the tmining data and
are mmifmtly data-adaptive and non-pmametric. They are well
suited for situations with limited training data.

1 INTRODUCTION

A major problem of ~ttem recognition and cl=sification algorithms that lem from
a training eet of exrunplea is to *l&t the complexity of the model to be trtine.d.
How is it p~ible to avoid an overparmneterised algorithm from “memortilng”
the training data? The dmgers inherent in over-parameterisation are typically



illustrated by analogy to the simple numerical problem of fitting a curve to data
points drawn from a simple function. If the fit is with a Klgh degree polynomial then
prediction on new points, i.e. generfllzation, can be quite bad, although the training
set accurracy is quite good. The wild oscillations in the fitted function, needed to
acheive Klgh training *t =curary, cauae poor prediction for new data. When
using neural networks, this problem hrartwo b-it arpects. One is how to chore
the optimal ati!tecture (e.g. the number of layers and units in a feed forward net),
the other is to know when to stop training. Of course, these two upecta are related:
~aining a large net to the Mlghest training set 8rcur8cy u8ua11ycauses overfitting.
However, when trtining is stopped at the ‘correct” point (where train-set accuracy
is lower), large nets are genertilzing an good w, or even better than, small networks
(w obnerved e.g. in Weigend 1994). This prompts serious consideration of methods
to avoid overpwmeterization. Various methods to wlect network architecture or
to decide when to stop training have been suggested. The= include (1) use of
a penalty function (cf. Weigend et al. 1991). 2) U* of crom ve.lidation (Stone

[1974). (3) minimum description length methodn Rissanen 1989), or (4) “pruning”
methoh (e.g. Le Cun et al. 1990).

Although dl tbcae methods are effective to various degrem, they all also suffer some
form of non-optimdlty:

(1) various forms of penrdty function have been propod and r-ults differ between
them. Typically, uning a penalty function is generally preferable to not using one.
However, it in not at rdl clem that there exists one “corr=t” penalty function and
hence any given penalty function is wually not optimal. (2) Cross validation holds
back part of the training data u a mpruate valdlation act. It therefore works bmt in
the situation where uac nf r.mdler training sets, md use of relatively smell validation
sets, still dlm C1OMapproximation to the optimal clwifier. This is not likely to
be the u in a significantly dat-limitd regime. (3) MDL methods may be viewed
- a form of penalty function and are subjcrt to the imues in point (1) above. (4)
pruning methnds require training a large net, which cm be time consuming, and
then ‘de-tuning” the large network using penalty functiom. The isnucn exprcased
in point(1) above apply.

We present a new method to avoid overritting that us- “noioy” training data where
some of the output clwes for a fr=tion of the data me wrambled. We dwcribe
how to obtti the “nniue sensitivity signature”of a clwifier (with its learning
algorithm), wh]rb is H on tbe wrambled data. TK]s new methodology is not
computationdly &-p, but neither is it prohibitively expensive. It can provide an
alternative to methods (l)-(4) above that (i) can test any complexity parameter of

\
any cl~ifying algorithm i.e. the architecture, the otopping criterion etc. ) (ii) uses
all the trtining data, and fil) is data adaptive, in contrut to rixed penr.lty/pruning
functions.

2 A DETAILED DESCRIPTION OF THE METHOD

Define a “Lting Algorithm” L(S, P), M my procedure whlrb produces a cl~sifier
f(a), which in a (di~rete) function over a given input space X (z c X). The input
of the lemning algorithm L in a fiining Set S and a *t of parameters P. The
training mt S is 8 *t of M cxamplca, each example is a pair of e-ninput instance z~



and the desired output M ~sociated with it (i = 1..M). We =sume that the desired
out put repraents m unknown “target function” ~ which we try to approximate,
i.e. M = ~(zi). The *t of puametern P includcn all the relevant puametem of the
specific learning algorithm e,nd architecture used. When using a feed-forward neural
network cl-ifier thin set usually includca the size of the network, its connectivityy
pattern, the dlntribution of the initial weights and the learning parmneters (e.g.
the learning rate and momentum term size in usual bd-propagation). Some of
these parameters determine the ‘complexity” of the clarifiers produced by the
Iewning algorithm, or the ~t of functions f that are redlzable by L. The number
of hidden units in a two layer perception, for exmple, determines the number
of free pmametem of the model (the weights) that the Iemning algorithm will fit
to Lhe data (the trtining set). In genere.1, the output of L cm be any cl~ifien
a neural network, a decision tree, bool- formula etc. The cl=sifier f can duo

depend on some rmdom choicm, like the initial choice of weights in many network
learning algortihm. It can ho depend, like in pruning algorithms on any “stopping
criterion” which may 8190influence its complexity.

2.1 PRODUCING f;

Tbe clarification taak is given M tbe trtining act S. The firot step of our method
is to prepme a wt of nohy, or partially scrambled realisations of S. We define S;
an one particulm much realization, in whlcb for fi~tion p of the M examples the
desired output valum (clwes) me chmged. In this work we consider only binary
cl=sification t=b, which means that we chooe.c PM e-pi- at random for which
y$ = 1- !/i. For mcb noiec level p md set of n such redlsations S~ (p = l..n) is

1prepared, each with a dfierent rmdom choice of scrmblcd cxamp m. Practically,
8-10 noise levcb in the range p = 0.0 – 0.4, with n -4-10 redlsations of S; for
each level we enough. The mcond utep is to apply tbe learning algorithm to each
of the different S; to produce the corresponding cl-sifiers, which are the boolean
functions f# = L(S#, P).

2.2 NOISE SENSITIVITY MEASURES

Using the set of f:, three quantiti- are me~ured for each noise level p

● The avemge performmce on the original (noiw free) training mt S. We
define the average nokc-free error ~

(1)

And the nohfrcc performance, or score u Qf (p)= 1- Ef (p).

● In a nimti way, we define the average error on the noisy training-sets S;:

mM
E“(p) = +-~lf;(.i) - V:l (2)

Pi
Note that the error of each clwifier ~; is measured on the training act
by which it w- created. The noky-mt performance is then d&ned u
Q.(P) = 1- E*(P).



● The averWe functional distance between clacaifiem. The functional distance
between two clwifiers, or boolean functions, d(f, g) is the probability of
f(z) # g(z). For a uniform input distribution, it is simply the fraction of
the input opace X for whlcb f(z) # g(z). In order to approximate this
quantity, we can use another set of examples. In contr-t with validation
set methods, these examples need not be cl~sified, i.e. we only need a set of
inputs z, without the target outputs y, so we can usually use an “artificial”
set of m rmdom inputs. Although, in principle at least, these a instances
should be taken from the mme distribution ?d the original t~k examples.
The approximated dlstmce between two classifiers is therefore

.
d(f, g) = +~ If(zi) – g(zi)l (3)

We then ce,lculate the average distance, D(p), between the n cl~sifiers f;
obtained for ewh noise level p

D(p) = &~d(f;, f;) (4)
14>v

3 NOISE SENSITIVITY BEHAVIOR

Oberving the three qumtitien Qf (p), Qn(p) and D(p), can we distinguish between
an overparmetriscd clwifier md a “well tuned” one ? Can we we thla data in order
to choom the brat generdlzer out of several cr.ndldatcr ? Or to find the right point
to stop the leruning algorithm L in order to achieve better genertilzation ? Lets
@timate how the plots of Q,, Qn and D vs. p, which we call the ‘Noise Sensitivity
Signature” (NSS) of the algorithm L, look like in several different scenuios.

S.1 D(p)

The average functional distance between redlsations, D(p), me~ur~ the sensitiv.
ity nf the cl-sifier (or the model) to noi~. An over. pm~etrised architecture is
expected to be very sensitive to noi~ since it is capable of changing its cl~sifica-
tion bnund~y to le~ the scrambled examples. Different refllzations of the noisy
training set will therefore result in different cl~ifiem.

On the other had, an under-~ametrized cl~sifier should be stable against at
le-t a smd mount of nnim. Its clarification boundary will not chmge when
a few examplea chmge their CIASS.Note, however, that if the trtining net is not
very “dew”, an under-parametrised mtiltecture can still yield different cluifiers,
even when trdncd on a noise free training set (e.g. when using BP with differ-
ent initial weights). Therefore, it may be p~ible to oherve some ‘background
variance”, i.e. non.aero average distance for small (down to sero) noise levels for
under-y-etrincd clmsifiem.

3.2 Qf(p) AND Q.(p)

Similar considerations apply for the two quatitim Q,(p) and Qn(p). When the
training set is lmge enough, m under-parametrized clwifier cmnot Yellow” dl



the changed examples. Therefore most of them just cdd to the training error.
Nevertheless, its performance on the noise free training cct, Q!(p), will not change
much. As a rmult, when incre-ing the noi= level p from zero (where Qf (p) =

Qn(P)), we should find Q/(P) > Qn(p) UP tO a high nOiselevel - where the decisiOn
boundcry haa chmgcd enough so the error on the original training set becom=
larger than the error on the e.rtucl noisy set. The more pwmeters our model hat,
the sooner (i.e. omdler p) it will switch to the Qf(p) < Q-(p) state. If a network
starts with Q,(P) = Q.(p) cnd then cxhiblts a behavior with Q~ (p) < Q.(p), this

is a signature of overparameterization.

3.3 THE TRAINING SET

In addition to the set of puameters P c,nd the Iecming algorithm itself, there
is mother importmt fc.ctor in the leaning proccM. Thn in the trtining set S.
The dependence on M, the number of exe.mplec in evident. When M is not lc,rge
enough, the trtining net docc not provide enough data in order to capture the full
complexity of the original t~k. In other words, there me not enough constraints
- to approximate well the tcrget function ~. Therefore ovefitting will occur for
smc.ller clwifier complexity cnd the optimal network will be smaller.

4 EXPERIMENTAL RESULTS

To demnmtrate the powible outcomes of the method d=cribcd above in ccveral
cm, we have performed the following experiment. A rcndom neurc.1 network
“teuher” we,c created u the target function ~. Tbic is a two layer perception
with 20 inputs, 5 Kldden units c.nd one output. A cct of M random blnmy input
e-pica wan created and the tetier network we,c ued to cluify the training
e-pi-. Nwely, a dmircd output y~ WM obtcincd by recording the output of
the teccber net when input zi wcc prewnted to the network, c.nd the output wac
cdculatcd by applying the usual feed forward dynamincx

Yj = $~~(~ wjk~k) (5)

This blnc.ry thrcchold update rule b applied to each of the network’s units j, i.e
the Kldden md the output units. The weights of the teccher were cbc.cen from a
uniform dutribution [-1,1]. No thrmhnld (bl- weights) were d.

The set of ncrmblcd training wts S; wac produced M explained above and different
network architecture were trained on it to produce the wt of classified f~. The
lecming networks me studard two layer networks of oigmoid units, trtincd ~y con-
j ugate grdlent --propagation, wing a quadratic error function with tolercnce,
i.e. if the difference between m output of the net c,nd the d-ircd O or 1 tmget is
smcdler thm the tolermce (t*en -0.2 in our experiment) it doec not contribute
to the error. The tolercnce io, of cow, mother Pcumeter whlcb may iduenceo
the complexity of the rcculting network, however, in thn csperiment it ie &cd.

The q“mtiti~ Q!(p), Qn(p) c,nd D(p) were cdcuhtcd for networks with 1,2,3,..7
hidden units (1 hidden mit mess just a perception, trtincd with the =e error
function). In our terminology, the mtiltccture sp=ification is part of the wt of



Training Set Size
hidden units 400 700 1024

1 0.81 (0.04) 0.81 (0.001) 0.82 (0.001)
2 0.81 (0,04) 0.84 (0.05) 0.86 (0.04)
3 0.78 (0.02) 0.82 (0.06) 0.90 (0,03)
4 0.77 (0.03) 0.81 (0.05) 0.90 (0.03)
5 0.74 (0.03) 0.79 (0.03) 0.87 (0.04)
6 0.74 (0.01) 0.80 (0.05) 0.89 (0.03)
7 0.71 (0.01) 0.76 (0.02) 0.85 (0.05)

Table 1: The prediction rate for 1..7 hidden units, averaged on 4 nets that were
trained on the noisefree training mt of sise M = 400,700,1024 (the standard devi-
ation is given in yrenthesis).

parametem P that in input to the learning algorithm L. The goal is to identify tbe
“correct” artiltec.ture =cordlng to the bebavior of Q,, Q. md D with p.

The experiment w- done with three trtining set uisea M = 400, 700 and 1024.
Another set of m = 1000 rmdom examples waa used to calculate D. As an “ex-
ternal control” thla mt wan alm cl~ificd by the te~er network and w- used to
memure the genemliiation (or predlciton rate) of the different learning networks.
The prediction rate, for the networh trained on the noi= free training wt (aver-
aged over 4 networks, trained with dflerent random initial weights) in given for
the 1 to 7 Nlddcn unit archltecturm, for the 3 Bizenof M, in Table 1. The noioe
semitivit y signaturm of three mchltecturm tminr!d with M = 400 (1,2,3 hidden
units) and with M = 1024 _ples (2,4,6 units) me shown in Figure 1. Compare
thaw (reprear.ntative) rmults with the expected behaviour of the NSS M dwribed
qualitatively in the previous section.

5 CONCLUSIONS and DISCUSSION

We have introduced a method of testing a Iee,ming model (with its learning edgo-
rithm) agaimt a learning task given - a finite mt of cxamplm, by producing and
characterir.ing its %oh sensitivity signature”. Relying on the cxperimentd results
presented here, ud stillar rmults obttiad with other (1w artificial) lemning t~ks
andalgorithms, we suggest mme guidelinm for using the NSS fnr model tuning

1. If D(p) approach- zero with p + O, or if Qt@) is significantly better than
Q~(P) fOr nOi= levela UP to 0.3 or mnre - the network/model complexity can be
safely inre-.

2. If Q, (p) < Q.(p) d~y fnr small levcla of noiw (say 0.2 or 1-) - reduce the
network complexity.

3. In more deli~te situation a ‘gnod” model will have at le=t a trace of concavity
in D(p). A clearly convex D(p) probably indlwten u nver-pruametrimd model. In
a ‘gOOd” mOdel &oice, Q~ (p) will follow QI (p) CIWIY, from below, Up to a high
nob level.



Pigure 1: The aigntur~ (Q and D vs. p) of networkn with 1,2,3 hidden units (top
to bottom) trtined on M=400 _plw (left), md networh with 2,4,6 Kldden units
trtincd on M=1024 examplm. The (notiy) trdning 8ct ~re Q.(p) is plotted with
full line, the noti free wore Q,(p) with dotted line, and the aver~e functional
dwtmce D(p) with error bs (representing the nte.ndmd deviation of the dwtance).



5.1 Advantages of the Method

1. The method uses all the data for training. Therefore we can extract all the
available information. Unlike validation set metho~ - there is no need to spare
part of the examples for testing (note that cl-ified examples are not needed for
the functional distance estimation). This may be an important advantage when
the data is limited. As the experiment presented here shorn ttilng 300 cxampleo
out of the 1024 given, may r-ult in choosing a smaller network that will give
inferior predict ion (see table 1). Using “delete- 1 crmwvalidation” will minimbe
this problem but will need at le~t u much computation ar tbe NSS calculation in
order to achieve reliable prd]ct ion ~timat ion.

2. It is an “external” method, i.e. independent of the cl~sifier and tbe training
algorithm, It can be used with neural nets, decision trees, boolean circuits etc. It
can evaluate different clwifiem, algorithms or stopping/pmnning criteria.

5.2 Disadvautqes

1. Computationally expensive (but not prohibitively so). In principle one can use
just a few noim leveb to reduce computational cmt.

2. Premntly rcquir~ a subjective dectilon in order to identify the signature, unlike
crow-tidation methods which produce one number. In some situations, the noise
sensitivity signature givca no cle~ distinction between similw architectures. In
these cMes, however, there b e.lmont no difference in their generalization rate.
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