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I * This report represents fulfillment of Task 2A of the CPAC Optical Moisture 
Monitoring of Hanford Waste Tanks project (Westinghouse Hanford Company 
Contract MRL-SW-562951). Task 2A was to  extend the initial feasibility study, 
completed under Task 1, to  more fully characterize the effects of particle size and 
chemical composition on the optical determination of moisture. The initial Phase 1 

studies were based on using the BY-104 salt cake surrogate over a water 
concentration range from zero to  approximately twenty weight percent (wt%) water. 
Multivariate calibration methods were used to relate the changes in spectral response 
to  the moisture concentration in the samples. Results from the previous study 
indicated that moisture could be determined with a standard error of 1.4 wto/o using 
the visible spectral region (400 to  1100 nm), less than 0.5 wtoh using the near 
infrared (NIR) spectral region (1100 to 2500 nm), and about 0.70 wtoh using the mid 
infrared (IR) spectral region (400 t o  4000 cm"). All the Phase 1 results were obtained 
using a single BY-104 salt cake simulant composition under a single set of 
experimental conditions. 

While the Phase 1 results were encouraging, additional work was needed to  evaluate 
the feasibility of the optical moisture determination under a wider range of 
conditions. Three additional parameters were investigated as part of this Task 2A. 
First, we wanted to  study the effects of different sample particle sizes on the moisture 
determination. Since the actual samples from the waste tanks are expected t o  range 
in consistency from a rocky salt cake to  a liquefied slurry, it is important to  
characterize any effect the sample particle size has on the spectral measurements, 
and ultimately on the moisture prediction. 
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Secondly, we wanted to  investigate the experimental procedure used to  prepare the 
calibration set samples. In all the Phase 1 studies the calibration samples were 
prepared by successively adding water to  fully dried BY-104 simulant. In this Task 
we investigated the effect of preparing the samples a t  different moisture levels by 
drying Pwetn BY-104 simulant for different periods of time. The main emphasis in 
this study was to  determine if the sample preparation method effected the calibration 
model and the resulting moisture predictions. 

The third parameter investigated was the effect of sample composition changes on the 
moisture determination. Since all the previous work was limited to a single 
composition, there was no information available about the sensitivity of the moisture 
determination to changes in the waste composition. It is known tha t  the waste in the 
tanks will have different compositions depending on which tank, and where in the 
tank, the sample came from. In order to  have any confidence in the optical moisture 
determinations, it is important to  characterize the sensitivity of the method t o  
changes in composition. The important experimental conditions, results, and 
conclusions of each of the three studies which comprise the Task 2A work scope are 
summarized below. 

Particle size study 

In this study three different particle sizes were investigated. The dried BY-104 
simulant was size sorted using US. Series stacked sieves with 10,20, and 40 mesh 
sieves. The sieving operation resulted in three particle size ranges; small particles 
that  passed through the 40 mesh sieve (less than 420 p), medium particles that 
passed through the 20 mesh sieve but not the 40 mesh sieve (420 p m  to  841 e), and 
large particles which passed through the 10 mesh sieve but not the 20 mesh sieve 
(841 pm to 2 mm). Calibration data sets were prepared for each particle size by 
successively adding water to  obtain a range of moisture levels and measuring the VIS 
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and NIR spectra of each sample. The resulting data was analyzed for each particle 
. size individually and as a combined data set containing all three particle size ranges. 

The results of these calibration models, and their performance in predicting the 
weight percent (wt%) water for the other particle sizes, are summarized in Table 1-1 
and Table 1-2 below for the VIS and NIR spectral regions, respectively. 

The boldface entries in the tables represent the individual model's root mean square 
error (RMSE) when used to predict with the same particle size data used to build the 
model. The first column in the tables is the number of PLS factors included in the 
model (determined by cross validation). The second row and column labels 
correspond t o  the different patricle size ranges as follows: Small = 420 pm, Medium 
= 420 t o  841 pm, Large = 0.841 to  2.0 mm, and Combined = < 420 pn to  2 mm. From 
Table 1-1 we can see that the one factor PLS model derived from the VIS spectra 
measured on the small particle size samples (C 420 pm) has a RMSE of 0.59 wto/o 

when predicting moisture from small particle size spectra. The same small particle 
size model has RMSE errors of 5.17, 4.98, and 4.15 wto/o moisture when used t o  
predict moisture from the medium (420 to 841 pm), large (841 pm to  2 mm), and 
combined (<420 pm t o  2 mm) particle size spectra, respectively. 

Table 1- 1. Root Mean Square Error (R.MSE) for the prediction of wt% 

moisture from the VIS spectra using PLS. 
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Table 1-2. Root Mean Square Error (RMSE) for the prediction of wt% 

moisture from the spectra using PLS. 

The results of the studies indicated that there was a significant effect of the particle 
size on the moisture determination. This can be seen in the tables above where 
larger RLMSE values were obtained when an individual particle size model was used 
to  predict wt% moisture from the spectra of a different particle size. This effect was 
more pronounced for the VIS study results and less pronounced for the NIR results. 
However, the results also show that including a range of particle sizes in the 
calibration set effectively minimizes the influence of particle size on the overall 
calibration model. The combined particle size model had similar RMSE values for 
both the VIS and NIR data sets. In both cases, the RMSE for the combined particle 
size model was slightly larger than for any of the individual particle size models. It 
should be noted that  even though there was an observed particle size effect on the 
moisture prediction accuracy, even the worst case was very close to the *5 wtoh 

moisture performace target stated by WHC (in the 10-25 wto/o moisture range). 

Composition study 

The main purpose of this study was to evaluate the effect of variations in the 
chemical composition of the waste simulant on the optical moisture determination 
method developed a t  CPAC. In this study, the BY-104 salt cake simulant obtained 
from WHC was again used as the base chemical composition. Experiments were 
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performed where the BY-104 chemical composition was changed by adding amounts 
of the simulant's individual pure components to  the base composition. For each 
change in the pure component level, the NIR spectral response was measured a t  
different moisture levels. The results of changing the chemical composition were 

: evaluated by observing the effect of the composition change on the moisture 
prediction from a calibration model derived from the base composition at different 
moisture levels. Further studies were conducted t o  develop estimates of the effect of 
the composition changes on the moisture determination. The experimental design 
used in this study allowed for the moisture level and composition effects to be studied 
independently and together. In all cases, the experimental data was analyzed using 
Partial Least Squares (PLS) regression to  generate appropriate calibration models. 

This study was the first conducted at CPAC to use a direct insertion fiber optic probe 
for the collection of the experimental spectra. The fiber optic probe consists of a fiber 
bundle to deliver the monochromatic illumination light from the spectrometer, a 
sampling window, and a collection fiber bundle to  transmit the reflected light back 
to the detector. When considering the data without composition changes, a two factor 
model was able to  predict moisture with a root mean square error (RIMSE) of 0.734 
wto/o moisture. This prediction error estimate was slightly higher than the estimate 
from the previous Phase 1 study, 0.42 wto/o moisture, but most of the difference was 
attributed to  variability between the replicate experiments in the experimental 
design. The use of the fiber optic probe did not seem to adversely effect the moisture 
predictions and has several advantages over the previous method of using sample 
cups for measuring the spectra. Unfortunately, the experimental setup restricted the 
spectral region to  the NIR region (1100 nm to 2500 nm) with the use of the fiber 
probe. 
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In analyzing the composition variation data, it was observed that the effect of 
changing the BY-104 component compositions did lead to  increased prediction errors 
for the moisture calibration models. The nature of the composition effect was 
dependent both on the simulant component which was changing and the moisture 
level of the sample. There were two general effects that were observed. For the 
NaOH, NaAlO,, Na,SiO,, and Na,PO, components, the effect was a bias towards 
lower moisture predictions. This bias effect was larger a t  the higher moisture levels 
and was most pronounced for the NaOH component. The source of this bias was 
related to the increased spectral background due to the component spectra around the 
1424 nm first OH overtone and 1925 nm OH combination band. The second main 
effect was observed for the Fe(NOJ,, Ca(NO&,, and Mg(NO& components which 
exhibited increased predicted moisture values. This effect was strongest for the 
Fe(NOJ, composition changes and was mainly observed at  the low to  intermediate 
moisture levels. The main cause for this observed sensitivity was a decrease in the 
background adsorption in the 1400 nm to 1900 nm region due to the pure component 
spectra. 

The changes in component compositions were effectively unknown interferents to  the 
moisture calibration model. To illustrate the multivariate model’s ability to  correct 
for these interferents, a model was developed which included both moisture variation 
and NaOH concentration variation effects in the spectra. This model was able to 
correct for the NaOH composition change interferent and predict the moisture level 
without the bias observed for the pure BY-104 calibration model. The RMSE for the 
corrected model was 0.860 wt% moisture versus a RMSE of 4.80 wt% moisture for the 
model without the correction (the errors for the high moisture samples were even 
larger due to the strong bias of the uncorrected model). The corrected model 
regression coefficient vector indicated that accounting for the interference caused by 
the NaOH concentration variations resulted in an increased emphasis on the 1425 
nm spectral region (OH first overtone band) and a decreased emphasis on the 1925 
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nm spectral region (OH combination band), relative to  the single composition BY-104 
moisture model. When all the composition variations were included in the model, the 
resulting model had a moisture RMSE of 1.41 wt% moisture compared to  a RMSE of 
0.734 wtVo moisture for the moisture only prediction and a RMSE of 2.96 wt% 

moisture for all the compositions data predicted with the single BY-104 composition 
model. Therefore, by including the spectral variation due to the composition changes 
along with the moisture variations, the resulting model was able to  correct for the 
interferences due t o  composition changes and reduce the prediction error by more 
than a factor of two. The price paid for the increased model complexity was tha t  the 
moisture prediction errors were twice as large as the results obtained from the pure 
BY- 104 moisture model with no composition variation. However, the resulting model 
is now much more robust t o  composition variations. The sensitivities for most of the 
BY-104 components (shown in Table 1-3 below) were below the statistically 
significant level over the composition variation ranges studied when the corrected 
model was used. The numbers in the table correspond to  the expected moisture 
prediction error (in wt% moisture) t o  a one percent increase in the wt% concentration 
of the component. 

The implication for future development and deployment of the spectroscopic moisture 
monitoring system is quite clear. It will be important to develop the moisture 
calibration models with a range of compositions expected to be encountered in the 
routine analysis of waste from the waste tanks. The exact sensitivity of the moisture 
prediction model will depend on the magnitude of the composition variation within 
the waste tanks, the waste components which are varying, and the desired moisture 
range of the calibration model. These studies indicate that by including composition 
variation in the calibration data, the resulting model can be made relatively 
insensitive to  composition variation. 
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Component 1 RMSE 
NaNO, 2.3 1 

Na,SiO, 1.55 

Na,PO, 0.77 

NaAl0, 1.58 
NaOH 1.26 

ww), 1.69 

Ca(NO& 1.54 

Moisture Level 
15% I 25% 
-0.45 I -0.08 
-0.04 0.32 
-0.06 0.16 
0.03 0.29 
-0.12 0.03 
0.00 -0.02 
-0.01 0.08 

Table 1-3. Sensitivity of moisture prediction to changes in component 
concentration for the overall model. 

Finally, it appears that the same spectra used for the wtYo moisture prediction can 
be used t o  predict the wt% NaOH in the same sample. The NaOH calibration model 
was seen to  use mainly the first overtone of the OH band (at 1425 nm) for the wto/o 

NaOH prediction. The RMSE of the NaOH prediction was 0.68 wt% and already 
included corrections for the water level interferent. Of course, it  should be 
remembered that the NaOH calibration models only considered NaOH concentrations 
above the original BY-104 concentration and did not include corrections for the other 
component composition changes. Even so, the resulting NaOH prediction errors were 
quite good and suggests that the potential exists t o  monitor both the &Yo moisture 
and wt% NaOH in a waste sample using a single spectroscopic measurement. 

Sample drying study 

In this study we investigated the effect of two different sample treatments in 
preparing the calibration data set for the moisture determination. The first sample 
treatment involved the complete drying of the BY- 104 simulant followed by successive 
additions of water to  obtain samples with different moisture levels. This was the 
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method used to obtain the calibration samples for the Phase 1 studies. The second 
sample treatment involved drying the wet BY-104 simulant sample for increasing 
periods of time. As the drying time was increased, the sample contained 
progressively less moisture. This second sample treatment, which we will call 
successive drying, was investigated t o  determine if there is a quantitative difference 
in the moisture model calibration results related to the two different methods of 
preparing the calibration samples. This study explored several variations of the 
sample drying experiment. 

One of the issues was whether sample drying introduced changes in the spectral 
response that would effect the calibration for moisture. For the NIR results, we 
clearly saw that drying the sample below approximately two weight percent water 
induced a change in the spectral response. Based on our analysis we attributed this 
change t o  a surface enrichment in sodium nitrate and a depletion of sodium 
hydroxide as the sample became fully dehydrated. For the VIS spectral region, we 
were unable to  satisfactorily answer this question since the recorded spectra appeared 
different from our earlier observations, even without the oven drying. 

The second issue addressed by this study was the relative performance of the 
calibration models obtained with the different sample treatments. For the individual 
calibration models, there does not seem to  be any advantage to either sample 
preparation technique. For the NIR spectra, both sample treatments gave very 
similar results in terms of the model fit t o  the calibration data. The drying models 
were able to  predict moisture from the water addition spectra than the better reverse 
case (using the water addition model to  predict moisture from the drying data). 
However, much of that  difference can be attributed to  the poor predictions for the low 
moisture samples from the drying experiments. Since those samples exhibited unique 
spectral features, related to the nitrate migration, not present in the water addition 
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data, it is difficult to  say one method is better than the other. The cross prediction 
results in the VIS spectral region were considerably worse than in the NIR region. 

Conclusions 

The recurrent theme from these studies is that a calibration model based on a single 
set of tightly controlled experimental conditions will tend to  have somewhat larger 
prediction errors when applied to  samples collected with variations outside those 
conditions. However, the moisture calibration models are inherently quite good and 
can tolerate a range of conditions and still give prediction results within the +5 wt% 

moisture tolerance specified by WHC for the tank moisture analysis. It was 
demonstrated, from both the particle size and compositions studies, that  a model built 
from a range of sample particle sizes or compositions is much more robust when 
predicting new samples which are slightly different than the “reference” samples. 
When the more general models are built by including the expected sources of 
variation, the model fit statistics are not as favorable, i.e., a slight increase in the 
model RMSE, but the resulting models can safely be applied to a wider range of new 
unknown samples. 

What this means to  the optical moisture determination project at  WHC is that, while 
more work should be done to fully characterize the model response to the anticipated 
range of sample conditions in the waste tanks, the NIR and VIS models are able to  
provide reasonable prediction accuracy over a range of sample conditions. These 
studies indicate that including more sources of variation in the calibration model 
results in more robust prediction models at  the expense of increased overall 
prediction error. The larger errors observed when more sources of variation were 
included in the model are, in part, a function of the relatively small number of 

samples considered in the studies. The effort t o  fully characterize the composition 



WHC-SD-WM-ER-397, Rev. 0 
Page 11 of 153 

effect could take many more samples but the increased information from such a large 
data set could lower the overall prediction errors. These studies indicate that  while 
moisture prediction errors of 1-2 wtoh are certainly attainable under laboratory 
conditions, that level of accuracy may not be possible over a larger range of 
compositions and sample conditions found in the waste tanks. However, since the 
acceptable accuracy of the moisture determination has been stated as k5 wto/o 

moisture, these studies indicate that the potential for success with the optical 
detection method is fairly high. Even with the very large composition variations 
considered in this study, the errors of the models are still about half of the 5-0 wt% 

requirement. 

One of the limitations in the waste tank analysis program is the limited amount of 
hard data on the actual composition variations within the tanks. This implies that 
the type of composition variation experiments presented here should be conducted 
with simulants to  obtain estimates of the sensitivity of the calibration models t o  
waste component variations. More emphasis and resources should be devoted to  the 
composition variation characterization experiments than t o  other parameters such as 
particle size and sample treatment, which have much smaller effects. 
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2. Particle Size Study 

Results from the previous Phase 1 study indicated that moisture could be determined 
with a standard error of 1.4 wtYo using the visible (VIS) spectral region (400 to 1100 
nm), less than 0.50 wt% using the near-infrared (NIR) spectral region (1100 to 2500 
nm), and about 0.70 wt% using the mid infrared (IR) spectral region (400 to  4000 
cm-'). The purpose of this study was to  determine the effect, if any, sample particle 
size variation has on the prediction of moisture from the spectral data. In this study 
three different particle sizes were investigated. The dried BY-104 simulant was size 
sorted using U.S. Series stacked sieves with 10,20, and 40 mesh sieves. The sieving 
operation resulted in three particle size ranges; small particles that  passed through 
the 40 mesh sieve (less than 420 pm), medium particles that  passed through the 20 
mesh sieve but not the 40 mesh sieve (420 pn to  841 pm), and large particles which 
passed through the 10 mesh sieve but not the 20 mesh sieve (841 p m  t o  2 mm). A 
calibration data set was prepared for each particle size by adding different amounts 
of water t o  the dried samples and measuring the resulting sample's spectra in the 
visible and near-infrared spectral regions. Calibration models were developed for 
each of the particle size calibration sets as well as for a combined set containing all 
three particle size ranges. The results of these models, and their performance in 
predicting the weight percent (wto/o) water from the spectra of other particle sizes, 
indicate that  particle size does impact the moisture determination. However, the 
results also show that including a range of particle sizes in the calibration set 
effectively minimizes the influence of particle size on the overall calibration model. 
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Experimental 

The BY-104 simulant material supplied by WHC was dried in an oven at  160" C for 
approximately forty-eight hours and then cooled in a desiccator. The dried starting 
material was ground using a ceramic mortar and pestle to  break up the aggregate 
aclumps" that form during the drying process. The dried and ground starting material 
was then separated into three different particle size ranges using U.S. Series 
standard mesh sieves. The first sieve (US Sieve #lo) had 2 mm openings, the second 
(U.S Sieve #20) had 841 pm openings, and the third (U.S Sieve #40) had 420 p m  

openings. The sieving operation resulted in base materials with three particle size 
ranges, small (<420pm), medium (420-840 pm), large (840pm-2mm), which were then 
used in the moisture determination studies. The size sorting was accomplished by 
stacking the three sieves in increasing mesh number (decreasing opening size) and 
then shaking the dried BY-104 through the stack. This results in an increasingly 
smaller particle size range being trapped at each succesive sieve layer. [The larger 
particles which were trapped by the first sieve (>2mm, #10 mesh) were not used in 
this study.] 

To determine the amount of water added to the sample at each step, the samples 
were weighed before and after the water additions. For each particle size, the first 
two samples (first four spectra) contained zero weight percent water and the 
remaining eight samples contained increasing percentages of water. The water was 
added using a spray bottle and the sample was thoroughly mixed using a putty knife 
following the water additions. Although the exact amount of water needed for a given 
weight percent of water was not calculated, the approximate target moisture range 
was zero t o  twenty percent water. An arbitrary amount of water was added and the 
weight difference measured. From this information the exact weight percent water 
was calculated. 
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The experimental spectra were collected on the same spectrometer used in the 
previous Phase 1 studies. Each optical measurement of the sample consisted of 
thirty-two reflectance scans co-averaged to produce a single spectrum, Spectra from 
both the visible (400 nm to 1100 nm) and NIR (1100 nm to 2500 nm) wavelength 
regions were measured during each scan. The spectral reference used in these 
experiments was the internal ceramic reference built into the spectrometer. For each 
sample two spectra were recorded. The sample cup was rotated between the two 
spectral scans in order to  reduce the differences due to sample cup packing. Since 
there were three sets of ten samples (ten moisture levels a t  each of the three particle 
sizes), and each sample was scanned twice, a total of sixty spectra were taken during 
the experiment. 

All data were analyzed on a computer workstation using custom chemometrics 
routines developed a t  CPAC. The spectra for the sixty samples was split into the 
visible and NIR spectral regions and analyzed separately. Calibration models were 
developed for the two sets of spectra using partial least squares (PLS) regression to  
relate the spectral responses to  the wt% moisture values. The data for the sixty 

samples were then broken into sets of twenty, based on the different particle sizes, 
and run through the same series of calculations. In all cases, the results obtained 
from the PLS models were calculated from the second derivative spectral data. As 
discussed in the Phase 1 report, the second derivative of the spectra was used t o  
eliminate baseline offsets in the reflectance spectra due to  scatter effects. 

Results and Discussion 

In analyzing the data from the particle size experiments we will first consider the 
visible (400 nm to 100 nm) and then the near-infrared region (1100 nm to 2500 nm). 

For each spectral region we are interested in discovering if any changes in the 
measured spectra occur which are related to  the particle size of the sample. We are 
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Spectral Response 
Factor Individual Total 

most interested in determining if those spectral variations due to  different particle 
sizes have an effect on the performance of the moisture prediction models. 

Moisture Concentration 
Individual Total 

Visible Results 

1 
2 
3 

The visible spectra were first analyzed as a combined set including all three sieve 
sizes. Cross validation indicated that a three factor PLS model gave the best 
prediction results without overfitting the data. The amount of variance described by 

each factor in the spectral response and moisture concentration blocks is given in 

Table 2-1 below. 

90.06 90.06 75.60 75.60 
12.31 87.91 7.99 98.04 

1.08 99.13 10.32 98.23 

Table 2- 1 Percent variance described by each factor of the PLS model 
for the combined particle size VIS data set. 

The first factor scores for the spectral block are shown in Figure 2-1. In this plot one 
can clearly see three different groups, or clusters, of score values corresponding to the 
three particle sizes. The first four samples within each group (Le., samples 1-4, 

21-24, and 41-44) correspond to the zero water added samples. Notice that these zero 
water samples do not have the same scores on this factor. While the medium and 
large particle size samples have roughly equivalent scores, the score values for the 
small particle size samples are different. Nominally, the only difference among these 
samples is that  they have been particle size sorted. In the absence of a particle size 
effect, one would expect that  all twelve samples of the dry base material would have 
similar scores. Also note that the score values are generally increasing within each 
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particle size group corresponding to  the increasing water content of the samples. It 
is interesting that the small particle size scores are more linearly dispersed over the 
range of samples while the medium and large particle size sample scores are more 
nonlinear at  the higher water concentration samples. Therefore, this factor can be 
interpreted as describing the main moisture concentration response of the spectra 
over all the particle sizes. This description of the response is much more linear over 
the range of water concentrations for the small particle size samples than for the two 
larger particle sizes. 

The corresponding loading vector for the first factor is shown in Figure 2-2. The 
loadings are dominated by the peaks at  450 nm, 550 nm, and 700 nm. This is the 
characteristic plot of the moisture response of the BY-104 material in the visible 
region of the spectra. 
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Figure 2-1. Sample scores on the first factor of the combined data  set 
VIS model. 

Factor 1 Loading, Combined (m) 3-FadOr Model 

Wavelength (nrn) 

Figure 2-2. Loading vector for the first factor of the combined particle 
size VIS model. 
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The sample scores on the second factor of the model are shown in Figure 2-3. This 
factor is mainly describing the difference between the small particle size samples and 
the medium and large particle size samples in their spectral response to changes in 
the water concentration. Besides the differences between the small and the two 
larger particle sizes, this factor is also describing corrections to  the moisture response 
within each group of particle sizes. I t  is interesting that the pattern of scores is so 
different between the three size groups. For the small particle size data, this factor 
indicates a mostly linear, decreasing, trend over the range of water concentrations. 
For the medium particle size samples, their scores indicate a nonlinear response in 
the intermediate water concentrations. For the large particle size samples, the scores 
indicate a very weak trend from low to high water content. Recall from Table 2-1 
that this factor accounts for about 12% of the concentration information and about 
8% of the spectral information. Most of that 12% seems to  be related to  moisture 
response of the small particle size samples. The corresponding loading vector plot for 
this factor is shown in Figure 2-4. 

The sample scores on the third model factor are shown in Figure 2-5 below. This 
factor only describes about one percent of the spectral information but accounts for 
about ten percent of the wto/o water concentration information. Again, we can see 
that this factor of the model is describing very different information for the small 
particle size data than it is for the medium and large particle size samples. This 
factor contains little information related to the small particle size samples (their 
scores are centered around zero and show a slight negative trend from 0.1 t o  -0.1) 
other than the sharp discontinuity around samples 9 to  12. For the other two particle 
sizes, the scores for the samples with added water (recall that the first four samples 
within each particle size are zero wtVo moisture) show a strong trend of increasing 
score values with increasing sample moisture. From this plot, it appears that most 
of the 10% of the moisture level information described by this factor is due to  the 
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Factor 2 Scores, Combined (m) 3-Factor Model 
0.2 1 

4.2 - q; 

I 4 

Figure 2-3. Sample scores on the second factor of the combined particle 
size VIS model. 

spectral response of the added water content samples in the medium and large 
particle sizes. 

The spectral loadings for this third model factor are shown in Figure 2-6. This plot 
shows that the information described by this factor is mainly related to  the water 
peak a t  950 nm with additional contributions from the peaks at 700 nm, 510 nm and 
575 nm. 

Additional interpretation of the PLS model c a n  be obtained by plotting the scores in 

the spectral and moisture blocks against each other for each factor. Figure 2-7 shows 
the spectra versus moisture scores for the first factor of the model. There are two 
interesting things to note in this plot. First, the small particle size samples (sample 
numbers 1-20) follow the linear inner regression line (the solid line in the plot) 
between the two blocks but are offset by a constant amount above the h e .  .Secondly, 
the medium particle size samples (21-40) and the large particle size samples (41-60) 
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Factor 2 Loading, Combined (m) 3-Factor Model 

Wavelength (nm) 

Figure 2-4. Loading vector for the second factor of the combined 
particle size VIS model. 

are not well modeled by this first factor and their nonlinear response can clearly be 
seen in the curvature they exhibit about the inner relation line. 

At  this point it should be mentioned that nonlinear response was also observed in the 

original Phase 1 calibration data set although the magnitude was not as great. It 
appears that if the medium and large particle size samples were removed from the 
data, a single factor linear model might suffice to  describe the relationship between 
the spectral responses and the moisture concentration for the small particle size 
sample s. 

The spectra versus moisture scores on the second factor of the model are shown in 
Figure 2-8. This plot is interesting in that it shows the clear difference between the 
small particle size samples and the medium and large particle size samples. The 
spectral scores (dispersed along the x-axis) show positive score values for the small 
particle samples and negative scores for the other two sets of samples. The moisture 
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Figure 2-5.  Sample scores on the third factor of the combined particle 
size VIS model. 

scores (dispersed along the y-axis) contain much more information about the medium 
and large particle size samples. 

From our interpretation of the spectral scores (discussion of Figure 2-3 above) we 
concluded that the second factor was mainly describing the difference between the 
small particle size spectra and the spectra of the other two larger particle sizes. This 
second factor actually contains very little information which can distinguish between 
the different water concentrations in the small particle size data (a conclusion 
obtained from observing the very small range of variance in the Y-block scores for the 
small particle samples). In this plot it is clear that most of the information correlated 
to the moisture content is related to  the difference in the spectra of the small particle 
size samples. The small variations in the spectra for the medium and large particle 
size samples described by this factor are almost totally uncorrelated to the changes 
in moisture level. 
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Wavelength (nm) 

Figure 2-6. Loading vector for the third factor of the combined particle 
size VIS model. 

In the third factor scores we see the linear relationship between the X-block and 
Y-block (spectra and moisture concentration, respectively) as shown in Figure 2-9. 
The first factor of the model described the major spedra/moisture relationship for all 
three particle size samples but was somewhat biased by the nonlinearbehavior of the 
two larger particle size samples. The second factor described mainly the differences 
between the two larger particle sizes and the small particle size spectra. Once the 
information from the first two factors was removed, the remaining linear relationship 
between the spectra and moisture level was exposed for all three particle sizes in the 
third factor of the PLS model. Recall that this factor is mainly describing the 
moisture information for-the two larger particle sizes and little of the small particle 
size moisture information. 

The three factor PLS model gave a root mean standard error (RMSE) of 0.79 wtYo 

water for the combined data set. This error can be apportioned among the different 
particle sizes by predicting each set using the combined particle size model. This 
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Figure 2-7. Spectral (X-block) versus moisture (Y-block) scores on the 
first factor of combined VIS model. 

gives a RMSE of 0.77, 0.82, and 0.77 wtVo water for the small (C 420 p), medium 
(420 - 841 pm), and large (0.841 - 2 mm) particle sizes, respectively. Therefore, one 
can conclude that the combined particle size model was able to  model the spectral 
response to changes in moisture level for all three particle sizes equally well. These 
prediction results are shown in Figure 2-10. The solid line in the plot represents the 
ideal 45' linear fit line, the broken lines are the actual least squares fit lines for the 
various particle sizes. 

In order to estimate the effect particle size has on the predictive ability of the PLS 
models, separate calibration models were developed for each of the three particle size 
data sets. Then, the model derived from one particle size was used to predict 
moisture from each of the other particle size spectra. The combined data set was also 
predicted with each of the single particle size models. The results are shown in Table 
2-2 below. 
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Figure 2-8. Spectra and moisture scores plotted against each other for 
the second factor of the combined PLS model. 
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Figure 2-9. Relationship between the spectra and moisture described 
by the third factor of the combined VIS model. 
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# of 
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Predicted Results for 3 Factor Combined Model 
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X 

Calibration Prediction Set 
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Actual Percent Water 

0.34 
0.95 

Corn bined 0.79 I 0.83 

Figure 2-10. Prediction results for the three particle size data sets 
on the three factor PLS model derived from the combined VIS 
data set. 

1.26 1.49 
0.23 2.26 
0.77 0.80 

$ 1  1 I - I I=Jj Small II 0.59 I 5.17 I 4.98 I 4.15 1 

Table 2-2 Root Mean Square Error @MSE) for the prediction of wt% 
moisture from the visible spectra using PLS. Boldface values are 
the. fit RMSE for the individual models. 

In all cases restricting the calibration t o  a single particle size improved the predictive 
ability for that  particle size relative to the combined model. However, using the 

model for one particle size to predict the moisture from the spectra of the other 
particle sizes gave results that  were always worse than the combined model. The 
small particle size model was the worst at predicting moisture from the spectra of the 
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other particle sizes. Adding additional factors to the small particle size model did not 
' improve its predictive ability for the other sizes. The medium particle size model was 

the best a t  predicting the other sizes but still resulted in errors for the small particle 
- size data which were about three times greater than the combined model and about 

twice as large for the large particle data. The large particle size model was able to 
predict the medium data set with only slightly larger errors, relative to the combined 
model, but did quite poorly on the small particle size data. Much of the poor results 
obtained from the cross prediction studies can be attributed to  the relatively large 
nonlinear component of the spectral response to  changes in moisture level observed 
in the medium and large particle size data. The small particle size data did not have 
as pronounced a nonlinear behavior and so the small model cannot effectively model 
the nonlinear response of the medium and large particle sizes. Conversely, the 
medium and large particle size models need to include strong nonlinear correction 
terms which are not appropriate for the small particle size data. 

4 

Plots of the prediction results are shown in Figure 2- 11 , Figure 2- 12, and Figure 2- 13 
for the small, medium, and large particle size models, respectively. For the small 
particle size model, information about the nonlinear spectral response to  moisture 
content was not present in the small particle size data set and so could not be 
included in the PLS model. The result is that most of the medium and large particle 
size samples appear to have roughly the same water content when predicted with the 
small particle size model, as shown in Figure 2-11. Both the medium and large 
particle size data exhibit almost identical results when predicted with the small 
particle model. This would seem to  suggest that there is some mechanism related to  
particle size that accounts for the observed nonlinear spectral responses a t  higher 
water concentration. 

While the exact mechanism that gives rise to the difference between-the small 
particle data and the data for the two larger particle sizes is not clear, there are 
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several possibilities. It could be simply increased scatter from the larger particles or 
the change in the surface to volume ratios that indirectly affect the measured spectra. 
The effect may also be due t o  some interstitial, or ionic, chemistries between the 
small particles and the water that causes the spectral response to moisture to  behave 
differently. Differences in surface water and bulk absorbed water may also account 
for the observed effects. A more detailed study, beyond the scope of this work, would 
be required to answer these questions. 

6- 

Predicted Results for 1 Factor Small Model 

Q 

20 
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Figure 2-11. Results obtained by predicting the small, medium, 
and large visible data using the small particle PLS model. 

For the medium particle size model, the prediction results for the small particle size 
data are much worse at the high water concentration, as seen in Figure 2-12. Part 
of this effect might be due to the fact that the water concentrations for the small 
particle size data extend beyond the range of the medium data set, requiring 
extrapolation for the higher water content samples. The more likely cause is the lack 
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of the nonlinear response at  high water content in the small particle size data. From 
our earlier interpretations for the combined particle size PLS model, we know that 
the medium and large particle size spectral response to water drops off faster, in a 

, nonlinear way, than the response for the small particle size spectra. Therefore, a 
* model which includes corrections for this nonlinear drop-off would tend to  

overestimate the water concentration for samples where the nonlinear decrease is not 
present. The prediction results for the small particle size data are still fairly linear 
over the concentration range. The prediction results for the larger particle size data, 
from the medium particle size model, show a significant bias for the low water 
content samples but fairly good results for the higher water content samples. 

Predicted Results for 3 Factor Medium Model 
1 

I 
5 10 15 20 51 

0 
. Actual Percent Water 

Figure 2-12. Prediction results obtained for the small, medium, 
and large VIS data using the medium particle size PIS model. 

For the large particle size model, the prediction results for the medium particle size 
data was fairly good over the range of water concentrations, as shown in Figure 2-13. 
However, for the small particle size data the prediction results were quite poor with 
a significant offset for the higher water content samples. Even with the poor 
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performance in applying the large model to the small samples, it is interesting to  note 
that the model still predicts the zero water samples adequately and describes the 
linear relationship between the spectral response and the water content. It is the 
difference in slope between the large particle size model and the small particle size 

I prediction results that indicate a significant bias for the small particle size results. 

Predicted Results for 3 Factor Large Model 
151 
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Figure 2-13. Prediction results obtained by predicting the small, 
medium, and large VIS data using the large particle PLS model. 

Based on these results, it is clear that the particle size of the samples will have an  
important effect on the relationship between the spectral responses and the moisture 
concentration. It is also clear that by including a range of particle size data into the 
calibration model, the models are able to give adequate prediction results for all three 
particle sizes. The models developed from each of the three single particle size data 
sets, while able to  do a much better job of describing the data on which they were 
built (the prediction errors were typically less than half of what was obtained using 
the combined particle size data), were not as useful in modeling the other particle 
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Spectral Response Moisture Concentration ' 

Factor Individ u a1 To tal Individual Total 
1 98.18 98.18 94.6 1 94.6 1 
2 1.19 99.30 1.6'7 96.28 
3 0.21 99.5 1 1.40 97.69 
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4 
b 

size data as the combined particle size model. This points out the need to  include the 
range of expected particle size distributions in the calibration set data. 

0.2 1 99.73 0.65 98.34 f 

1 NIR Results 

For the NIR data (1100 to 2500 nm) we again built a PLS model for the combined 
data set containing the data for all three particle sizes. In this case, the cross 
validation studies indicated that a four factor PLS model was needed to  produce the 
best predictive model. The amount of variance, or information, described by each 
factor of the model is given in Table 2-3 below. 

Table 2-3. Percent variance described by each factor of the PLS model 
for the combined particle size NIR data set. 

The first factor of the model describes over 90 percent of the information in both the 
spectral and water concentration data. The second factor describes about the same 
amount of information in both the spectral and concentration blocks. The third and 
fourth factors each describe the same minor amount of spectral information but the 
third describes about tviice as much water concentration infomation as the fourth 
factor. 

ComDared to  the visible combined particle size model discussed above. the NIR model 
includes much more of both the spectral and water concentration information in the 
first factor. Recall from Table 2-1 that the second and third factors of the visible 
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model each contained over ten percent of the concentration information. This 
indicates that the NIR spectra are more closely linear (requiring much smaller 
corrections from the additional factors) than the visible spectra. This agrees with the 
results from the earlier studies. In the original study, a single factor PLS model was 
able to  adequately model the NIR spectral response to  water concentration variation. 
While the cross validation studies on this data suggest a four factor model, the 
contribution of the second, third, and fourth factors is relatively minor in comparison 
to the first factor and are only expected t o  provide small corrections to the overall 
model. 

Again, we can look at the sample’s score plots for each model factor to  gain some 
insight into the details of the model. The sample scores for the first spectral response 
@-block) factor are shown in Figure 2-14 below. In this plot one can clearly see the 
major trends corresponding to  the three different particle size experiments. For each 
of the particle sizes, the scores start out near -0.2 for the four samples (which 
correspond t o  the dry, or zero water added, samples), then the scores show a gradual 
increase in value as the water content is increased, and finally they exhibit a 
nonlinear tapering off at the higher water concentrations. The scores for the small 
particle size samples (samples 1-20} with high water concentration are higher than 
either the medium (samples 21-40) or the large (samples 41-60) sample scores. This 
in mainly due t o  the higher water concentration in the experimental design for the 
small particle size data. 

It is interesting to note that all three particle sizes exhibit similar nonlinear response 
at  higher water concentrations, although the onset of the nonlinear behavior appears 
to  start earlier with increasing particle size. This nonlinear trend was not observed 
in the original NIR data from the earlier study. This may indicate some systematic 
error associated with the larger volume water additions and subsequent calculation 
of the reference weight percent water values in this study. The addition of water 
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Factor 1 Scores, Combined (m) Uactor Model 
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Figure 2-14. Sample scores on the &st NIR spectral block factor 
of the combined particle size NIR model. 

using the spray bottle made it easy to  end up with unmixed water on the walls of the 
sample container and this would show up as artificially high wtYo water values. This 
in turn would lead to  a seemingly nonlinear response of the spectra to  increasing 
water content since not all of the calculated water would have made it into the 
sample. 

The corresponding loading vector for the first factor of the combined particle size NIR 
model is shown in Figure 2-15 above. This plot shows that the first factor consists 
of the information from the spectral regions around 1400 rim (the first OH overtone), 
1900 nm (OH combination band), and 2250 nm (OH combination band). This loading 
vector is clearly the main moisture contribution t o  the NIR spectra. 

The sample scores for the second factor of the combined particle size model are shown 
in Figure 2-16. This plot is very interesting because it shows different (almost 
opposite) behavior between the small and large particle size samples. The small 
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Figure 2-15. Spectral loadings for the first factor of the combined 
particle size NIR model. 

particle size samples have large negative scores for the low moisture content samples, 
intermediate scores for the mid-range water concentration samples, and near zero 
scores for the high water content samples. Conversely, the large particle size data 
have high positive scores for the low water content samples, intermediate scores for 
the mid range water concentrations, and near zero scores for the high water content 
samples. The medium particle size samples do not contribute much at all t o  this 
factor (scores for samples 21-40 are all near zero). Clearly, this factor is describing 
some functional difference between the low water concentration sample's spectral 
response to  water in the small and large particle size data. The interesting thing is 
that the function is inverted depending on the particle size. This may be due to  the 
different surface to volume ratios and its effect on the water spectra between the 
different particle sizes and could be related to free versus bound water. 

The spectral loadings for this second factor are shown in Figure 2-17 along with the 
NIR second derivative spectra of pure NaNO,. The NaNO, spectra was scaled (i.e., 
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Figure 2-16. Sample scores on the second spectral block factor of 
the combined particle size NIR model. 

multiplied by 200) to  match the spectral intensities of the loadings. It is clear that 
this factor is not describing any moisture level information. Rather it seems to be 
describing the difference in NaNO, concentration between the small and large 
particle size dry samples. Based on this plot, and the corresponding scores shown in 
Figure 2-16, it seems that the initial large particle size samples are enriched in 
NaN03 relative t o  the initial small particle size samples. Since these samples were 
drawn from the same lot of the BY-104 sirnulant, it seems likely that the change in 
NzuVO, concentration arises from some mechanism associated with the subsequent 
sample treatment steps. The only sample treatment in this study involved the oven 
drying and particle size sorting. The samples were oven dried before and after the 
particle size sorting with the sieves. It seems likely then that the source of the 
NaV03 enrichment comes from the migration of the nitrate to the surface of the 
larger particles during the oven drying step. This has not been tested but the drying 

studies planned as part of this Task 2A work scope may c o n f i i  this hypothesis. 
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Pure NaN03 Spectra and Second Factor Loading from Combined Model 
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Figure 2-17. Loading vector for the second factor of the combined 
particle size model along with the spectra of NaNO,. 

The sample scores for the third and fourth factors are shown in Figure 2-18 and 
Figure 2-19, respectively. The third factor clearly describes the nonlinear behavior 
of the spectral response t o  changes in the water content. Within each particle size, 
the high and low water content samples have similar scores and the factor mainly 
describes the difference between the samples a t  either extreme of the moisture 
concentration range and those samples with intermediate moisture content. 
Therefore, this third factor of the model can be considered a correction term to  the 
overall PLS model t o  account for nonlinear responses of the spectra to water 
concentration changes. The fourth factor seems to  be describing additional 
differences between the zero water samples and the samples with water added for the 
medium and Iarge particle size data. Again, this factor can be viewed as a small 
model correction factor to correct for specific nonlinear behavior. Both the third and 
fourth factors of the model contributed relatively minor amount of information to  the 
overall moisture prediction model, The loadings for factors three and four are not 
shown in this report. 

* 
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Figure 2- 18. Sample scores on the third spectral block factor of 
the cambined particle size NIR model. 
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Figure 2-19. Sample scores on the fourth spectral block factor of 
the combined particle size NIR model. 
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The plot of the first model factor scores in the spectral block versus the concentration 
block is shown in Figure 2-20 below. The plotted numbers correspond to the sample 
number in the data set. The solid line is the least squares "inner relation" between 
the spectral response and the water concentration blocks. In this plot, one can clearly 
see that the first factor describes most of the linear relationship between the spectral 
responses (X-block) and the water concentration @-block). We can also see the 
nonlinear component described by the subsequent factors as scatter, or residuals, off 
the linear regression line between the two blocks of data. Notice that the residuals 
due t o  the nonlinear response are largest for the intermediate water concentration 
samples, which is what we would expect based on our interpretation of the third 
model factor described above. Also note that the residuals are above the line for the 

, small particle size samples (samples 5-12) and below the line for the medium and 
large particle size samples. The X-block versus Y-block plots for the remaining 
factors of the combined particle size model are less easily interpreted and are not 
shown in this report. 

In evaluating the f i t  of the model described above to  the data, the four factor PLS 
model had root mean standard error (RMSE) of 0.76 wtoh water for the combined 
particle size data set. By using the combined particle size model described above and 
the individual particle size spectra, the wtYo moisture prediction performance of the 
combined model can be estimated for each of the three dserent  particle sizes. The 
results of this analysis gave RMSE errors of 1.03,0.65, and 0.52 wt% moisture for the 
small (less than 420 pn, #40 sieve), medium (420 pn to  841 juri, #20 sieve), and large 
(841 juri to 2 mm, #10 sieve) particle sizes, respectively. The prediction results are 
shown in Figure 2-21 below. The solid line in the plot represents the ideal 45 linear 
fit line and the broken lines are the actual least squares fit lines for the various 
particle sizes. The largest errors are associated with the small particle size samples 
and the errors for that group of samples are largest for the mid range moisture 
concentrations. The wt% moisture predictions from the medium and large particle 
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Figure 2-20. Sample scores in the spectral response plotted versus 
the scores in the water concentration for the &st factor of the 
combined particle size NIR model. 

size spectral data had about the same error associated with them, although the large 
particle size predictions were slightly better. These results indicate that the 
combined particle size model is biased towards the larger particle sizes and less 
representative of the small particle size sample’s moisture response. Again, this is 
probably due to the use of additional model factors to account for the nonlinear 
moisture response for t.he larger particle sizes and resulting overfitting of the small 
particle size data as described above. 

As was done with the visible data, separate PLS models were developed for each 
particle size relating the NIR spectra to  the wtYo water concentration. Each 
individual particle size model was then used to predict the wt?? moisture content 
from the spectra of each of the other particle sizes. The individual particle size 
models were also used to  predict moisture from the combined particle size data set. 
This cross prediction analysis provides a basis for estimating the effect of variations 
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Figure 2-21. Prediction results for the three particle size data sets 
using the four factor PLS model derived from the combined NIR 
data set. 

in particle size on the actual moisture prediction accuracy. The results of these 
studies are presented in Table 2-4 below. 

Table 2-4. Root Mean Square Error @MSE) for the prediction of wt% 

moisture from the NIR spectra using PLS. 

In Table 2-4, the diagonal elements (shown in boldface italics) are the FUVISE errors 
obtained for the individual models (predictions from the model made on the same 

I 
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particle size data) and the off diagonal elements are the W S E  results obtained by 
using the data set identified by the row label to  build the calibration model and the 
NIR spectra set corresponding to  the column labels for the prediction data. [The 
second row and column labels correspond to the following particle size ranges : Small 
= C 420 pn; Medium = 420 - 841 p; Large = 0.84 - 2 mm; Combined = C420 pm to  
2 mm].Again, restricting the model development and prediction to  a single particle 
size results in lower errors relative to the combined particle size model. However, the 
errors obtained when using a single particle size model to  predict moisture from the 
spectra of a different particle size are typically worse than those obtained from the 
combined particle size model. Generally, the small particle size data had the largest 
errors when predicted with the other particle size models, probably due to the higher 
degree of nonlinear behavior observed in the large and medium particle size 
responses. The first column of Table 2-4 contains the number of factors for each 
model used in the predictions. This number of factors was determined using cross 
validation analysis. 

The one main reason for the poor prediction across particle sizes stems from the 
incorporation of variance (information) which is specific to  a particular particle size 
into the individual particle size models. In other words, the PLS models for a 
particular particle size are too specific to be applied to  other size data which may not 
have the same subtle spectral features. In statistical terms, the individual particle 
size models overfit the data when applied to  other particle size spectra. This is 
especially true for the medium and large particle size models. In these cases, a single 
factor model does a better job of predicting the other size data than the model with 
the number of factor suggested by cross validation. However, the single factor model 
has larger residual errors for the calibration set used to build the model. 

For example, compare the cross validation model results given in Table 2-4 with the 
results shown in Table 2-5 where the RMSE prediction values are given for different 



Table 2-5. Root Mean Square Error (RMSE) for the prediction of wt% 

moisture from the medium particle size PLS model with different 
number of factors. 

A similar analysis was applied to the large particle size model with the results shown 
in Table 2-6. Again, by restricting the number of factors in the model to one factor, 
rather than the cross validation suggested three factors, the cross prediction errors 

for the small and combined particle size data sets are reduced by a half. 
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m' 

numbers of calibration model factors for the medium particle size model. In the 
table, the highlighted value is for the model suggested by cross validation. It is 
apparent that  adding factors t o  the model will always improve the fit of the model t o  
the calibration data. This is shown in column 3 of Table 2-5 where the model fit 
error is listed for each additional factor of the medium particle size calibration model. 
From columns 2,4, and 5 of Table 2-5, one c a n  also see that adding additional factors 
to  the medium particle size model leads to increased prediction errors when the 
medium model is used t o  predict wt% moisture from the spectra of the other particle 
sizes. Even the one factor medium model did rather poorly at predicting the moisture 
from the small particle size spectra. 

3.38 0.47 1.27 1.58 
2.47 0.40 1.19 1.6 1 
3.09 ' 0.36 1.35 2.03 

I 

I # of II Prediction Set 

The prediction results from the individual particle size models are shown in Figure 
2-22, Figure 2-23, and Figure 2-24 for the small, medium, and large particle size 
models, respectively. For the small particle size model results, shown in Figure 2-22, 
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Table 2-6. Root Mean Square Error @MSE) for the prediction of wt% 
moisture from the large particle size PLS model with different 
number of factors. 

one can clearly see that the two factor model does not do an adequate job of 
describing the nonlinear behavior associated with the medium and large particle size 
data sets. The small particle size model does a good job of estimating the moisture 
for the small particle size data over the full range of wto/o water concentration. 
However, the information needed to model the nonlinear spectral response t o  
increasing moisture observed in the medium and large data sets is simply not present 
in the small particle size data set. This results in the large error, or deviation off the 
regression line, observed in the predicted results for the intermediate moisture 
content samples from the medium and large data sets. 

The results of predicting all three particle size data sets using the medium particle 
size model are shown in Figure 2-23. Here we can see that the two factor medium 
model does a good job of estimating the wt% moisture concentration over the 
calibration range for the medium particle size spectral data. However, the medium 
particle size model underestimates the wt% moisture for the small particle size data 
and overestimates the wt% water for the large particle size data. Notice that the 
prediction errors for the other particle size data can almost be described by a simple 
offset term. The slope of the least squares fit line between the actual and estimated 
values is nearly identical for each of the three particle size data sets. There is some 
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Predicted Results for 2 Factor Small Model 
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Figure 2-22. Prediction results for the three particle size data sets 
on the two factor PLS model derived from the small particle size 
NIR calibration data. 

evidence of additional induced error in the small particle size results which is 
probably due t o  the nonlinear terms of the medium particle size model. This shows 
up as a slightly nonlinear deviation from the least squares fit line for the lower water 
content samples from the small particle size data set. 

The results from the prediction of all three particle size data sets using the large 
particle size PLS model are shown in Figure 2-24. Here we can see that although the 
large particle size model, using three PLS factors, gives good results for the large 
particle size data, it underestimates the wtYo moisture for the small and medium 
particle size data. The prediction errors have both a constant offset and a slope bias 
component for each of the other two particle size data sets, relative to the calibration 
set model. The errors are most severe for the small particle size data (especially a t  
the higher water concentrations) and somewhat less severe for the medium particle 
size data. Despite the large magnitude of the prediction errors for the small and 
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Figure 2-23. Prediction results for the three particle size data sets 
on the two factor PLS model derived from the medium particle 
size NIR calibration data. 

medium particle size data, the predicted wtYo moisture values do follow a fairly linear 
relationship over the range of water concentrations. 

Conclusions 

The results of this study showed that in the visible range, the standard error of 
prediction of the samples when the different particle sizes were analyzed separately 
was lower than the error when all three particle sizes were analyzed simultaneously. 
The error when analyzing all sixty samples simultaneously was on the order of 0.8 
wtYo when applying PLS with three factors to the second derivative visible data, 
whereas analyzing them separately dropped the error to roughly half a percent or 
better (0.59, 0.34, and 0.23 wt% for the small, medium, and large particle sizes, 
respectively). In the NIR, the error for the sixty sample combined particle size model 
was 0.79 wto/o while the individual particle size models had errors of about half a 
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Figure 2-24. Prediction results for the three particle size data sets 
on the three factor PLS model derived from the large particle size 

NIR calibration data. 

percent of less [0.61, 0.47, and 0.24 wtVo for the small, medium, and large particle 
sizes, respectively]. 

However, the predictive ability of the individual particle size models, when applied 
to  the spectra of a different particle size, showed increased errors relative to  the 
combined models for both the visible and NIR data sets. In the visible region, the 
small particle size model gave errors that were almost an order of magnitude larger 
than were obtained for the calibration estimate (0.59 *Yo) when predicting the 
moisture from the medium and large particle size data (5.17 and 4.98 wt%, 

respectively) . The errors in predicting the moisture from the small particle size 
visible spectra were also quite large when either the medium or large particle size 
models were used for the prediction (2.23 and 3.78 wt?!, respectively). The errors 
between the medium and large particle size data, predicted with the other size model, 



. 

WHC-SD-WM-ER-397, Rev. 0 
Page 46 of 153 

were roughly four times greater (about 1 wtO!o) than the individual size calibration 
model results. 

The same pattern held true for the NIR spectral region, although the magnitude of 
the cross prediction errors were not as large. In the NIR the small particle model 
gave moisture prediction errors of about 2 wt% when applied to the medium or large 
particle size spectra (roughly three and a half times larger than the small particle 

4 

size data calibration error estimate of 0.61 wt%). The errors were even larger when 
predicting moisture from the small particle size NIR spectra using either the medium 
or large particle size models (2.38 and 4.85 wt% respectively). Again, the errors 
between the medium and large particle size data, predicted with the other size model, 
were roughly four times greater (about 1.5 wtYo) than the individual particle size 
calibration model results. 

For both spectral regions the cause of the poor performance of the individual particle 
size models when predicting moisture from different particle size spectra is well 
understood. By limiting the calibration set to a single particle size, better calibration 
models for that particle size can be developed. However, these individual particle size 
models include factors which account for subtle spectral responses to concentration 
variation that are somewhat particle size dependent. The nonlinear response to  
higher water concentrations observed in both spectral regions is an example of this 
somewhat particle size dependent spectral feature. The spectral responses from a 
different particle size may not have the same subtle effects, so when the model tries 
to  f i t  them, it introduces errors in the estimated concentrations. This is related to  
the overfitting and extrapolation problems commonly discussed in the regression and 
statistics literature. Except, in this case we are not overfitting within the calibration 
data set, but rather, over the entire range of samples we are trying to predict. Stated 
another way, the individual particle size models are valid over the limited calibration 
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space of a single particle size, but are not valid over the extended space spanned by 
the full range of particle sizes we were trying t o  predict. 

Fortunately, the particle size effect is largely removed by including enough variation 
in the calibration set. When the three particle size data sets are combined, the 
calibration space spans the expected range of particle sizes and the model can treat 
the size dependent spectral effects like known interferents and correct for them. Of 
course, the correction for the size “interferent” is not perfect and it does introduce 
some additional error into the moisture estimates. Perhaps more correctly, by 
spanning a wider range of particle sizes, the calibration model is no longer as free t o  
fdly account for all the subtle features as a model restricted t o  a smaller calibration 
space. As a result, some of the subtle spectral features get regulated t o  the *noisen 
of the full calibration space and are not included in the model. For individual 
samples this may lead to  some small decrease in the model’s predictive ability, but 
over the full calibration set the overall prediction efficiency is improved. 

’ 

The implication for the optical moisture monitoring project is that it will be important 
for the moisture calibration model to  be made with samples covering the expected 
range of particle sizes. While this may not be possible due to  the large range of 
sample consistencies within the tanks, some effort should be made to  insure that the 
calibration model does not focus too closely on effects that are specific to  one particle 
size or sample consistency. One approach would be to desensitize the model by 
restricting it to  a single factor. We have seen evidence that a single factor model 
accounts for the major spectral response related to  changes in moisture. By limiting 
the calibration model to the single factor, most of the subtle spectral corrections are 
eliminated and the model becomes more general. The price you pay is increased error 
in the predicted moisture values. The results obtained so far indicate that the worst 
case errors would be on the order of three to  four weight percent water. This is 
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certainly within the Iimits needed for safety verification and monitoring of the tanks 
and is probably as accurate as the current moisture determination method. 
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, 3. Composition Changes Study 

+ 

In previous work, CPAC established that optical spectroscopic measurements could 
be used to accurately predict the moisture content of simulated waste from the 
Hanford waste -tanks. That previous study considered only the single waste 
composition represented by the BY-104 salt cake simulant. The main purpose of this 
study was to  evaluate the effect of variations in the chemical composition of the waste 
simulant on the optical moisture determination method developed at CPAC. In this 
study, the BY- 104 salt cake simulant obtained from W H C  was again used as the base 
chemical composition. Experiments were performed where the BY- 104 chemical 
composition was changed by adding amounts of the simulant’s individual pure 
components to  the base composition: For each change in the pure component level, 
the NIR spectral response was measured at different moisture levels. The results of 
changing the chemical composition were evaluated by observing the effect of the 
composition change on the moisture prediction from a calibration model derived from 
the base composition at  different moisture levels. Further experiments were 
conducted to  quantitate the composition changes effect on the moisture determination 
for those components which exhibited large composition sensitivities. 

Experimental 

All spectra described in this report were collected using the same spectrometer used 
in the earlier studies. However, the spectrometer has been modified to use a direct 
insertion fiber optic reflectance probe. This new probe replaces the standard sample 
cup and cup holder apparatus for the measurement of the spectra. In the new design, 
reflectance spectra are recorded by simply placing the fiber optic probe into contact 
with the sample. The fiber optic probe consists of a fiber bundle to  deliver the 
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monochromatic illumination light from the spectrometer, a sampling window, and a 
collection fiber bundle t o  transmit the reflected light back to the detector. To couple 
the light into the source fiber, the individual optical fibers are aligned along the exit 
slit of the spectrometer’s monochrometer. The probe body itself consists of a stainless 
steel cylinder (approximately 2.5 em in diameter and 20 cm long) with a sealed 
window slightly recessed into the body at one end. The fiber optic bundles are 
encased in a single shielded flexible sheath approximately 120 cm long. At the 
detector end, the signal fiber bundle is split from the sheath and is positioned such 

’- 

t 
- r- 

that the light from the bundle illuminates the detector. This fiber probe is shown 

schematically in Figure 3-1. 

Source Fiber Bundle 

Light source 
and 

Monochrorneter 

Wmdow 

Bundle Detector 

Figure 3-1. Schematic drawing of the fiber optic probe used in the 
reflectance measurements. 

The use of this probe greatly simplifies the sample handling associated with collection 
of the sample spectra. Using the fiber optic probe allows for smaller sample sizes to  
be used since one no longer has to fill the sample cup. By getting away from the 
sample cup arrangement one can  also go to higher moisture content samples without 
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the problems of moisture leakage from the cup experienced in the earlier studies. 
The use of the fiber optic probe also makes it possible to  do in situ analysis which is 
more realistic for eventual hot cell, or in-tank, use. Unfortunately, the current 

, configuration of the probe restricts the spectral range to either the NIR (1100 nm t o  
2500 nm) or  the visible (400 nm to  1100 nm) spectral regions since the signal fiber 
can illuminate only one of the instruments detectors at a time. In this study, only 
the NIR spectral region results were collected. 

* 

The experimental procedure used in this study consisted of adding a pure component 
to the dried base BY-104 simulant. In this way, the weight percent (&Yo) of each 
component chemical can be increased, or shimmed, relative to  the original BY-104 
composition. After adjusting the composition, the sample moisture level is adjusted 
by the addition of pure water to  reach a target moisture level. For each new 
composition sample, spectra were collected at  0, 5,  10, 15, 20, and 25 &Oh moisture 
levels. The steps of the experimental procedure used to prepare the samples are 
outlined below. 

' 

1. Weigh out a known amount of fully b e d  base BY-104 simulant. 

2. Based on the weight of the base material, the reported 
composition of the base material, and the target component level; 
add a known weight of the pure component. Note: the reference 
BY-104 composition is based on a dry weight percent for each of 
the nine component chemicals. The amount of a component to 
add is based on the following formula: 
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(wt. base x target wt%) - (wt. base x base wt%) 
(1 - target wt%) 

wt. analyte = 

where wt. analyte is the amount of pure component to add, wt. 
base is the amount of starting dry BY-104, target wt% is the 
desired weight percent of the pure component in the new sample, 
and base wt% is the weight percent of the component in the 
original, or starting, BY- 104 simulant. 

To the sample (BY-104 plus added component) add a weight of 
water needed to  bring the sample to the desired moisture level 
(based on a total weight percent water). The amount of water at 
each moisture level is based on the water content of the sample 
before the addition plus the amount of water added at this step. 
This scheme allows for successive additions of water t o  the same 
sample to obtain progressively higher moisture wt% levels. The 
amount of water to add is calculated by the formula below. 

(wt. total x target wt%) - (wt. total x prev. wt%) 
(1 - target wt%) 

wt. water = 

where wt. water is the amount of water to add, wt. total is the 
weight of the starting sample (BY- 104, any added component, and 
any previously added water), target wt% is the desired weight 
percent of moisture, and prev. wt% is the weight percent moisture 
prior to the water addition at this step. 

4. The actual weight percent analyte and weight percent water were 
calculated from the recorded weights of material added in the two 
steps above. Note: the addition of water was limited to a 
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5 .  

6. 

resolution of about 0.02 g using a standard Pasteur pipette. The 
pertinent calculations are as follows: 

wt. analyte + (wt. base x base wt%) 
(wt. base + wt. analyte) 

wt% analyte = 

wr. water + (wt. total x prev. wt!%) 
(wt. total + wt. water) 

wt% water = 

where all the terms are as described above. 

Thoroughly mix the sample. Since the nature of the BY-104 
simulant and most of the pure components are hygroscopic, the 
time (approximately 30 - 45 seconds) needed to mix the sample is 
probably sufficient for the sample to become fully hydrated. No 
provisions were made to exclude atmospheric moisture 
adsorption, or to prevent the loss of water through evaporation, 
during the weighing, mixing, or spectral collection steps. These 
processes are almost certainly occurring over the course of the 
experiment. By emphasizing consistency in the experimental 
procedure, it is hoped that these effects would not adversely affect 
the results. As we will show later, the adsorption of atmospheric 
moisture was an important effect when dealing with the more 
hygroscopic pure components. 

Measure the sample spectra. The spectra were measured by 
lightly inserting the fiber optic probe into the sample material. 
This is a simple contact measurement, no effort was made to 

(3) 

(4) 

quantify or control the depth of insertion or the insertion 
pressure. Two spectra were measured for each sample with the 
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probe removed and reinserted between scans. Each spectral scan 
was collected at 2 nm resolution over the 1100 nm to  2500 nm 
region (NIR) and 32 scans were co-added for each recorded 
spectrum. Note that some of the sample (simulant and water) 
was lost after the spectra collection due to adhesion of the sample 
to the probe body. Efforts were made to minimize this loss by 
attempting to scrape any material stuck t o  the probe back into 
the sample container. The sample was weighed after the spectral 
data collection in order to  estimate the sample loss due t o  the 
probe insertion. 

The use of the above procedure allows for the preparation of a sample which is very 
close to  a desired experimental design point, in terms of weight percent analyte and 
moisture. In designing this experiment, there were several goals and constraints that 

needed to be considered. We wanted t o  be sure that the concentration changes were 
large enough to  have an observable effect. We also wanted t o  have the same 
experimental procedure used for all the samples. This meant that the experimental 
design was largely driven by concerns about sample homogeneity for the low moisture 
samples. Sample homogeneity for the higher moisture samples was less of an issue 
since sufficient water was present to dissolve and mix the pure component additions. 
The limited amount of the BY-104 simulant, combined with the large number of 
samples to  be prepared, limited the starting sample size to  approximately 5 grams 
of pure BY-104. This in turn, limited the resolution possible for adjustments t o  the 
minor components of the simulant. Since many of the minor components of the 
BY-104 simulant are hygroscopic crystalline solids, it was difficult to  obtain small 
particle size samples of the pure components for the additions. This dictated that the 
increase in the minor components needed t o  be rather large (on the order of 0.5 
grams) in order to  achieve a uniform distribution of the added component in the 
sample. Table 3-1 shows the design points for the analyte addition based on a five 



WHC-SD-WM-ER-397, Rev. 0 
Page 55 of 153 

gram sample of dry BY-104 simulant. The base wt% values are the individual 
component concentrations in the BY-104 simulant. The initial wt. values are 
amounts of each component present in a five gram sample of BY-104. The new wt% 

,' 

J 
*' ' in column five to  an approximately five gram sample of dry BY-104. 

is the component concentration obtained after adding the weight of component listed 

I Comnonent II Base wt% I Initial wt. I New wt% I Added wt. i 
I I I m i  86.1 I 4.305 I 90.0 1 I 1.9864 

Table 3-1. Initial and final component concentrations for the 
composition experiment design points. 

For each of the nine samples, corresponding to the addition of a single pure 
component, six samples at different moisture levels (0, 5, 10, 15, 20, and 25 wt%) 

were prepared by successively adding water according to the procedure outlined 
above. For each of these samples, two replicate spectra were measured. Table 3-2 
shows the resulting moisture level data for the full experiment. The resulting 
composition data set consisted of 108 spectra (nine compositions, six moisture levels 
per composition, and two replicate spectra per moisture level). The zero wtoh 

moisture design point (corresponding to the composition change but no water 
addition) is not listed in the table and is assumed to  be zero for all samples. 
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In addition to  the composition variation data set described above, spectral data was 
collected at  the same six moisture levels for the base BY-104 simulant. This data 

was obtained following the same procedure outlined above, but the chemical 
composition of the BY-104 simulant was not changed. This experiment was 

. *. replicated three times. This data, which we will call the Control data, was used to  
generate the pure BY-104 moisture calibration model. It was decided t o  generate a 
new moisture calibration model rather than use the Phase 1 model for two reasons. 
First, we wanted to  avoid any errors which might be introduced through the use of 
the fiber optic probe instead of the sample cups for data collection. Secondly, we 
wanted to  generate the Control calibration model using data obtained with the same 
experimental procedure used for the composition variation experiment. This should 
allow us to  evaluate the effect of the composition changes free from any extraneous 
sources of errors due to  the calibration model. 

a 

Pure 
Component 

NaNO, 
NaAO2 
NaOH 

Na,SiO, 
Fe(NO3h 

Ca(NOJ2 
N a W 4  

Mg(NO3h 
Mn(NO&, 

Resulting Moisture Level (weight percent water) 
5 wt% 10wt% 15wt% 20wt% 25 % 
5.15 10.03 14.87 20.71 25.04 
5.10 10.12 15.04 20.34 24.92 
5.24 10.03 14.97 19.98 25.06 
4.96 10.64 14.97 20.0 1 25.13 
5.32 10.00 14.97 20.19 25.00 
4.99 9.93 15.23 20.12 24.94 
5.20 10.64 15.09 19.77 25.00 
5.18 9.90 15.03 19.88 24.77 
5.04 10.01 15.23 20.84 25.0 1 

Table 3-2. Moisture. level experimental design points for each of the 
new composition samples. 

A third data set, which we will call NO-LOSS, was generated using the pure BY-104 
simulant at the same six moisture levels. However, for this data the moisture levels 
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were not obtained by the successive water addition procedure outlined above. 
Instead, the different moisture levels were achieved by direct addition of the required 
water to  six separate samples of the dry base BY-104 simulant. The purpose of this 

- =  data set is to  evaluate any bias introduced by the successive water addition procedure 
and the effect of sample loss due to adhesion to the spectrometer probe. 

In the experimental procedure the sample loss is assumed to  be homogeneous (i.e., 
a proportional loss of both the BY-104 material and moisture). For example, a loss 
of 0.05 grams before and after the spectral measurement at  the 20 wt% moisture 
level is assumed to  be a loss of 0.01 grams of water and 0.04 grams of dry sample. 
While at lower moisture levels (where the water is fully adsorbed) this assumption 
seems reasonable, at the higher moisture levels one might expect a proportionately 
higher loss of water than sample. The net result could be a bias in the calibration 
model for the higher water samples. As the results presented below show, this bias 
does exist in the experimental data. 

~ 

. 

In addition t o  the experimental data, the pure chemical components of the BY-104 
simulant were measured spectroscopically. The spectra of the pure components were 
measured without drying and should include some adsorbed and hydrated water. 
These pure component spectra, and their second derivative spectra, are shown in 
Appendix A for the NIR and VIS spectral regions. 

Results and Discussion 

First we will consider the PLS calibration model for the Control data. This data set 
replicates the experimental procedure but does not adjust the composition of the 
BY- 104 simulant. The results of this model will provide the benchmark by which the 
composition variation experiments can be evaluated. In evaluating the Control 
model, we will also be interested in model changes related to the use of the fiber optic 
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Factor # 
1 
2 

probe. Next we compare the Control model to the NO-LOSS data to evaluate the 
experimental procedure. Finally, we will present the results from the composition 
variation experiment. 

X-Block (Spectra) Y-Block (Moisture) 
This Factor Total T b  Factor Total 

96.55 96.55 99.01 99.0 1 
2.63 99.18 0.29 99.31 

~ Control Model 

For the Control model calibration data set, we combined the data from the three 
replicated experiments mentioned above. The resulting data set contained 36 spectra 
(three experiments with six moisture levels per experiment and two replicate spectra 
a t  each moisture level.) Cross validation studies indicated that a two factor model 
provides the best predictive model for this data set without overfitting. The amount 
of variance explained by the PLS model factors are given in Table 3-3 below. The 
first factor of the model accounts for almost all of the moisture level (Y-block) 
information using about 96 percent of the spectral response @-block) information. 
Recall that  the Phase 1 NIR model consisted of a single factor. However, the second 
factor of the Control model only describes a minor amount of the spectral response 
which correlates to  a very minor percentage of the moisture level variance. 

Table 3-3. Percent variance described by each factor of the PLS model 
for the combined Control experiment data. 

At  this point a brief review of the cross validation procedure may be in order. Cross 
validation seeks to estimate the maximum complexity (Le., the number of model 
factors) for a model derived from a given calibration data set. The criteria for this 
estimate is the prediction error of the model. As more factors are added, the 
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resulting model will always fit the calibration data better and have lower fit errors. 
In the extreme, a full factor model will use 100% of the spectral variance to  describe 
1oOOh of the moisture concentration information. However, if the calibration data 
contains noise, or other sources of variance which are uncorrelated between the 
spectral and concentration blocks, including that variance in the model is undesirable 
and is referred to in the statistics literature as overfitting. Since future sample are 
likely to  have slightly different “noise” structure, the resulting predictions from an  
overfitted model will likely have inflated prediction errors. Cross validation attempts 
t o  guard against overfitting by developing many different models with increasing 
complexity from a portion of the calibration set. The number of model factors 
corresponding to the lowest prediction errors when using another portion of the 
calibration set (not used in building the model) is selected for the final model. 
However, cross validation is still an empirical method which is based on the 
calibration data set itself and is a substitute for having a fully independent validation 
data set for testing the models. In other words, cross validation tries to  develop 
models that utilize the relevant predictive information in the spectra which is 
consistent within the calibration data set. Therefore, the cross validation results will 
depend to  a large extent on the quality of the experimental design and the quality of 
the calibration data set itself. 

~ 

Given the discussion above, it is not alarming that cross validation indicated the 
Control model should use two factors for the moisture prediction while a single factor 
model was indicated for the Phase 1 study. Especially since the second factor of the 
Control model described only about 0.30% of the moisture concentration information. 
In the Control experiment the moisture levels were much more evenly spaced than 
in the Phase 1 study and covered a slightly wider range (up to  25 wt% moisture) of 
moisture concentrations. Also, the experimental procedures and spectra collection 
methods were different between the two studies. The minor amount of additional 
information described by the second factor of the Control model can easily be 
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attributed to a better experimental design and data collection setup. In cross 
: validation, as in most everything else, the number of model factors issue reduces to 

a signal-to-noise consideration. In the Control experiment there were actually three 
replicate experiments. In this case, we actually had independent validation data sets 
which could be used to test the calibration models. When one replicate was used t o  
build the models and the other two replicates were used as validation sets, the 
prediction results indicated that the best model was an average between the one and 
two factor models. This agrees very well with the cross validation results for the 
combined Control model. 

* 

The model fit results for the combined Control model are shown in Figure 3-2. From 
this plot, one can see that the model describes a linear fit over the full moisture 
calibration range with no noticeable bias or offset. Some summary statistics for the 
model f i t  are given in Table 3-4 below. Also listed in Table 3-4 are the fit statistics 
for the separate PLS models built from each of the three replicate Control 
experiments. Note, the FMSE from the Control model is slightly larger for the 
combined data than we observed for the NIR calibration model from the Phase 1 . 

study (0.734 wtYo versus 0.42 *Oh). However, for each of the three replicate Control 
experiments, the individual two factor models gave RMSE values which agreed well 
with the Phase 1 results. Much of the increased error for the combined Control 
model seems to be due to  variability between the three replicate experiments and not 
the use of the fiber optic probe. 

When the Control model was used to  predict the moisture from the Phase 1 
calibration set it had an RIMSE of 1.667. Conversely, when the Phase 1 model was 
used to  predict moisture using the Control data the RMSE was 1.620. In both cases, 
the main contribution to the errors was due to an increasing bias at higher water 
concentrations. Recall that in the Phase 1 study the higher moisture content data 
was somewhat suspect due t o  water leakage from the sample cup. The bias observed 
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Actual versus Predicted Values for Control 
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Figure 3-2. Actual versus predicted fit results for the two factor PLS 
model derived from the Control data set. 

in the moisture predictions from the Phase 1 data using the Control model is 
consistent with systematic errors in the high water reference values. The systematic 
errors are likely due to  differences in the experimental procedure between this data 
and the Phase 1 data. Given the nature of the cross prediction errors, it is unlikely 
that  they are due to the use of the fiber optic probe itself. 

The PLS model scores for the first factor of this model are shown in Figure 3-3 below. 
In this plot we can see that  this factor is describing the experimental design related 
to the six moisture levels. Recall that this factor accounted for over 99% of the 
moisture information in the data. Each cluster of two points corresponds to  the 
replicate spectra collected at  each moisture level. The three trends of twelve samples 
correspond to the three replicate Control experiments. The corresponding loading 
plot for the first factor is shown in Figure 3-4 below. The loading vector looks very 
much like the first factor from the Phase 1 model with the familiar intensities in the 
OH first overtone region (1450 nm) and the OH combination band regions (1950 and 
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Table 3-4. PLS model fit statistics for the Control experiments. 
Combined is for the Control model, Exp.1, 2, and 3 are for the 
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individual replicate experiment models. 

2250 nm) which we attribute to sample moisture level. 
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Figure 3-3. Spectral scores on the first factor of the Control PLS model. 

The second factor scores and loadings are shown in Figure 3-5 and Figure 3-6, 
respectively. This factor mainly provides a large correction to the 25 wt% moisture 
samples from the first replicate experiment (samples 11 and 12). Recall that this 
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Figure 3-4. Spectral loadings on the first factor of the Control model. 
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Figure 3-5. Spectral’ scores on the second factor of the Control model. 

factor is only describing a small amount of the full spectral variation which accounts 
for very little of the moisture predictive ability of the model. Therefore, the 
dominance of the  two samples (11 and 12) in this factor indicate that their spectra 
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Figure 3-6. Spectral loadings on the second factor of the Control model. 

are slightly different than the rest of the samples. This factor is also describing a 
small correction to  the PLS model t o  help account for minor variation associated with 
the middle water concentration samples. Although the pattern is somewhat obscured 
by the high (negative) scores for 25 wt% moisture samples from the first experiment, 
the scores increase for the first three moisture level samples (0,5, and 15 wto/o), drop 
sharply for the 15 wtYo samples, and then decrease for the 20 and 25 wtYo samples. 
The loading vector for this second factor Iooks very much like the frst factor loading 
(inverted) except for a slight shift towards smaller wavelengths of the peak a t  1900 
nm and increased contribution of the peak at 2425 nm. 

The regression coefficient vector for the Control model is shown in Figure 3-7 below. 
Comparing the regression coefficient vector with the factor one loadings, one can see 

that the second factor provides only a slight modification. Consequently, the 
regression vectors from the Control model and the Phase 1 are nearly identical. 
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Regression Coeff. for Control (m) 2-Factor Model 
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Figure 3-7. PLS model regression coefficient vector for the Control 
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model. 
' Recall that an additional experiment was performed to  attempt to  isolate and 

quantify possible bias in the reference moisture weight percent values due to  sample 
loss related t o  the insertion and removal of the fiber probe. The data from this 
experiment, which we will call NO-LOSS, was obtained by adding water to  the dry 

BY-104 simulant for each moisture level measurement rather than successive 
additions of water t o  the same sample. Since a completely new sample was generated 
for each measurement, there should be no variation due to  the loss of sample adhered 
to  the probe body. When the wt% moisture from this spectral data was predicted 
using the Control data model, the results shown in Figure 3-8 were obtained. Here 
one can clearly see that  the Control model accurateIy predicts the lower moisture 
(less than 15 wt%) content samples but shows increasing positive bias for the higher 
moisture samples. 

These results are consistent with our earlier discussion about the effects of sample 
loss due t o  the insertion of the fiber probe into the sample. While we attempted to 
correct for the sample loss by weighing the sample before and after the spectroscopic 
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Predicted Values for No-Loss using Model from Control 
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Figure 3-8. Prediction results from the NO-LOSS data using the 
Control model. Two lines are shown, the ideal 100% correlation 
line (dotted) and the actual regression line. 

measurements, our correction was based on an  equal proportion of the water and 
sample being lost. As expected, this experiment suggests that more water than 
sample was lost when dealing with samples above 15 wtYo moisture. Therefore, our 
Control model was based on data where the reference moisture value was artificially 
lower than it should be. In effect, we have introduced a bias into our model by 
training the model to  see a 23 wtYo moisture spectra as having 25 wt% water. When 
the model is presented with spectra from a sample which is really 25 wt% moisture, 
it must predict a higher value. This illustrates an inherent danger, or limitation, of 
these indirect calibration methods; the model is only as good as the reference values 
you use to  develop the model. To verify these conclusions, we developed a PLS model 
based on the NO-LOSS data and used it to  predict the moisture from the Control 
spectra. The results are shown in Figure 3-9 below. As expected, the predicted high 
moisture values were consistently lower than the reference value and the model bias 
was larger at the higher water concentrations. 
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Predicted Values for Control using Model from No-Loss 

- Regression Line 
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Figure 3-9. Prediction results from the Control data using the 
NO-LOSS model. Two lines are shown, the ideal 100% 
correlation line (dotted) and the actual regression line. 

The conclusions from this experiment are that a more sophisticated correction for the 
sample loss needs to  be implemented if successive water additions are to  be used in 
the experimental procedure outlined above. Alternatively? the problem can be 

avoided if new samples are produced for each spectral measurement, although that 
can be quite costly in terms of simulant use and waste generation. In terms of 

evaluating the current data, the Control model can be used for all the composition 
variation data since the same procedure was followed in both cases. We will assume 
that since the same care was used in removing sample from the probe for the Control 
and composition variation experiments, the same relative partitioning of sample and 
water loss will have occurred in both sets of data. 

Composition Change Effects 
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Now we will begin looking at the composition change data. Recall that in this 
experiment, we varied the concentration of each pure component of the BY-104 
simulant and measured the NIR spectra at the same six moisture levels discussed 
above. The main goal was to  determine the effect changes in composition would have 
on the moisture determination. In order to  evaluate this effect, the spectral data 
corresponding to  changes in each pure component concentration was used with the 

- 

- 

Control model t o  predicted the moisture levels. In the absence of any composition 
effects the predicted moisture values should fall along the regression line of the 
Control model. Any errors in the moisture prediction introduced by the composition 
changes will show up as deviations, or scatter, off the Control model regression line. 

As we will see, the effects of varying the sample composition will usually not be 
constant over the range of moisture levels. Therefore, it is somewhat meaningless 
to try and compare the composition change effects based on some overall RMSE or 
similar statistic. Instead, one has to  examine the actual versus predicted moisture 
level plots to  discern the magnitude of the errors introduced by changes in 
composition and their dependence on the moisture level of the sample. In order to  
reduce the clutter of the plots, while trying to conserve the space needed to present 
the results, we chose to  plot the prediction results in three groups of three component 
changes. The groupings are purely arbitrary and simply follow the relative 
abundance of the components in the BY-104 simulant. The results of these 
predictions are shown in Figure 3-10, Figure 3-13, and Figure 3-16. In these plots, 
the broken lines correspond to  the least squares regression line between the actual 
and predicted moisture levels for the different compositions. The solid line represents 
the Control model regression line. The prediction results are also summarized in 

Table 3-5 below. In the table, the errors are expressed as actual minus predicted 
wt% moisture and the shaded entries are within the RMSE of the Control model. 



WHC-SD-WM-ER-397, Rev. 0 
Page 69 of 153 

Table 3-5. Average wt% moisture prediction errors (at each moisture 
level) for each pure component predicted from the two factor 
Control model. 

From Table 3-5, one can see that the effect of the pure component changes had no 
real effect a t  the zero wt%o moisture level, except for the Mg(NO3, and Mn(N03, 
changes. As mentioned above, this effect is most likelv due to  moisture adsorption 

from the atmosphere of the hygroscopic pure components MdNO,), and MnRJOJ,. 
From the results shown in Table 3-5, it is clear there are two main type of 
composition effects For the NaAlO,, NaOH, Na,SiO,, and Na,PO, components. the 
prediction errors are Dositive (Le., the predicted H / o  moisture is lower than the 
reference values) and increasing with increasing sample moisture level. The 
Fe(NO&, Ca(NOJ,, Mg(NOJ,, and Mn(NOJ, components all had negative errors (Le., 
higher predicted &Yo moisture than the reference, or actual, values) and the effect 
was largest a t  the intermediate (10 and 15 wtYo) moisture levels. Interestingly, the 
composition effect for these components disarmeared at  the 25 wtoh moisture level, 
except for the Mn(NOJ, comDonent. Finally, the NaNO, composition change effect 
seemed t o  be intermediate between these two trends with negative errors up to the 
15 wtYo moisture level and positive errors for the two remaining high moisture points. 



WHC-SD-WM-ER-397, Rev. 0 
Page 70 of 153 

These general trends are more apparent in the plots below. Discussion of the possible 
causes for these errors is also deferred t o  the discussion of the plots below. 

For the first group of three components, one can see from Figure 3-10, that the 
change in the NaNO, level did not have a large effect at  the high or low moisture 
levels but has an effect at  the intermediate moisture levels. The large variation at  
the 25 wt% moisture is most likely due to  settling of the solid sample material in the 
slurry between the recording of the spectra. In all subsequent experiments, the 25 
wtYo moisture slurry samples were stirred between spectral measurements to  
eliminate this effect. 

Predicted Results for the Control Model 
30 I I 6 1 x I 

25-  Control Model - 
3t NaN03 
-3- NaA102 

NaOH v) 20- 

, 8 I I I 

0 5 10 15 20 25 30 
Actual Weight Percent Moisture 

Figure 3-10. Predicted moisture results from NaNO,, NaAl0, , 
and NaOH-spectral data using the Control model. 

The NaAl0, and the NaOH composition changes had similar effects on the moisture 
prediction. For both these components, there was a gradually increasing bias towards 
low moisture prediction as the water level increased. This effect was more 
pronounced for the NaOH addition but the regression line for both had nearly 
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composition changes, it is useful t o  look at the high moisture (25 wt%) spectra for the 
pure BY-104 and the samples with NaOH, and N d O ,  added. These spectra are 
shown in Figure 3-11 below. . 

NaOH, and NaAlO, samples from the composition experiment. 

From Figure 3-11, one can see that the main difference between the original BY-104 
spectra and the spectra of the samples with added NaOH and NaAlO, is associated 
with the Deak at  1925 nm. The pure BY-104 has a much larger intensity than the 
corresponding peaks in the NaOH and NaAIOz spectra. One can also see a more 
subtle difference in the peak at 1400 nm. Here, the sDectra for NaOH and NaAIOz 
both show a narrower Deak than the pure BY-104. Since it is often difficult to 
interpret changes in the second derivative spectra and relate then to features in the 
original spectra, the same three spectra shown in Figure 3-11 are also plotted in 
Figure 3-12 in their original form. From this plot, it is clear that the reduced 
intensity for the 1925 nm peak observed in the second derivative spectra is really &g 
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t o  an increased broad backmound adsorption in the NaOH and NaAlO, spectra which 
is not present in the pure BY-104 spectra. This background absorbance is most 
noticeable above 1900 nm in the NaOH spectra. 

25 wt% Moisture Spectra of BY-104, NaOH, and NaAl02 

2*5* 
n 

BY-104 - 
NaOH 
NaAIOZ 

- 

Too0 1500 2000 2500 
Wavelengh (nm) 

Figure 3-12. Original high moisture spectra for the BY- 104, 

NaOH, and NaAl0, samples from the composition experiment. 

For the next set of three pure components, the moisture prediction results obtained 
from the Control model are shown in Figure 3-13. In this plot we see that the effects 
of the Na,Si03 and Na,PO, component additions were similar to that observed for the 
NaOH and NaAl0, components. Again, both these components exhibited increasing 
bias towards low moisture predictions as the moisture level of the sample was 
increased. The magnitude of the prediction bias was not as large for these two 
components as it was for the NaOH and NaAl0, additions however. The effect of 
increasing the Fe(NOJ, concentration produced quite a different effect in the 
predicted moisture level as shown in Figure 3-13 below. For this component, the 
effect on predicted moisture seems to be an almost constant offset, or bias, towards 
higher moisture levels for the samples in the 5 wtoh to 20 wt% moisture range. 
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Predicted Results for the Control Model 
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Figure 3-13. Prediction results from Na,SiO,, Fe(NO& and 
Na,PO, spectral data using the Control model. 

The spectra for the pure BY-104 and Fe(NO3, samples with 10 wt% moisture are 
shown plotted together in Figure 3-14 and Figure 3-15 as the second derivative and 
original spectra, respectively. In the second derivative plot, the main spectral 
differences due to  the increased Fe(NOJ, content is an increased intensity for the 
peaks in the 1800 to  1950 nm region relative to the BY-104 spectra. There is also a 
slight intensity increase for the peak at  1400 nm, and a shift of the 1400 nm peak 
towards higher wavelengths in the Fe(NO3, spectra. In the plot shown in Figure 
3-15, the spectral changes described above correspond to a general decrease in the 
background adsorption, and increased peak definition, in the original spectrum of 
Fe(NOJ, relative to  the BY-104 spectrum. The Na,SiO, and Na,PO, spectra are not 
plotted but their spectral response to the change in composition is similar to  the 
NaOH and NaA102 spectra described above, except that the spectra changes are much 
more subtle. 
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Figure 3-14. Derivative 10 wt% moisture spectra for the BY-104 
and Fe(NOJ, samples from the composition experiment. 
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Figure 3-15. Original 10 wt% moisture spectra for the BY- 104 and 
Fe(NO&, samples from the composition experiment. 
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prediction results are shown in Figure 3-16. As before, the predicted wt% moisture 
values were obtained by applying the Control model to  the measured spectral data 
for each pure component addition. For each of the three components, the predicted 
moisture levels were higher for the low moisture samples and became progressively 
closer to the reference values with increasing moisture content. The Ca(NOJ, and 
Mg(NO3, effect appears to  be very similar to  the effect seen for the FeO\lOJ, 
composition change above. The original spectra of these two components (not 
included in this report) show the same type of suppressed, or reduced, background 
absorbance as we saw in the Fe(NOJ, spectra plotted in the previous Figure 3-15. 

Predicted Resutts for the Control Model 

25 - - Control Model * Ca(N03)2 

0 
Actual Weight Percent Moisture 

Figure 3-16. Predicted moisture results from the Ca(NOJ,, 
Mg(N0a2, and Mn(NOJ, data using the Control model. 

For this group of three components, the difference between the actual moisture level 
and that predicted from the two factor Control model was highest for the Mn(N0J2 
data. Much of this effect can be directly attributed to the very hygroscopic nature of 
the pure components. When making up the zero wt% water sample for Mn(NO&, it 
was visibly apparent that all the pure component was dissolved into water adsorbed 
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from the air by the time the sample was weighed and mixed. After mixing, the 
sample appeared to  be very similar to  samples prepared a t  the 5 wt% moisture level 
instead of a zero wt% moisture sample. In the experimental procedure, the influence 
of the adsorbed atmospheric moisture on the total wt% moisture in the sample .cvill 
naturallv decrease as more water is successively added t o  achieve the higher wt?? 
moisture samples of the experimental design. This is reflected in the pattern of 
decreasing errors a t  higher moisture levels seen in Figure 3-16 and Table 3-6. 
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Figure 3-17, Corrected wt% moisture for Mn(NOJ, versus the 
wt% moisture predicted from the Control model. 

If we assume that the true wt% moisture for the starting base BY-104 plus the 
additional Mn(N03, was actually 5 wt% due to  water adsorption from the 
atmosphere, we can calculate a weight of adsorbed water equal to 0.2931 grams. If 
we correct the added water weights to account for this amount of extra water, the 
corrected Mn(NOJ, moisture wt% values agree very well with the predicted moisture 
levels, as shown in Figure 3-17. This suggests that most, if not all, of the effect 
observed for the MnlNO,), composition change is due to  atmosDherk water 
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adsomtion. This is purely an experimental artifact which is not likely to occur in the 
analysis of real samples. A similar argument could be made for the observed large 
initial bias in the Mg(NOJ, results, which also exhibited some water adsorption for 
the pure component. 

It is somewhat encouraging that, even with the rather large adjustments to  the 
compositions studied in these experiments, the effect on the moisture prediction is 
relatively small. The largest errors were seen for the NaOH data where the 
difference between the actual and predicted moisture values was about 8.5 wt% 

moisture. The corresponding difference in the NaOH concentration was 8.2% on a 
dry weight percent basis or  an almost 500% increase in an absolute weight basis 
(from 0.09 grams to 0.46 grams in a five gram sample). Based on the results from 
this experiment, it was decided t o  attempt to  develop sensitivity factors for the 
composition change of the three components (NaOH, NaAlO,, and Fe(NO& which 
exhibited the largest composition effects. 

' Composition Sen sit ivi tie s 

An additional set of experiments were run with several new composition levels of 
NaOH, NaAlO,, and Fe(NOJ,. Spectra for each new composition was recorded at  two 
different wt% moisture levels. The experimental design points for the new 
experiment are shown in Table 3-6. The original BY-104 composition design points 

(the 1.8 wtYo NaOH samples a t  15 and 25 wt?!o moisture) are not shown in this table. 
The same procedure used for the original composition experiment was followed in 
preparing the samples for this new experiment. For the NaOH component, six new 
samples were created consisting of three different compositions and two moisture 
levels per new composition. When combined with the additional composition data 
from the first composition experiment and the zero NaOH composition change data 
from the Control experiment, the expanded data set contained six different NaOH 
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composition levels ranging from 1.8 wtYo to  10.01 wtoh NaOH. For the NaAlO, and 
Fe(NOJ, components, two additional compositions were evaluated at 15 wt% and 25 
wt% moisture. The NaA10, compositions ranged from 7.9 wt% to 16.02 wto/o and the 
Fe(NOJ, compositions ranged from 1.1 wt% t o  10.07 wtYo when the respective data 
from the earlier experiments were included. ' 

Component 
Wt. % 

Moisture Level 
15 wt% I 25 wt% 

Table 3-6. , Experimental design for the extended composition 
experiment. The starred entries are the design points from the 

earlier composition experiment. 

For each component, the new compositions spectral data were added to the spectra 
from the earlier experiments. This expanded data set was then used with the Control 
model to  predict the wtoh moisture. The difference between the reference values 
(calculated from the weight of water added in the experimental procedure above) and 
the predicted moisture from the Contf-ol model was used to estimate the effect of the 
composition changes. The moisture prediction results for the expanded NaOH 
composition data set are shown in Figure 3-18 below. From this plot it is clear that 
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the intermediate NaOH compositions from the additional experiments have 
proportionately less bias, or error, as the wtoh NaOH is reduced. It is also clear that 
the effect of the NaOH composition changes is more apparent at  the 25 wt% moisture 
level than at the 15 wtYo moisture level. 

Actual versus Predicted Moisture NaOH Predicted from Control 
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Figure 3-18. Moisture prediction results fiom the extended NaOH 
composition data using the Control model. 

In order to  obtain a sensitivity factor relating the prediction error to  the weight 
percent NaOH change, the NaOH composition values were regressed against the 
prediction error (the difference between the actual and predicted moisture) at  the 15 
w t o !  and 25 &Yo moisture levels. The results of these two regressions are shown in 

Figure 3-19. The solid line corresponds to  the least squares regression equation for 
the 15 wtYo moisture prediction errors and the dashed line the 25 wt% moisture 
errors versus wt% NaOH regression equation. For the pure BY-104 sample (the 1.8 
wt% NaOH point) the FWSE of 0.7 wtYo (plus or minus) for the Control model was 
used as the error. The resulting least squares model at 15 wt% moisture gave the 
slope of the regression line as 0.67, the intercept was -0.28 and the R2 statistic was 
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0.98. At the 25 wt% moisture level, the slope was equal to  1.06 and the intercept was 
-2.98. Clearly, the sensitivity of the calibration model t o  variations in the NaOH 
composition is highly dependent on the moisture level of the sample. The higher the 
sample moisture, the more sensitive the model is to  the NaOH concentration. At the 
15 wtYo moisture level, a change in the NaOH composition of one weight percent from 
the nominal value used in the calibration would increase the moisture prediction 
error by 0.67 wtYo. This is very close to  the RMSE of the calibration model itself and 
so probably would not be statistically significant. At  25 wto/o moisture, a one Dercent 
chanFe in the NaOH concentration will introduce about a one uercent error in the 
predicted moisture. At moisture levels below 15 wt% the sensitivity t o  NaOH 
variations is expected t o  have a smaller, but still significant, effect. At  zero wtO/o 

moisture the NaOH concentration change has no effect since there are no water peaks 
in the spectrum. However, the effect of NaOH variations are expected to  be noticable, 
even at  very low water concentrations. 
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Figure 3-19. Regression models for wt% NaOH versus moisture 
prediction error a t  the two sample moisture levels. 
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For the NaA10, extended composition data the moisture prediction results, using the 
Control model for the prediction, are shown below in Figure 3-20. The moisture 
prediction errors were regressed against the sample's wtYo NaA102 concentration to  
estimate the sensitivity of the model at the same two moisture levels described 
above. At the 15 wtO/o moisture level, the resulting least squares model had a slope 
of 0.32, an intercept of -2.18, and a R2 statistic of 0.91. At the 25 wt% moisture level, 
the slope was 0.93 and the intercept was -8.61. The least squares regression results 
for both moisture levels are plotted in Figure 3-21. From this plot, and the regression 
parameters, it seems that the calibration model is about three times as sensitive to  
NaA10, variations at the 25 wto/o moisture level than it is at  the 15 wtYo moisture 
level. Below 10 wtYo moisture the calibration model is less sensitive to  NaA10, 
concentration changes than at the higher moisture levels. At 15 wtYo water, a change 
in the NaAlO, concentration of less than 2 wt% would have no significant impact on 
the moisture prediction accuracy. At  25 wtO/o moisture, the same 2 wt% change in the 
NaAl0, concentration would result in a statistically significant increase in the 
moisture prediction errors. 

' 

~ 

The moisture prediction for the extended Fe(NOJ, data from the Control model is 
shown in Figure 3-22. For the intermediate Fe(NOJ, compositions, the prediction 
errors are quite small. Regressing the 15 wtoh moisture prediction errors against the 
wt O/o Fe(NOJ, gives a least squares model with a slope of -0.43 and an intercept of 
1.42. The same model for the 25 wt% moisture errors gives a model with a slope of 

-0.01 and an intercept of 0.95. The least squares regression models are shown in 

Figure 3-23 for both the 15 wto/o moisture (the solid line) and 25 wtoh moisture 
(dashed line) predictions. The negative slope of the regression models indicate that 
the predicted moisture values tend to be higher than actual when affected by the 
Fe(NOJ, concentration. Clearly at the 25 wtYo moisture level, the model is 
insensitive to  changes in the Fe(NOJ, concentration. At the 15 wt% moisture level, 
a two percent change in the Fe(NOJ, concentration will be needed before the 
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Figure 3-20. Moisture prediction results from the extended 
Na.41O2 composition data using the Control model. 

predicted moisture values will be affected above the RMSE of the model. 

In examining the remaining components, Na,SiO, and Na,PO, had similar response 
t o  concentration changes as NaOH and NaAlO,; although the magnitude of the 
sensitivity was less. The sensitivity of the moisture prediction t o  changes in the 
Ca(NO& concentration was similar t o  that  observed for Fe(NO&, although again the 
magnitude was less. The sensitivities for all the components are shown in Table 3-7 
below. The numbers in the table correspond to the expected moisture prediction error 
(in wtYo moisture) to  a one percent increase in the wtYo concentration of the 
component. Note that Mg(NO3, and Mn(NO3, are not listed in the table since the 
moisture prediction was essentially unaffected by concentration changes for these 
components. 

Including Interferent Effects 
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Effect of Added NaA102 on Predicted Moisture 
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Figure 3-21. Regression models for wt% NaA.lO, versus moisture 
prediction error a t  the two sample moisture levels. 

Table 3-7. Sensitivity of moisture prediction to changes in component 
concentration. 

The results discussed above are all based on the Control model. In this model only 
the water concentration was varied, the calibration set spectra contained only the 
single BY-104 composition at  different water levels. Since changing the sample 
composition affects the sample spectra in regions that overlap with the moisture level 
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Actual versus Predicted Moisture Fe(N03)3 Predicted from Control 
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Figure 3-22. Moisture prediction results from the extended 

Fe(NOJ, composition data using the Control model. 

response, changing the BY-104 composition is really equivalent t o  adding, or 
changing, an interferent t o  the water calibration. Since the calibration model has no 
information about that interferent, larger prediction errors occur. Fortunately, 

correcting for known, or unknown, interferents is a strength of multivariate 
calibration methods such as PLS. In order to  correct for the interferentb), however, 
the calibration data must contain the interferent's response. It is not necessary t o  
actually know the concentrations of the interferent(s) in order for the correction to  
occur, it is only required that the interferent(s) level change over the expected range 
of the interferent(s) in future prediction, or unknown, samples. 

As an example of the interferent correction, the sDectra and moisture information 
corresponding to the NaOH composition changes were added to  the Control 
calibration set. A new calibration model was then generated from this expanded data 
set. Note that the actual wt% NaOH concentrations were not included in the data 
used to  generate the model. The cross validation procedure indicated that for the 
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Figure 3-23. Regression models for wt% Fe(NOJ, versus moisture 
prediction error at the two sample mositure levels. 

expanded data set a four factor model should be used. The amount of spectral and 
moisture information described by each factor of this new model is shown in Table 
3-8 below. The first factor of this new model describes 91% of the spectral 
information and 88% of the moisture information. Recall from Table 3-3 that  the first 
factor of the Control model described 96% and 99% of the spectra1 and moisture 
information, respectively. Therefore, by adding the spectral variation related to the 
NaOH concentration changes, we have reduced the amount of spectral information 
described by the first factor by about 5% and the amount of moisture information by 

almost 11%. The second factor of the new model describes about 996 of the remaining 
moisture level information using about 6% of the spectral information. The third 
factor uses only a very small amount' (about 1%) of the spectral information to 
describe about the same amount of the remaining moisture level variance. The fourth 
factor is a very small incremental increase to  the variance described by the model in 
both blocks. Note that the new final model describes about the same total amount 
of infomation as the Control model. 
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X-Block (Spectra) 
Factor 4# This Factor Total 

1 91.49 9 1.49 
2 6.51 98.00 
3 1.15 99.15 
4 0.30 99.45 

Y-Block (Moisture) 
This Factor Total 

88.2 1 88.2 1 
9.09 97.30 
1.44 98.74 
0.3 1 99.05 

Table 3-8. Percent variance described by each factor of the PLS model 
for the Control plus NaOH change data. 

The fit of the new model t o  the expanded data set is shown in Figure 3-24 where the 
actual versus predicted moisture level values are plotted for those samples with 
NaOH composition variations. The new model has a RSME of 0.860 which is slightly 
higher than the original Control model's RMSE value of 0.734. Comparing Figure 

3-24 with Figure 3-18 shows that, by including information about the NaOH 
variations, the PLS model was able t o  correct for the large prediction bias observed 
at  the higher moisture levels for the samples with NaOH added. The correction was 
not able t o  fully account for all the variation in the 25 wt% moisture samples 
however. The RMSE for just the samples with NaOH variation was 0.956 wtYo 
moisture when predicted with this new model. 

The interesting thing about the new model is how it corrects for the interferent due 
to  the different NaOH levels. This can be revealed by looking at the scores and 
loadings plots for the first few individual model factors. The spectra scores for the 
first model factor are shown in Figure 3-25. In this plot one can clearly see the 
progression from negative t o  positive scores for the 'first 36 samples. This pattern 
corresponds to  the increasing moisture level for the three replicate Control 
experiments described above. The scores for samples 37 - 48 follow the same general 
pattern and correspond to  the six moisture levels of the 10.01 wt?!o NaOH samples 
from the original composition variation experiment. Notice that the scores for these 
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Actual versus Predicted Moisture from Control+NaOH Model 
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Figure 3-24. Actual versus predicted fit results for the three 
factor PLS model derived from the Control and NaOH data set. 

samples only go slightly positive (to about the same value as  the 15 wto/o water 
samples from the Control experiment). Samples 49 - 63 correspond to the 3 &Yo, 6 
wt%, and 9 wto/o NaOH samples from the second experiment (there were two spectra 
recorded a t  the 15 wt% moisture level and three at the 25 wtYo level for each of these 
NaOH concentrations). The scores for these samples show the difference between 
moisture levels which is roughly equivalent t o  the difference between the 
corresponding moisture levels for the Control samples. However, notice that there 
is a general trend towards decreasing scores with increasing NaOH concentration. 
Given this interpretation of the score plot, it seems reasonable t o  assign to  this factor 
the same moisture response as was observed in the original Control model. If this 
is true, then the loading plot for this factor should be almost identical to the loading 
on the first factor of the Control model. 

The loading vector for the first factor of the new model is shown in Figure 3-26 along 
with the first factor loading vector from the Control model. It is clear that the first 
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Factor 1 Scores, Control+NaOH (m) 4-Factor Model 

Sample Number 

Figure 3-25. Spectra scores for the first factor of the new model 
built with the Control and NaOH composition data. 

factor loadings for both the Control and Control+NaOH models are identical. This 
confirms our earlier analysis that this factor is describing the same moisture response 
information in both calibration data sets. Therefore, adding in the spectral variation 
related to  the changes in the NaOH concentration has no effect on the first factor of 
the PLS model. This is not unexpected since the largest source of systematic 
variation in the spectral response is still due to  changes related to  the six different 
moisture levels of the experimental design. Recall that although the loadings for this 
factor are identical for both models, this factor is describing less of the total spectral 
and moisture information in the extended calibration data than it did for the Control 
data set. One can also conclude that since the first factor of the model contains none 
of the information related to  the NaOH concentration variations, that the remaining 
factors of the model must contain this information. 

The second factor scores for the spectra from the expanded calibration data set 
(Control samples plus the NaOH composition change samples) are shown in Figure 
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The loadings for the second factor of the Control and Control+NaOH models are 
shown in Figure 3-28. It is clear that the addition of the NaOH composition variation 
t o  the calibration set has significantly changed the second factor of the new model 
relative to the Control model. The main difference is related to  the relative 

? intensities of the Deaks around 1400 nm (increase) and 1900 nm (decrease). In the 
new model, the peaks around 1400 nm have higher loading values than the Deaks 
around 1900 nm. In the Control model, the relative Ioadings for these two spectral 

regions are reversed, with the 1900 nm region having higher loadings than the 1400 
nm region. The Control model loadings in the region just above 1400 nm also tail off 
much more slowly than the corresponding Control+NaOH model loadings in the same 
region. Finally, in the spectral region around 2250 nm, the loadings for the second 
factor of the Control+NaOH model show new structure that is not present in the 
same factor from the Control model. All these observations are consistent with the 
change in the measured spectra between the original BY-104 composition, and the 
composition with added NaOH shown in Figure 3-11 and Figure 3-12 above. 

9 

; The remaining two factors of the Control+NaOH model describe minor corrections to  

the moisture prediction model which are not clearly interpretable as either moisture 
level or NaOH concentration effects. Consequently, the score and loading plots for 
these two remaining factors are not presented in this report. 

The regression coefficient vectors for the two factor Control model and the two factor 
Control+NaOH model are shown in Figure 3-29. [The remaining two factors of the 
new model were omitted from the calculation of the Control+NaOH model regression 
coefficient vector to simplify the comparison of the two model results.] In the new 
model, the peaks around 1400 nm have much hipher coefficients than those around 
1900 nm. This indicates that the Control+NaOH model is using more of the spectral 
information from the 1400 nm region, and less of the information from the 1900 nm 
region, to  predict the moisture level than the Control model. Since the 1900 nm 
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Factor 2 Scores, Contml+NaOH (m) 4-Factor Model 

0 

0 10 20 30 40 50 60 70 -0.3 

Sample Number 

Figure 3-27. Spectral scores from the second factor of the new 
Control+NaOH PLS model. 

region contains both the moisture response and the increased background absorbance 
due to  varying NaOH concentration, the new model effectively discriminates against 
using as much of this spectral region in the final prediction. One can also see that 
the coefficients in the 1900 nm repion are slightly shLfted to lower wavelendhs in the 
new model relative t o  the Control model coefficients in the same region. This 
indicates that the new model is using: more of the information on the left shoulder of 
the 1925 nm OH combination band peak than the Control model. Again, this is due 
to  the higher background absorbance attributed to  the NaOH spectra in the region 
above 1925 nm. The first overtone band of OH (centered at 1425 nm) is also much 
sharper in the Control+NaOH model regression coefficients than in the original 
Control model. Finally, the regression coefficient from the Control+NaOH model 
includes information from the water combination band at  2250 nm whereas the 
Control model does not give much importance to  that band. 
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Figure 3-28. Spectral loading vectors from the second factor of the 

Control and Control+NaOH models. [Note the change at 1400 nm 

due t o  the added NaOH information.] 

Regression Coefficients for Control and Control+NaOH Models 
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Figure 3-29. Regression coefficient vectors for the two factor 
Control and Control+NaOH PLS models. 
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Similar arguments could be made for the other component variations, where new 
models which include composition variation information, as well as moisture 
variation, could be developed to correct for the interfering nature of the composition 
change on the moisture prediction. The results of these models will not be presented 
in this report. Instead, if one attempts t o  correct for all the "interferents" related to 
variations in the BY-104 simulant composition, by including all the composition 
variations described above in the calibration data set, one can obtain an new estimate 
of the RMSE for the moisture prediction from this new overall model. We will call 
the model derived from all the composition variation spectra plus the Control spectra, 
the Overall model. The Overall model was determined to have 5 factors from cross 
validation studies. The five factor model accounted for 99% of the spectral block 
information and 97% of the moisture level block information. 

The RMSE fit error for the prediction of wtvo moisture was 1.41 using the Overall 
model. This is compared t o  the RMSE of 0.734 obtained from Control model 
prediction of the single BY-104 composition and the R.MSE of 2.96 w t o !  moisture 
when predicting all the composition data from the Control model. By including all 
the composition variation into the model, the moisture prediction errors were roughly 
doubled from what we obtained for the single composition Control model. However, 
if the composition variation was not included in the model, the prediction errors were 
roughly four times greater than the single composition. In other words, including the 
composition variations degraded the model performance by a factor of two, but it 
resulted in a factor of two improvement over the results obtained kith no correction 
for the composition variation interferences. Perhaps more importantly, the corrected 
Overall model results showed no bias at  different moisture levels. Figure 3-30 shows 
the moisture prediction results for all the composition spectra using the Control 
model for prediction. 



WHC-SD-WM-ER-397, Rev. 0 
Page 94 of 153 

Predicted Values for All Compositions using Model @om Control 
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Figure 3-30. Moisture prediction values from alI composition 
variation spectra using the Control model. 

Figure 3-31 shows the corresponding plot using the Overall model for the prediction. 
From the plot in Figure 3-30 one can clearly see that without the composition 
interferent corrections, many of the higher moisture sample show a large negative 
bias. The source of this bias has been explained above and is due mainly t o  the 
increased background absorption due t o  the pure component’s spectra. Notice that 
for the Overall model, the prediction errors are not only lower, but more uniform over 
the moisture range. There is still a higher prediction error for the high moisture 
samples, but the errors are more randomly distributed about the true moisture value. 
Notice that the zero moisture samples are now predicted as negative due to the 
corrections as shown in Figure 3-31. 

The individual component sensitivities derived from the Overall model are listed in 

Table 3-9. The RMSE values also listed in Table 3-9 are for the moisture prediction 
for the samples with composition changes for that component using the Overall 
model. The numbers in the table correspond to  the expected moisture prediction 
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Predicted Values for All Compositions using Model from Overall 
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Figure 3-31. Moisture prediction values from all composition 
variation spectra using the Overall model. 

error (in wtYo moisture) to  a one percent increase in the wto/o concentration of the 
component. Compared to  the sensitivities listed in Table 3-6 the use of the Overall 
model reduced the sensitivity of the moisture prediction errors to  changes in the 
composition by at  least a half relative t o  the Control model results. For most 
components, the new sensitivities from the Overall model are so low that changing 
the composition no longer has a discernible effect on the prediction error. 

The obvious conclusion from this study is that including a range of expected 
compositions is necessary for developing good calibration models. If one limits the 
calibration data to a single, or too narrow a range of, compositions, the resulting 
model will be unable to accurately predict future samples with slightly different 
compositions. By increasing the range of variability in the calibration model 
compositions, the resulting model may not be able to fit the data as well, but this 
tradeoff is worth making in terms of increased robustness of the model to  predicting 
future unknown samples. The implication for application of the spectroscopic 
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moisture determination method to  waste tank samples is that a range of tank waste 
compositions may need to  be measured in order to achieve reliable moisture 
predictions. Of course, the importance of having a range of compositions in the 
calibration set will depend on the magnitude of the composition variation withih the 
waste tanks and the range of moisture within the waste. ,. 

Table 3-9. Sensitivity of moisture prediction to  changes in component 
concentration €or the Overall model. 

NaOH Concentration Prediction Model 

As an  aside, if one were t o  replace the moisture level values in the Y-block with the 
NaOH concentrations and build a new model using the Control+NaOH spectra, the 
resulting model could be used t o  predict the NaOH concentration in new samples. 
Cross validation indicated a three factor model should be used for the NaOH 
prediction. The amount of variance explained by each factor of this new NaOH model 
is shown in Table 3-10 below. The first factor accounts for 78% of the spectral 
information but only 24% of the NaOH concentration information. The second factor 
uses 19% of the spectral information to describe 58% of the NaOH concentration 



information. The third factor describes only 1 

of the NaOH concentration variance. 

Y-Block (NaOH conc.) 
Factor #/ This Factor Total This Factor Total 

1 78.45 78.45 24.12 24.12 
2 19.49 97.95 58.42 82.55 

m X-Block (Spectra) 

3 1.17 99.12 13.40 I 95.95 
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b of the spectral information and 13% 

Table 3-10. Percent variance described by each factor of the NaOH 
model from the Control and NaOH composition change data. 

As before, the first factor of the NaOH model describes the water addition 
experimental design and is the exact inverse of the f irst  factor obtained from the 
Control+NaOH model.. Even though we have replaced the moisture level information 
in the Y-block with the NaOH wto/o composition values and told the model building 
algorithm nothing about moisture levels, the main source of variation in the recorded 
spectra is still due t o  the moisture addition experiments. In other words, the 
moisture related variation in the spectra was still present as an unknown interferent 
to  the NaOH calibration. This first factor can then be interpreted as a moisture level 
correction to the overall NaOH calibration model. 

The second factor describes more of the NaOH concentration information and turns 
out t o  be identical to  the second factor of the Control+NaOH model described above. 
However, for this model the second factor is not an interferent correction for the 
NaOH concentration effects on the moisture prediction, but rather the main factor 
used to  describe the correlation between the spectral responses and the NaOH 
concentration. This subtle difference can be seen when one looks at  the relative 
percentage of the Y-block information described by this factor in the two models. For 
the Control+NaOH model the second factor described only 9% of the moisture level 
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infomation. For the NaOH model, the same factor (the scores and loadings are 
identical between the two models) now describes 58% of the NaOH concentration 
information. In developing the model, the independent factors, or  unique sources of 
variance, in the spectral data is largely governed by the experimental design used to  
collect the data. The relative importance of each of these factors to  the calibration - 

is then determined by their correlation t o  the quantity being predicted. The score 
and loading plots for the first two factors are not shown since they are essentially the 
same as Figure 3-25, Figure 3-26, Figure 3-27, and Figure 3-28 and their 
interpretation would be the same as for the Control+NaOH results discussed above. 
The third factor represents a correction t o  the model to  describe mainly nonlinear 
moisture effects and the scores and loading plots are not readily interpreted and are 
also not shown in this report. What is interesting is to  look at the X-block (spectral 
data) versus Y-block (XaOH wto/o concentrations) scores for each factor of the NaOH 
model. 

For the first factor of the model the spectral versus concentration scores are plotted 
in Figure 3-32. In this plot one can clearly see the five different NaOH concentration 
levels. The large collection of points with Y-block scores less than -2 correspond t o  
the 1.8 wtYo NaOH concentration samples from the pure BY-104 Control experiment. 
The samples with Y-block scores between -2 and zero are the 2.89 wt% NaOH 
samples, the Y-block scores at 2 correspond to the 6.14 wt% NaOH samples, and 
those with Y-block scores near 5 are the 9.03 wt% NaOH samples from the additional 
composition experiments. The samples with Y-block scores near 6 are the 10.01 wtYo 
NaOH samples from the composition experiment. It is obvious that the spectral, or 
X-block, information described by this factor (seen as the dispersion of the sample 
points along the horizontal axis) is not very correlated to  the NaOH concentration 
information. If the X-block information described by this factor was perfectly 
correlated to the Y-block information, the samples points would all fall along a 45’ 
line through the plot. The solid line shown in Figure 3-32 is the “inner regression” 
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line from the PLS model which describes the fit of the X-block scores to  the Y-block 
scores. It is clear from this plot that the first factor is describing spectral variation 
information which is largely uncorrelated to  the different NaOH concentration levels 
of the samples. Again, this first factor is related to the water information in the 
spectra and serves to  correct the NaOH model for the moisture level interferent. 

Factor 1 X-Block vs. Y-Block Scores, NaOH (m) %Factor Model 

i -4 -2 0 2 4 6 
X-Block S C O ~ S  x lo3 

Figure 3-32. Spectral block scores versus the NaOH concentration 
block scores for the first factor of the NaOH model. 

For the remaining two factors, the X-block versus Y-block scores are shown in Figure 
3-33 and Figure 3-34 below. From Figure 3-33 one can see that the second factor is 
describing more correlated information from the spectral and NaOH concentration 
blocks. However, there is still considerable scatter off the inner regression line in 
this plot. The corresponding plot for the third factor of the NaOH model is shown in 
Figure 3-34. Here one can see that the linear correlation between the spectral and 
concentration blocks is fairly good. This factor is strongly influenced by a few samples 
with very low scores. 
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The resulting regression coefficient for the NaOH model is shown in Figure 3-35. 
Notice that the NaOH Dredictions are based almost entirelv on the first OH overtone 
band around 1425 nm. The OH combination band at 1925 nm has only a small 
contribution t o  the NaOH prediction, mainly due to  the strong overlap of the moisture 
variation interferent in that region. There is also a minor contribution from the 2250 
nm OH combination band. The lack of features in the spectral regions above the 
1400 nm region is mainly due t o  the moisture interferent. 
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Figure 3-33. Spectral versus NaOH concentration scores for the 
second factor of the NaOH model. 
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Factor 3 X-Block vs. Y-Block Scores, NaOH (m) %Factor Model 
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Spectral scores versus NaOH concentration scores €or 
the third factor of the NaOH model. 
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Figure 3-35. Regression coefficient vector for the three factor 
NaOH model. 
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The NaOH prediction results are shown in Figure 3-36 where the actual NaOH 
concentrations are plotted versus the NaOH concentrations estimated by the NaOH 
model. The RMSE for the NaOH prediction was 0.68 wt% NaOH with a R2 statistic 
of 0.96. The predicted values show slightly higher variability at the higher NaOH 
concentrations, but in general the prediction results show little bias over the NaOH 
concentration range. Remember, that  the  NaOH model already implicitly includes 
corrections for the moisture level but does not include correction for other composition 
variations. Since we really don’t have sufficient data to build a calibration model for 
NaOH including all the composition variations, we cannot estimate the effect varying 
composition would have on the NaOH predictions. However, we can speculate tha t  
the effects would be smaller for the NaOH prediction model than were observed for 
the moisture model, This speculation is based on the fact that  most of the pure 
component spectra do not show as strong features in the 1400 nm region primarily 
used for the  NaOH prediction as they do in the 1900 nm region used for the moisture 
prediction. 

Conclusions 

In this study the effect of composition variations on the moisture prediction were 
investigated. The BY-104 simulant was used as the base composition and the 
individual components of the simulant were varied to achieve different sample 
compositions. An experimental procedure was developed to generate samples with 
different moisture and composition values. This study also involved the first use of 
a fiber optic probe for the measurement of the sample spectra. The experimental 
design used in this study allowed for the moisture level and composition effects to be 
studied independently and together. In all cases, the experimental data was analyzed 
using Partial Least Squares (PLS) regression to  generate appropriate calibration 
models. Some conclusions from the experimental and data analysis results are 
presented below. 
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Actual versus Predicted Values for NaOH Concentration 
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Figure 3-36. Actual versus predicted wt% NaOH fiom the three 
factor NaOH model. 

When considering the data  without composition changes the two factor model was 
able to predict moisture with a root mean square error (RMSE) of 0.734 wt% 

moisture. This prediction error estimate was slightly higher t han  the estimate from 
the previous Phase 1 study (0.42 wt% moisture) but most of the difference was 
attributed to between experiment variability in the experimental design. The use of 
the fiber optic probe did not seem to adversely effect the moisture predictions and has 
several advantages over the previous method of using sample cups for measuring the 
spectra. Unfortunately, the experimental setup restricted the spectral region to the 

NIR region (1100 nm to 2500 nm) with the use of the fiber probe. It was observed 
that the experimental procedure did introduce an error, or bias, in the high moisture 
values due to sample sticking to the probe during the spectra measurement process. 
This bias was purely an  experimental artifact and should not present a problem when 
using the probe for routine moisture determinations. 
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In analyzing the composition variation data, it was observed that the effect of 
changing the BY- 104 component compositions did adversely effect the moisture 
predictive ability of the calibration model. The nature of the composition effect was 

dependent both on the simulant component which was changing and the moisture 

level of the sample. There were two general effects that were observed. For the 
NaOH, NaAlO,, Na,SiO,, and Na,PO, components, the effect was a bias towards 
lower than actual moisture predictions. This effect was larger at the higher moisture 

levels and was most pronounced for the NaOH component. The source of this bias 
was related to the increased spectral background due to the component spectra 
around the 1424 nm first OH overtone and 1925 nm OH combination band. The 
second main effect was observed for the Fe(NOJ,, Ca(NO&,, and Mg(NO&, 
components which exhibited increased predicted moisture values relative t o  the 

actual sample moisture values. This effect was strongest for the Fe(NO&, 
composition changes and was mainly observed at the low to intermediate moisture 
levels. The main cause for this observed sensitivity was a decrease in the background 

adsorption in the 1400 nm to 1900 nm region due to the pure component spectra. 
The NaNO, composition changes mainly seemed to increase the nonlinear component 
of the sample's spectral response to moisture level increases while the effect of the 

Mn(NO&, component was negligible (other than an  experimental effect due to the 
highly hygroscopic nature of the pure Mn(NO&J. 

It was observed that the effect of the pure component additions to the BY-104 
simulant on the resulting spectra strongly overlapped the moisture response spectral 
regions. Therefore, the changes in composition were effectively unknown interferents 
to the moisture calibration model. To illustrate the multivariate model's ability to 
correct for these interferents, a model was developed which included both moisture 
variation and NaOH concentration variation effects in the spectra. This model was 

able to correct for the NaOH composition change interferent and predict the moisture 
level without the bias observed for the pure BY-104 calibration model. The M S E  
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for the corrected model was 0.860 wt% moisture versus a RMSE of 4.80 wt% moisture 
for the model without the correction (the errors for the high moisture samples were 
even larger due to the strong bias of this model). The corrected model regression 

coefficient vector indicated that correctinp for the interference caused by the NaOH 
concentration variations resulted in a n  increased emDhasis on the 1425 nm suectral 
region (OH first overtone band) and a decreased emuhasis on the 1925 nm suectral 
region (OH combination band), relative to the single composition BY- 104 moisture 
model. 

When all the composition variations were included in the model, the resulting model 

had a moisture RMSE of 1.41 wt% moisture. This compares to a RMSE of 0.734 wt% 
moisture for the Control model fit to the calibration data set  and a RMSE of 2.96 wt% 
moisture for all the composition’s data predicted with the single BY-104 composition 
Control model. Therefore, by including the spectral variation due to the composition 
changes along with the moisture variations, the resulting model was able to correct 
for the  interferences due to composition changes and reduce the  prediction error by 
more than  a factor of two. The price paid for the increased model complexity was 
that the moisture prediction errors were twice as large. However, the resulting 

model is now much more robust to composition variations. The sensitivities for most 
of the BY-104 components were below the statistically significant level over the 
composition variation ranges studied when the corrected model was used. 

The implication for future development and deployment of the spectroscopic moisture 
monitoring system is quite clear. It will be important to develop the moisture 
calibration models with -a range of compositions expected to be encountered in the 
routine analysis of waste from the waste tanks. The exact sensitivity of the moisture 
prediction model will depend on the magnitude of the composition variation within 
the waste tanks, the  waste components which are  varying, and the desired moisture 
range of the calibration model. These studies indicate that by including composition 
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variation in the calibration data, the resulting model can be made relatively 
insensitive to composition variation. 

Finally, it appears that the same spectra used for the wt% moisture prediction can 
be used to predict the wt% NaOH in the same sample. The NaOH calibration model 
was seen to use mainly the first overtone of the OH band for the wt% NaOH 
prediction. The RMSE of the NaOH prediction was 0.68 wt% and already included 
corrections for the water level interferent. Of course, it should be remembered that 
the NaOH calibration models only considered NaOH concentrations above the BY- 104 
concentration and did not include corrections for the other component composition 
changes. Even so, the resulting NaOH prediction errors were quite good and suggests 
t h a t  the potential exists to monitor both the wt% moisture and wt% NaOH in a waste 
sample using a single spectroscopic measurement. 
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4. Sample Drying versus Water Addition Study 

In this study we investigated the effect of two different sample treatments in 
preparing the calibration data set for moisture determination. The first sample 
treatment involved the complete drying of the BY-104 simulant followed by successive 
additions of water to  obtain samples with different moisture levels. This was the 
method used to obtain the calibration samples for the Phase 1 studies. The second 
sample treatment involved drying the wet BY-104 simulant sample for increasing 
periods of time. As the drying time was increased, the sample contained 
progressively less moisture. This second sample treatment, which we will call 
successive drying, was investigated to determine if there is a quantitative difference 
in the moisture model calibration results related to  the two different methods of 

preparing the calibration samples. The first method of water additions to the dry 
sample is faster, easier t o  implement, and allows one to more easily control the 
experimental design. However, the successive drying treatment may be more likely 
to  approximate the mechanism in the waste tanks whereby the waste could have 
different moisture levels. 

Experimental 

Three data sets were obtained from the successive drying experiments for both the 
VIS (400 - 1100 nm) and NIR (1100 - 2500 nm) spectral regions. The first data set, 
which we will call Run-1, contained 9 discrete sample points corresponding to 
increasing drying times. In this experiment the sample was dried in the oven for 5 
minutes, allowed to cool for 15-20 minutes in a desiccator, and then placed in the 
spectrometer where the spectra were recorded. The sample remained in a metal 
sample cup with a glass window throughout the drying and spectral measurement 
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process. The weight of the sample was recorded immediately prior to  each spectra 
collection step. For each sample point, two spectral scans were recorded with the 
sample cup repositioned between replicate scans. The original wet BY-104 simulant 
was independently determined to  contain 10.82 wtYo water by complete oven drying. 

The moisture range was calculated to  be from 10.22 wt% water to  4.16 wt% water for 
this data set (determined from the original moisture level and weight difference 
between measurement points). It should be noted that this experimental procedure 
was not continued for the length of time required to  fully de-hydrate the BY-104 
simulant. 

The second data set, which we will call Run-2, consisted of 10 sample points with a 
10 minute drying period between the cooling and spectral collection steps. Again, two 
spectra were collected at  each sample point and the sample remained in the sample 
cup throughout the drying and data collection cycle. For the Run-2 data, the 
moisture content calculated from the weight differences ranged from 10.97 to 0.75 
wt% water. Again, the total length of the experiment (approximately 6 y2 hours) 
was probably not long enough to completely dry the simulant. 

The third data set consisted of two full replicates of 15 different drying times. This 
data set, which we will refer t o  as Run-3, was collected with two differences in the 
experimental procedure from Run-1 and Run-2. First, the BY-104 simulant was 
dried outside the sample cup and repacked in the cup for each sample point. The 
rationale was that keeping the sample in the cup throughout the experiment 
introduces the possibility of sample inhomogeneity as the material at the top of the 
cup is open to the oven environment while the material at the bottom of the cup 
(against the spectral window) is closed to the environment. By repacking, the sample 
would be mixed prior to taking the spectra. The second change was that the drying 
times were increased as the moisture level decreased. The first five sample points 
were taken at two minutes drying time between the cooling and data collection steps. 
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The second five samples were obtained with 5 minutes drying time and the last five 
sample points were dried for 10 minutes. For all the sample points, the sample was 
removed from the oven and allowed to cool for approximately 20 minutes prior t o  
collecting the spectral data. The moisture levels for this run ranged from 12.09 to 0 
wtyo water. 

All experimental spectra were collected using the same spectrometer used in the 
Phase 1 studies. The spectrometer was operated in the reflectance mode using the 
standard sample cup attachment and controlled from an PC computer. This 
spectrometer is capable of scanning both the VIS and NIR spectral regions. The 
collected spectra were transferred to  a computer workstation for analysis using CPAC 
developed software. 

Results and Discussion 

In discussing the drying study results, we will first concentrate on the NIR spectral 
region. While the VIS region results were similar for the individual models, the 
correlation of the drying results to  the water addition results previously obtained 
were quite poor. Possible reasons for this will be presented after the NIR discussion. 

Recall that the main goal of this study was to  determine if there was any advantage, 
or  disadvantage, to  preparing the moisture calibration models using the method of 
successive drying of the simulant rather than the method of water addition to dry 
material used in the previous studies. In order to  answer this question, separate PLS 
models were developed for each of the three drying runs described above. The 
performance of these individual models were then compared to  the PLS model results 
obtained from the water addition experiments from the Phase 1 study. In addition, 
the effect of the two different sample treatments was checked by cross prediction of 
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the data obtained with one treatment using the PLS models derived from the other 
sample treatment’s data. 

NIR Spectral Region Results 

Rather than presenting all the information from the F’LS models for each of the three 
runs in this study, the results are summarized and only the significant, or 
interesting, features of the models are discussed. For each of the runs, cross 
validation studies indicated that a two factor PLS model gave the best predictive 
model without overfitting the data. The information content of each factor of the 
individual run’s PLS model is shown in Table 4-1 below. Runs 2 and 3 are very 
similar in the amount of information described by each factor. For the Run-1 model, 
the first factor describes more of the spectral response @-block) and the second factor 
describes more of the concentration information (Y-block) than the other two models. 
This is the first clue that Run-1 might be different from the other two runs and that 
the concentration information is less correlated to  the spectral variation than in the 
subsequent runs. 

The PLS model performance for the three sample drying mns, and the previous 
results from the Phase 1 study, are summarized in Table 4-2 below. For all three 
runs the performance is essentially the same as the previous results reported for the 
Phase 1 NIR moisture model which used the water addition method for generating 
the calibration samples. Therefore, in terms of modeling ability, there does not seem 
to be any real difference between the water addition and the successive drying sample 
treatments; although the drying data does require an extra factor in the model t o  
achieve the same results. Of course, the modeling ability is not the only criteria (or 
even the best one) for evaluating the effect of the two sample treatments. The 
discussion that follows looks at differences between the models for the various 
treatments and then explores the relative predictive ability of models built with the 
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Table 4-1. Percent variance described by each factor of the PLS 
models for the thre successive drying experiments. 

two sample treatments. 
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Table 4-2. PLS model statistics for the three drying experiments. All 
models used 2 factors. The standard error of prediction (SEP) 
value is from the cross validation studies. 

The PLS model fit results are shown in Figure 4-1, Figure 4-2, and Figure 4-3 for 
Run-1, Run-2, and Run-3, respectively. For all three runs, the PLS model was able 
to  accurately model the variation in the water concentration with no significant bias. 
However, for Run-1 there appears t o  be some non-modeled nonlinear relationship 
between drying time and water concentration. Also note that the Run-1 water values 
never reach a moisture concentration below about 4 &Yo. For the Run-2 data, it  is 

clear that  the 10 minute drying time between sample points results in relatively even 
spacing along the moisture axis for the early samples but, as the sample became 
drier, the moisture values began to  cluster near each other. In the final refined 
experiment, Run-3, the drying time was graduated with longer drying times as the 
sample material contained less moisture. This allowed us t o  cover the full range of 
moisture levels with the data points spread fairly evenly across the moisture scale. 
As we can see from Figure 4-3, this design objective was met in Run-3. 

The regression coefficients for the three runs are plotted versus wavelength in Figure 
4-4. From this plot we can see that Run-2 and Run-3 have very similar regression 
coefficients while the regression coefficient for the Run-1 model is quite different. In 
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Actual versus Predicted Values for Run-1 
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Actual Percent Water 

Figure 4-1. Actual versus estimated moisture for the Run-1 M R  data 
set. 

order to  explain this observation it is instructive t o  look at the individual PLS factor 
loadings for each model. Recall that the regression coefficient is a weighted linear 
combination of the individual model factors. The individual factor loadings for the 
X-block represent the portion of the spectral information used t o  derive the 
calibration model. 

Figure 4-5 shows the f is t  PLS model factor loadings for the spectra from each of the 
three runs. From this plot it is clear that the three models have almost identical 
loadings for the first spectral factor. Therefore, the observed difference in the 

regression coefficients cannot be due to  this factor and must be due to  differences in 
the spectral information associated with the second factor of each model as shown in 
Figure 4-6. From inspection of the score plots, and the information from Table 4-1, 
the first factor of each model describes the bulk of the spectral response related to  the 
moisture variation in each of the experiments. 
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Figure 4-2. Actual versus estimated moisture for the Run-2 NIR data  
set. 

Actual versus Predicted Values for Run-3 
14 1 

Figure 4-3. Actual versus estimated moisture for the Run-3 NIR data  
set. 
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Figure 4-4. Regression coefficient vectors from the 2-factor NIR models 
for Run-1, Run-2, and Run-3. 
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Figure 4-5. Spectral loading vectors for the first factor of the NIR 
models for Run-1, Run-2, and Run-3. 
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Second Factor Loadings for the Drying Models 
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Figure 4-6. Spectral loading vectors for the second factor of the PLS 
models for Run-1, Run-2, and Run-3. 

The second factor of the Run-1 model is only describing information related to  the 
difference between the first sample point (the BY-104 before drying) and the third 
(after two 5 minute drying cycles, 8 wtoh water). The second factor of the Run-2 and 
Run-3 models are describing additional spectral variation related to  the very dry 

samples from those runs. Figure 4-7 and Figure 4-8 show the X-block (spectral) 
versus Y-block (wto/o moisture) scores for the two factors of the Run-3 model. In 
Figure 4-7 one can see that the first model factor is describing the mostly linear 
response of the spectra to  moisture decrease for the first 11 sample points (no drying 
t o  -3 wtYo moisture) while the last 4 sample points (-2 wt% to 0 wto/o) are not well 
described by this factor. Remember that  each sample point corresponds to  two data 
points in the plot since replicate spectra were recorded for each drying cycle. In fact, 
as the sample is dried below -4 wto/o moisture, there seems to be curved, or 
exponential decay, component in the spectral response to  increased drying of the 
sample. The second factor of the model is mainly describing the infomation 
associated with the very dry samples as is shown in Figure 4-8. The Run-2 model 
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I 

shows nearly identical behavior, except that the higher moisture samples are not as 
well represented due to the constant drying interval in that experiment. 

Factor 1 X-Block vs. Y-Block Scores, Run-3 (m) 2-Factor Model 

i , I I i 
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Figure 4-7. Relationship between the spectra and moisture explained 
by first PLS factor from the NXR Run-3 model. 

By comparing the loadings of the second PLS model factor for Run-2 and Run-3, 
described above, with the spectra of the pure BY-104 chemical components one c a n  
make the following observation. This second factor loading vector is very similar to 
the second derivative NIR spectra of pure NaNO, plus the negative of the NaOH 
second derivative NIR spectra. This is shown graphically in Figure 4-9 where we 
have plotted the second factor loading vector for R u n 2  and Run-3 along with a 
composite spectrum consisting of the pure sodium hydroxide and pure sodium nitrate 
spectra. The composite spectrum consists of the sodium nitrate spectra plus the 
negative of the sodium hydroxide spectra, scaled by an arbitrary 200 units. 

Based on the discussion above, one can conclude that, as the BY-104 simulant is 
dried in the oven, the particle surface is enriched in NaNO, and depleted in NaOH. 
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Factor 2 X-Block vs. Y-Block Scores, Run-3 (m) 2-Factor Model 
, I I 8 I 

Figure 4-8. Relationship between the second NIR model PLS factor 
scores in the spectral responses and the moisture level for Run-3. 

There is not sufficient information t o  speculate on the exact mechanism whereby the 
nitrate would migrate to the surface and the hydroxide becomes depleted. However, 
there is information to suggest that this mechanism is only active once the moisture 

level drops below a certain threshold level (roughly 2-3 wt%)). 

The last point to be considered in this study relates back to the question of which is 
the best method for preparing the calibration samples for the moisture model 
determination, the successive drying method or the water addition method. In order 
to evaluate this issue, moisture prediction models were developed from both the 
drying experiment data and the water addition data obtained in the Phase 1 study. 
We then looked at the relative performance of these models at predicting the 
moisture from samples prepared with the other sample treatment. The goal is to 

discover if one, or both, of the sample preparation methods introduce appreciable bias 
in the moisture estimation. The results of these studies, in terms of the R,MSE of 
prediction are summarized in Table 4-3 below. PLS models from the full length 
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Composite Spectrum (NaN03, NaOH) and Loadings for Run-2 and Run-3 
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Figure 4-9. Run-2 and Run-3 PLS model spectral loadings for second 
factor and a composite spectrum made from the pure spectra of 
NaOH and NaNO,. 

columns were used to predict moisture for the data sets in columns 3, 4, 5,  and 6 .  
The boldface values are the model fit results (self prediction). 

Although the results of the cross prediction experiments are somewhat confusing, 
several generalizations are possible. It is clear that the Run-l model is not very 
useful at  predicting either the other drying runs or the water addition data. 
Conversely, none of the other models do a very good job of predicting the Run-1 
moisture levels from the Run-1 spectra. In fact the predicted moisture for the Run-1 
data is consistently higher than the actual moisture values calculated from the before 
and after drying weight values, as shown in Figure 4-10 below. Only the Phase 1 

samples with moisture values in the range covered by the drying experiments (zero 
to  -14 doh) are plotted. This is probably due to  the short drying times and the fact 
that the sample remained in the sample cup throughout the Run-1 experiment. The 
calculated reference moisture values for this run are based on the total weight 
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Table 4-3. Comparison of the &VSE for different sample treatments. 

difference before and after drying of the bulk sample in the cup. However, since the  
sample cup is closed next to the spectral window, it is conceivable that the portion 
of the  sample material actually sampled spectroscopically during the experiment has 
a higher moisture level than the material a t  the other side of the sample cup (which 
is open to  the  oven environment). 

The Run-2 and Run-3 data sets agree very well with each other. While the model 
errors for each of these runs were about 0.3 wt%, the errors for predicting moisture 
from one run using the model from the other run was only slightly higher (about 0.6 
wt%). Furthermore, both Run-2 and Run-3 models had similar performance when 
predicting moisture from the Phase 1- data (the water addition to dried simulant 
method). For both these runs, the prediction errors for the Phase 1 data were about 
one wt% compared to about 0.4 wt% for the Phase 1 model fit value. Note, from 
Figure 4-10 above that the Phase 1 predicted moisture values are very close over the 
range from around 1 to 5 wt% moisture but then are biased low for the higher and 
lower moisture levels. This may be due mainly to the specific information related t o  
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Figure 4-10. Prediction results for Run-1, Run-2, Run-3, and 
Phase 1 using the 2 factor Run-3 PLS model. 

dry samples from Run-2 and Run-3 contained in the second factor of the model. 

Finally, the Phase 1 model (derived from the water addition sample preparation 
method) did rather poorly a t  predicting moisture from the drying experiment spectra. 
There are  several factors which might lead to  this result. First, the Phase 1 data  was 

collected several months before the drying experiment data and several modifications 

to the spectrometer were made during that time, including replacement of the 
spectrometer lamp and detection electronics. So, some of the differences may be due 
to instrumental artifacts. Secondly, from the discussion above, it seems clear that as 
the sample is dried, there is selective segregation of some components between the 
bulk and surface of the simulant. This was seen quite clearly for the very dry 
samples from Run-2 and Run-3 in the second factor of the PLS models for those 
runs. Since the Phase 1 starting material was also oven dried to  complete dryness, 
it is reasonable to assume that the same segregation also took place. Indeed, in 
Figure 4- 11 below, the dry samples from Run-2, Run-3, and Phase 1 all have similar 
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predicted moisture levels. Then, as water was added, the enriched nitrate and 
depleted hydroxide layer was dissolved, altering the composition of the sample 
slightly. Again, &om the Figure below, we see the largest prediction errors for those 
samples in the 0-2 wt % range as a constant offset, o r  bias, from the Phase 1 

prediction line. At any rate, the Phase 1 one factor PLS model contains no term t o  

explicitly model this segregation. At the higher moisture levels, the Phase 1 and the 
drying data from Run-2 and Run-3 again start to converge. Again, for the Phase 1 

model, the largest errors in the prediction of the R u n 3  moisture occur as high bias 
for the early drying period samples. As mentioned above, this is probably due to a 
moisture gradient present in the Run-1 sample as it is being dried. 

Predicted Results for 1 Factor Phase-1 Model 

1 I I & I , I 
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Figure 4- 11. Prediction results for Run-1, Run-2, Run-3, and 
Phase 1 using the 1 factor Phase 1 PLS model. 

Visible Spectral Region Results 

The results for the individual PLS models on the VIS (400 to 1100 nm) spectra1 data 
for the three drying runs are given in Table 4-4 below. The number of factors in the 
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model was determined by cross validation studies. The Run-1 model required three 
factors for the VIS data compared to only two for the NIR model. This was due to a 
stronger nonlinear response of the VIS data to  the moisture. This nonlinear response 
was even stronger in the Run-3 data where four factor were required. 

Factor # This Factor Total This Factor 
1 75.606 75.606 79.649 

7.666 2 17.915 93.520 
3 1.589 95.050 9.545 

Total 
76.649 
87.315 
96.860 

Factor # This Factor Total This Factor 
97.574 97.574 83.340 1 

2 1.137 98.7 10 6.884 

Table 4-4. Percent variance described by each factor of the VIS PLS 
models for the three successive drying experiments. 

Total 
83.340 
95.224 

All three PLS models gave fit results which were very similar to  the NIR results, as 
shown in Table 4-5. The M S E  of the model fit was about half a weight percent 
moisture for all three models. The RMSE for thephase 1 VIS data was higher (1.327 
wtYo moisture) when the full range of moisture concentration was included in the 
model. When the Phase 1 model was restricted to  the moisture range covered in the 

Run-3 
Factor # This Factor Total This Factor Total 

1 95.638 95.638 73.62'7 73.627 
98.006 15.192 88.8 18 2 2.368 

3 0.633 98.639 8.778 97.594 
4 0.293 98.93 1 0.7'75 98.576 

1 

drying experiments (0 to -14 wtYo moisture) the RMSE was only 0.501 wt%, which 
agrees quite well with-the values from the drying experiments. 
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Table 4-5. PLS model statistics for the three VIS drying experiments. 

The standard error of prediction (SEP) value is from the cross 

validation studies. 

Table 4-6. Comparison of the RMSE for different sample treatments. 
PLS models from column 1 were used t o  predict moisture for the 
data sets in columns 3, 4, 5, and 6 .  

However, when the PLS models from the individual drying runs were used to predict 
moisture from the spectral data of other runs, or the Phase 1 spectra, the results are 
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quite poor as shown in Table 4-6. Results in Table 4-6 are presented for both the 
cross validated models and for models using a single factor. The italicized values in 
the table are the model fit results (self prediction). The Phase 1 data and model was 
restricted to the concentration range covered by the drying experiments. As in the 
NIR results discussed above, the Run-1 model did the worst at predicting moisture 
from the other run’s spectra. Again, this is most likely due to  the limited moisture 
range and problems with moisture homogeneity present in the Run-1 experiment as 
mentioned in the discussion of the NIR results. 

None of the drying run models did a very good job of predicting moisture from the 
Phase 1 data. An example of the cross prediction results are shown in Figure 4-12 
for the four factor Run-3 model. Conversely, the Phase 1 model did a very poor job 
of predicting moisture for any of the three drying run’s spectra as shown in Figure 
4-13 below. The reason for this poor cross prediction performance can easily be seen 
from the plot shown in Figure 4-14 where the average spectra from the Phase 1 and 

the Run-3 data sets are plotted. In this plot, one can clearly see that the Phase 1 

VIS spectra has strong spectral features from about 600 t o  750 n m  which is not 
present in the Run-3 data. The Run-1 and Run-:! spectra are very similar t o  the 
Run-3 spectra and also lack the absorbance in this region. Since the first loading 
vector of the calibration models, shown in Figure 4-15 for the Run-3 and Phase 1 
models, incorporate information from this spectral region into the PLS models, the 
presence of the absorption in the Phase 1 data which are not present in the drying 
spectra introduces serious bias in the cross prediction results. 

It is not clear what the spectral features in the 600 to 750 nm region of the Phase 1 

spectra are due to. The only pure component with a strong adsorption in this region 
is the ferric nitrate and its spectral features in the second derivative spectra do not 
match that seen in the Phase 1 spectra (i.e. it has a smooth uni-modal peak whereas 
the Phase 1 spectra show features with three lobes). It should be noted that the 
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same spectral features in the 600 - 700 nm region were also observed in the VIS 
spectra from the particle size study. The absence of these features in the VIS spectra 
from the drying experiments is unexplained. Unfortunately, the instrument used to  
collect this data has since been re-configured with a fiber optic probe sampling system 
and so it would be difficult t o  go back and repeat these experiments and try to  track 
down the source of this variation. 

Predicted Results for 4 Factor Run-3 Model 
15, 

10 r *Run 1 
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Run-3 
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Figure 4- 12. Prediction results for Run-1, Run-2, Run-3, and 

Phase 1 using the 4 factor Run-3 PLS model. 

Con c Zusions 

The main goal of this study was t o  evaluate two different sample preparation 
methods; water addition and successive drying. One of the issues was whether 
sample drying introduced changes in the spectral response that would effect the 
calibration for moisture. For the NIR results, we clearly saw that drying the sample 
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Predicted Results for 2 Factor Phase-1 Model 
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Figure 4-13. Prediction results for Run-1, Run-2, Run-3, and 
Phase 1 using the 2 factor Phase 1 PLS model. 

below approximately two weight percent water induced a change in the spectral 
response. Based on our analysis we attributed this change to the surface enrichment 
in sodium nitrate and a depletion of sodium hydroxide as the sample became fully 
dehydrated. For the VIS spectral region, we were unable to  satisfactorily answer this 
question since the recorded spectra appeared different from our earlier observations, 
even without the oven drying. This difference was very obvious in the 600 to 750 nm 
region of the spectra and is currently unexplained. 

The second issue addressed by this study was the relative performance of the 
calibration models obtained with the different sample treatments. For the individual 
calibration models, there does not seem to be any advantage to  either sample 
preparation technique. For the NIR spectra, both sample treatments gave very 
similar results in terms of the model fit to  the calibration data. The drying models 
were able to  predict moisture from the water addition spectra than the better reverse 
case (using the water addition model to  predict moisture from the drying data). 
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104 Mean Spectra from Run-3 and Phase1 VIS Data Sets 
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Figure 4-14. 
sets. 

Average spectra from the Run-3 and Phase 1 data 

However, much of that difference can be attributed to the poor predictions for the low 
moisture samples from the drying experiments. Since those samples exhibited unique 
spectral features, related to  the nitrate migration, not present in the water addition 
data, it is difficult t o  say one method is better than the other. 

For the VIS data, the individual models derived from the three drying runs were able 
to  fit the data quite well. However, they were not very good at predicting moisture 
from the spectral responses of a different drying run. Part of the poor cross 
prediction performance can be attributed t o  local overfitting of nonlinear response 
present in Run-1 and Run-3. The two sample preparation methods yielded models 
which were unable to  satisfactorily predict the moisture content from the spectra of 
the sample prepared using the other method. However, most of the prediction errors 
can be explained as arising from the spectral differences discussed above which are 
mostly independent of the sample treatment. 

* 
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First Factor Loadings from the Run-3 and Phase 1 Models 
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Figure 4- 15. First PLS factor loadings from the Run-3 and Phase 

1 models. 

Based on the results from this study, we recommend that the standard additions of 

water to  dried simulant be the preferred method for calibration sample premration. 
There are several reasons why this method appears t o  be the best choice. First, it is 
faster and more flexible. Secondly, it does not introduce the artifacts in the very low 
moisture samples that the oven drying method does. Thirdly, while both methods 
produce suitable samples for developing good calibration models, the water addition 
models are simpler and slightly more robust when applied t o  other data sets. . 
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Visible Spectra of Pure BY-104 Components 
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Figure A-1. VIS spectrum of NaNO, 
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Figure A-2. VIS spectrum of NaA10, 
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Figure A-3. VIS spectrum of NaOH 
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Spectra of Pure Na2Si03 
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Figure A-4. VIS spectrum of Na,SiO, 
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Figure A-5. VIS spectrum of Fe(NOJ, 
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Spectra of Pure Na3PC4 
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Figure A-6. VIS spectrum of Na,PO, 
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Figure A-7. VIS spectrum of Ca(NO& 
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Spectra of Pure Mg(N03)2 
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Figure A-8. VIS spectrum of Mg(NOJ, 
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Figure A-9. VIS spectrum of Mn(NOJ, 
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Visible Derivative Spectra of Pure BY-IO4 Components 
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Figure A-10. Second derivative VIS spectrum of NaNO, 
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Figure A-1 1. Second derivative VIS spectrum of NaALO, 
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Figure A-12. Second derivative VIS spectrum of NaOH 

Figure A-13. Second derivative VIS spectrum of Na,SiO, 
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Figure A-14. Second derivative VIS spectrum of Fe(NOJ, 
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Figure A-16. Second derivative VIS spectrum of Ca(NOJ, 
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Figure A-17. Second derivative VIS spectrum of Mg(NOJ, 
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Figure A-18. Second derivative VIS spectrum of Mn(NO& 
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NIR Spectra of  Pure BY-104 Components 
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Figure A-19. NIR spectrum of NaNO, 
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Figure A-21. NIR spectrum of NaOH 
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Figure A-22. NIR spectrum of Na,SiO, 
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Figure A-23. NIR spectrum of Fe(NO& 
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Figure A-24. NIR spectrum of Na,PO, 
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Figure A-25. NIR spectrum of Ca(NOJ, 
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Figure A-26. NIR spectrum of Mg(NOJ, 
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Figure A-27. NIR spectrum of Mn(NOJ, 



Second Derivative NIR Spectra of  

Figure A-28. 

1 o4 Derivitiie Spectra of Pure NaN03 

WHC-SD-WM-ER-397, Rev. 0 
Page 148 of 153 

BY-104 Components 

0 1500 2000 
Wavelength (nrn) 

Second derivative NIR spectrum of NaNO, 



WHC-SD-WM-ER-397, Rev. 0 
Page 149 of 153 

x l o4  Derivitive Spectra of Pure NaA102 
1 1 

0.5 

e, 
0 
C 

0 
e, a 
e, 
E 

B O  

,s -0.5 
5 n 

-1 

-1.5 
1( 0 1500 2000 2500 

Wavelength (nm) 

Figure A-29. Second derivative NIR spectrum of NaAlO, 

x TO4 Derivliie Spectra of Pure NaOH 
6 1 

4 -  

2 -  

8 0- 

$ -2- 
C m c. 

e: 

-4- 
2 g 4 -  

-8- 

-10 - 
1 

2500 
-12' 

1000 1500 2000 
Wavelength (nm) 

Figure A-30. Second derivative NIR spectrum of NaOH 



f r. 

1 -  

0.5- 
m 
0 a) 
- 
= 0- 
c? 

WHC-SD-WM-ER-397, Rev. 0 

.g 
g -0.5 

-1 

1 . 5 1  Derivitiie Spectra of Pure Na2Si03 

- 

- 

-1.5' I ,  

1000 1500 2000 
. Wavelength (nm) 

Page 150 of 153 

00 

Figure A-31. Second derivative NIR spectrum of Na,SiO, 
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Figure A-32. Second derivative NIR spectrum of Fe(NO3, 
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Figure A-33. Second derivative NIR spectrum of Na,PO, 
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Figure A-34. 
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Figure A-36. Second derivative NIR spectrum of Mn(NO&, 


