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Abstract

A general expression is derived for the signaJ of a magnetic loop encircling a plasma

column inside a conducting chamber with nonuniform current distribution over the

plasma cross-section. The ratio of the paramagnetic component to the diamagnetic

component of the signal is shown to be independent of the loop radius. Both com-

ponents increase as the loop radius decreases from the chamber radius to the plasma

radius. From the derived expressions, the paramagnetic component of the signal is

caJculated numerically for several current distributions including those of interest for

the experiments. At a given total current, the paxama_netic component of the signal

may vary considerably, which generally has to be taken into account in interpreting ex-

perimental data. The results of the calculations are used to process the data obtained

in the experiments on the SPIN plasma device.
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I Introduction

Diamagnetic loops, which are often referred to as "magnetic loops," have long become a rou-

tine diagnostic tool for measuring the energy content of a magnetically confined plasma, t' _' 3

The loop usually encircles the plasma column in order to monitor the time variations of the

total magnetic flux, which are caused by the changing plasma pressure. The measurements

can be made in a chamber with either perfectly conducting t or resistive walls. 4' 5 This tech-

nique is also used to measure the parameters of powerful electron beams in experiments on

beam propagation and beam plasma heating. 6' ¢,s. 9

When there is a current in a plasma in addition to the diamagnetic current, the plasma

diamagnetism can be obtained by subtracting the current-related paramagnetic part of the

loop signal from the total signal. Some additional corrections to the signal, other than the

paramagnetic component, have been discussed in Ref. 10. The paramagnetic component is

easy to find when the current profile is axisymmetric. However, in the case of an arbitrary

profile, the procedure is less straightforward and sigvificant errors may be introduced. Situ-

ations with irregular current distributions were clearly observed experimentally at the initial

stages of a linear discharge in helium, t° In these experiments, it was rather difficult to ac-

curately find the plasma temperature in the discharge by the use of data from the magnetic

loop and laser interferometer. The need to reduce the uncertainty in the interpretation of

the experimental data was the particular motivation for this work.

II Outline of the Experiment and Formulation of the
Problem

The scheme of the experiment that we will have in mind in our calculations is shown in

Fig. 1. The plasma column of radius P,_ is confined in a long cylindrical metal chamber



placed in a longitudinal magnetic field B0. The length of the chamber L is much larger than

its radius Re. The magnetic loop, a single turn of radius R, is placed inside the chamber

at a sufficient distance from the ends of the chamber so that the ends have no effect on the

loop signal.

The plasma is created by a pulse discharge between the end electrodes of the chamber.

The current jz of the discharge is generally nonuniform over the plasma cross-section. We

assume that the plasma never touches the magnetic loop. The characteristic times for

changing the plasma pressure and the current distribution are assumed to be much shorter

than the magnetic flux diffusion time, yet sufficiently long for establishing radial equilibrium.

Thus, all radial motions are quasistationary, with the sum of the plasma pressure and the

magnetic pressure being constant over the plasma cross section. In a long column, this radial

balance may depend parametrically on the longitudinal coordinate z.

Changes in the plasma parameters and the current distribution cause variations in the

magnetic flux through the cross-section of the loop, which, in turn, induce a loop voltage

signal that is measured in the experiment. In what follows we address the question of how

sensitive the signal is to the asymmetries in the profile of the plasma current.

III Basic Equations

We start from the equations for plasma equilibrium in a magnetic field:

1
-vp+-[j ×B]=O, (I)

c

4a'.
rotB - --j , (2)

¢

divB =0. (3)

We write the magnetic field as the sum of a strong uniform field B0 directed along the z-axis

of the cylindrical coordinate system and a perturbed field (B,, B_,, Bz) that is much smaller
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than Bo. We use the transverse components of Eq. (1) to express Jr and j_ in terms of jz

and to eliminate Jr and jr from Eq. (2). Then Eqs. (2) and (3) take the form:

0 0 4r B_ 4_r i)p

-O-'_ S, + _z O_ = --J'c _o +----BoOr ' (4)

1 0 c9 4r B, 4_r 1 i)p

-;a_B,- _ B_,= --j, , (5)c Bo Bor O_

l i) 1(:3 41r.

r 0rrB_ r 0_B_=--c 3z, (6)

0 1 0 1 0

0-7B, + -,._ ,'B,+ -r-_ B,,= O. (7)

We now take into account the very slow change in z-direction of all quantities, which

allows us to neglect the term cgB,/cgz in Eq. (7). This can be justified by the following

estimates. We assume that both B_ and Br are generally of the same order of magnitude as

the total transverse magnetic field B±. Then Eq. (6) gives

j, _ Bj. c/47rR_, (8)

where P_ is the plasma radius. By substituting j, into Eq. (1), we obtain

B, 4_'_._.ppB_. B±R_ (9)~ B0 __o +-F -'

where L is the length of the plasma column. With this estimate for B,, we find the conditions

under which the first term in Eq. (7) is small compared to the other two terms:

_<<I (to)
L

B± L

a--;_:_' (11)

and

B2oBj. Lp<< (_2)
4_" Bo/_,



Inequalities (10) and (11) are automatically satisfied in a long plasma column. Condition

(12), which can be rewritten in terms of the longitudinal current as

p<<_ j,L, (13)
C

is also satisfied in the experiments that we are interested in.

IV Magnetic Flux Through the Loop

In order to calculate the flux

dp = d_ Bz rdr , (14)

r 2
we multiply Eq. (4) by T and integrate over the cross-section of the loop, which gives

The last term on the left-hand side of this equation equals zero. This can be proved by

integrating Eq. (7) with OB,/cgz = 0 over _, which gives

Since B_ is regular at r = 0, we conclude that

2"B_d_= . (17)
0

The second term on the right-hand side of Eq. (15) can be rewritten as an integral over the

loop circumference. In order to make this transformation we use Eq' (6) to express jz in

terms of B, and B_,, and then use Eq. (7) with OB,/iJz = 0 to perform integration by parts.

The result is

d_ _j,B_d_=-- a_(B_-S_,) . (_s)Bo 4 _=a



We now express the second term on the left-hand side of Eq. (15) in terms of _ by using the

condition that the total magnetic flux inside the conducting chamber is conserved and also

the fact that f_o'rBz dqodoes not depend on r in the vacuum region between the loop and the

conducting wall:

f0 ( _ R_ -2
2"B,,R,d_ = (_0 - _). (19)R2

Here, O0 is the given flux inside the chamber. Finally, we combine Eqs. (15) and (17)-(19)

to obtain the following expression for the perturbed magnetic flux through the loop:

R_ R2 4r
¢- - + ¢o. (201Bo pdS- ,-_R

The first integral in Eq. (20) characterizes the plasma diamagnetism, while the second one

corresponds to the pararnagnetic effect from the longitudinal current. The last term in

Eq. (20) is an insignificant constant that can be dropped since it does not contribute to the

time derivative of the flux.

For an axisymmetric longitudinal current, the B,2 term in Eq. (20) equals zero. In this

case, the integral of B_ only depends on the total plasma current I and is given by

fo " B_ d_ =_Po = • (21)8_rI2 /c2 R2

This is the paramagnetic contribution that is typically used in processing experimental data.

Modification of this term due to asymmetry of the current can be described by the coefficient

f d_B_(R, _) f d_B,2 (n, _)
q = q_'+ q" = Po - Po " (22)

For an axisymmetric current, we have q_ = 1 and q, = 0.



V Paramagnetic Effect from the Longitudinal Cur-
rent

In order to calculate the paramagnetic contribution, we solve Eqs. (6) and (7) for B_ and

B, with a given current j, and with g_ B, = 0. We introduce the vector potential A so that

10A OA
B_ = , B_ = --. (23)

r Oqo Or

Then Eq. (6) reduces to

] 1 0 OA 10_A 4r.
.... = --3, . (24)r 0rr_r + r :20_o:2 c

We expand j, and A into Fourier series,

jz "- j0(r)+ _ (j+(r)cos gqo+ j[(r)sin g_)
t---I

. (25)
A- ao(_)+Z: (At(r)_o_eV+ AT(_)_i._V),

to obtain the following equations for the Fourier components:

1 0 OAo 47r .
r i)r r Or = --)O,c

(26)
1 0 0 g2 4a"

r 0-"_r _ At+ - _ A_ -- -- jt_ .c

The functions A_ must satisfy the boundary condition

. a_t(Rc) =0 (27)!

which corresponds to having B, = 0 at the wall of the conducting chamber. Also, Ao and

A_ must be regular at r = 0. The corresponding solution of Eq. (26) has the form



fO "

0,4o 4r r j0(r)dr ,ar cr

a_(r)-_ r'_ e" jt:i:rdr 1 r)t _

• 11 "

We now note that the paramagnetic factor q is determined by the magnetic field components

at the loop radius, that is, in the vacuum region between the plasma boundary and the

conducting wall. In this region jff(r) = 0, which simplifies Eq. (28) to

bAo 4_" /o _-- = -- jo( )dOr cr
(29)

a

Finally, we combine Eqs. (22), (23), (25), and (29) to obtain

---- " Re ' *

It should be noted that the q-factor is a function of r/R_ only and does not depend on the

loop radius R. This factor is positive definite, which shows that the longitudinal current

produces only a paramagnetic and never a diamagnetic effect. Moreover, q is always larger

than unity; it only equals unity for an axisymmetric current. Hence, processing experimental

data under the assumption that the current is axisymmetric is actually a way to obtain a

limitation from below on the plasma pressure.
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VI Calculation of the q-Factor for Experimental Data
Processing

In order to get a preliminary idea of the role of current asymmetry, we calculate q analytically

for an off-axis delta-function current,

I

j,(,.,_) = -_6(_)_(,.- p) ,

where p is the radial position of the current. In this case

j+ = I _;(r- p) , (31)_rp

I

j0= 2%--_6(_- p), (32)

j[ =0, (33)

and Eq. (30) reduces to

2 2

This q-factor is shown by the dotted line in Fig. 2. It follows from Eq. (34) that, when

the current comes close to the loop, q grows to its maximum value

qpfa = 2 • (35)

For example, for the case l°' 11 of R/R¢ = 0.86 we get qp=R= 6.8.

Also shown in Fig. 2 is the q-factor for another typical current configuration _ a circular

segment of an apex angle A_ with different values of A_0. It is easy to see that the greater

the current asymmetry, the stronger the paramagnetic effect. To analyze the role of the

paramagnetic component in the measurements of plasma diamagnetism, we rewrite Eq. (20)

9



in the following form:

A##= R_- R2 47rfgpdS [1 12q ]R_ Bo 2c2 fon pdSJ ' (36)

It follows from. Eq. (36) that the farther the loop is from the wall, the larger the useful signal

is. Since the q-factor is constant for a given current distribution, the ratio of the paramagnetic

to the diamagnetic component of the signal does not depend on the loop radius. For these

reasons, the loop should be placed as close to the plasma as possible. However, under real

experimental conditions, one should take into account that electrostatic induction may grow

if the loop is close to the plasma.

The calculation of q for a given current profile generally requires a numerical procedure.

These calculations can be performed either by the use of Eq. (30) or by a direct integration

of the experimentally obtained current distribution over the plasma cross-sec*Aon. For the

calculation of q, we have developed a code that is written in Turbo Pascal for an IBM PC.

The procedure used in the code is described in the Appendix. To test the code, we calculate

q for an off-axis delta-function current distribution and circular segments. The results have

been found to agree with those shown in Fig. 2.

The code has been used to evaluate q for the experimentally obtained current profiles

of a linear discharge in helium. The experimental setup and diagnostics are described in

Refs. 10, 11, and 12. The plasma was produced in a 10.4-cm diameter stainless-steel tube

in a 4.4 T longitudinal magnetic field by the discharge between the end electrodes. The

discharge cross-section was limited by a glass diaphragm, 8cm in diameter. The plasma

pressure was inferred from the signals of two magnetic loops, each 9 cm in diameter.

Figure 3 shows the R.C-integrated signal of '_ magnetic loop Wj., which contains both

diamagnetic and paramagnetic components. The paramagnetic component was calculated,

assuming axial symmetry, from the total current trace/tot. We then found the plasma para-

magnetism f n,TdS by subtracting this value from Wj.. With plasma density n, measured

10



by means of laser interferometer, one can find the behavior of the plasma temperature T_

(see Ref. 10 for details).

The procedure outlined above is commonly used for the calculation of the plasma dia-

magnetism, but it fails in the case of a nonaxisymmetric current. The magnitude of the

diamagnetism obtained in this way is only correct when the current is either almost sym-

metric or negligibly small (triangles in Fig. 3). In general, in order to obtain the correct

value of the diamagnetism, one should consider the actual distribution of the plasma current.

In Ref. 10 an asymmetry has been observed in the pictures of plasma self-luminosity taken

with a long-focus optical system 12 with a time-resolved electron-optic image converter.

Plasma cross-sections at times 3ps and 17ps are shown in Fig. 4. The figure demonstrates

that the plasma becomes axisymmetric when the discharge is well developed. However,

there is no axial symmetry in the initial stage of the discharge, and the plasma shape varies

from pulse to pulse. For the plasma shape shown in Fig. 4 (left) and for the dimensions of

plasma and chamber listed previously, the nonaxisymmetric correction to the paramagnetism

increases the value of the diamagnetism by 22%. The corrected values of the diamagnetism

at 3#s and 17#s axe shown in Fig. 3 by circles. The error bars represent the dispersion of

the diamagnetism at 3ps due to pulse-to-pulse variations of the plasma shape.
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Appendix

With the current distribution known from the experiments and recorded into a two-dimensional

array, we use the following procedure to calculate the q-factor defined by Eq. (22). Since q

is independent of the loop radius R we can rewrite Eq. (22) in the form

q = Po - Po = Po ' (AI)

We now find B_, by using Eq. (23), with the vector potential A obtained by the method of

images, 13

f l fj(ri,_i)ridr'd_iln"_A(,,_) = aA(,,_;,,, _,)= --_

(_-_i) (A2)
+ r_ - 2rr, cos r2 + R_/r_ - 2rCR_/ri) cos(_a_ai)

withtheboundaryconditionA(Rc,_) = const,whereriand _i arereferredtothecurrent

elements.

By introducingdimensionlessvariables

I

with

f j(_,_,)_d_d_,= 1,

we finally obtain

B_,(R,,_) = ]o ]:,-_c3(r'_Pi)gdVdPil-2Fcos_+r _ "
(A3 )
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Fig. 1. Experimental configuration for measuring plasma diamagnetism.
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Fig. 2. Dependence of the q-factor on the distribution of longitudinal plasma current. Dotted

Lineshows the q-factor for a localized current as a function of its position p/Re; solid

lines show the q-factor for a current that is uniform within a circular segment with

outer radius pm,,,,/Rc = 0.8 and varying inner radius pm_/Rc (three lines correspond

to three different values of the apex angle A¢).
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Fig. 4. Plasma self-luminosity at two stages of the linear discharge (cross-section view)' left-

initial stage of the discharge (3 as); right-well developed discharge (17 as).
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