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We use the Bodwin-Braaten-Lepage factorization scheme to separate the long- and short-distance factors that 
contribute to the decay rates of r, q b  (S-wave) and Xbshb (P-wave). The long distance matrix elements are calcu- 
lated on the lattice in the quenched approximation using a non-relativistic formulation of the b quark dynamics. 

In heavy quarkonium decays that involve 
quark-antiquark (Qa) annihilation, this annihi- 
lation occurs at short distances (- l / M q ) .  Bod- 
win, Braaten and Lepage [l] have shown that this 
enables one to factor such decay rates into a sum 
of products of a short-distance parton-level decay 
rate with a long-distance matrix element between 
quarkonium states. The short distance pieces are 
calculated perturbatively, while the long distance 
parts are accessible to lattice calculations. To 
lowest non-trivial order in u2, the square of the 
quark velocity, (I? - .1 for bottomonium) 

q2*+lsJ --+ x) = G ~ ( s ) F ~ ( Q Q ( ~ * + ~ s J )  --+ x) 
r(z i+lPJ 4 X) = H ~ ( P ) E ~ ( Q Q ( ” ” + ~ P J )  -+ X) 

+ ~ 8 ( P ) f 8 ( Q S ( ” ” + ’ S J )  4 X), 
( 1 )  

where the X’s represent states of light partons. 
The f ’s  are the short-distance (p - M Q )  parton- 
level decay rates. GI, H1 and Hs are the long- 
distance (p - MQV, E - M Q V ~ )  matrix elements 
that we calculate on the lattice. 

In our lattice calculations we have used 149 in- 
dependent equilibrated quenched gauge configu- 
rations on a 163 x 32 lattice with p = 6.0. Heavy- 
quark, and hence quarkonium, propagators were 
calculated using the non-relativistic formulation 
of Lepage and collaborators [2]. We used the lat- 
tice version of the quark action that is based on 
the euclidean lagrangian 
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which is valid to the lowest non-trivial order in 
va.  We calculate the quark Green’s function that 
obeys the evolution equation [2] 

G(x, t + 1) = ( 1  - H 0 / 2 n ) ~ U x , * ( l  t - H 0 / 2 n ) ~  
x G ( x ,  t )  + ~X,06t+llO 9 ( 3 )  

with G(x,t) = 0 for t < 0, and HO = 
-A(2)/2Mo - h-, . Here A(2) is the gauge- 
covariant discrete laplacian, and Mo the bare 
quark mass. h-, = 3(1 - w ) / M o ,  where w = 

The matrix elements we calculate are defined 
(0 I iTrUplaq IO) i. 

G1= (‘SI$ t i  xx $I1S)/MG 

H* = (‘PI$tTOxxfT”$11P)/M; , (6) 

as 

(4) 

HI = (‘PI$t(i/2) 6 x.xt(i/2) 6 $ I I P ) / M i  (5) 

On the lattice, we calculate the related quan- 
tities G ; ,  Hi, H i ,  defined graphically below 

where the larger dots represent the %ources”, the 
small dot in the numerator is the appropriate 4- 
fermi operator, and the small dots in the denom- 
inator represent point “sinks”. For our calcula- 
tions we generate the retarded (Eqn. ( 3 ) )  and ad- 
vanced quark propagators from noisy point and 
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noisy extended sources on each of the 32 time- 
slices. (This differs from our preliminary calcula- 
tions, in which the 4fermi operator was used as 
a source.) Then as T, T' -, 00 

(9) 

where R l s  is the radial wave function of the 1s 
state and R i p  is the derivative of the radial wave 
function of the 1P state. 
For bottomonium, we use input parameters de- 

termined by the NRQCD collaboration [3], which 
in our convention are: the bare b-quark mass, 
Mob = 1.5, the inverse lattice spacing, c2-l = 
2.4GeV, and the physical b-quark mass, Mb = 
2.06. In Fig. 1 we show GI as a function of T,T'. 
It is clearly very close to the vacuum saturation 
value of 1. In fact Gf - 1 M 1.3 x E; dis- 
plays similar behaviour, but is more noisy. Hi 
is plotted in Fig. 2. We notice that it displays a 
fairly obvious plateau at small T, T', which de- 
generates into noise for larger values of T, T'. No 
improvement in Hi is obtained by using the ex- 
tended source. Fitting the plateau, we obtain 

Hs/H1 M 0.06. 

This is somewhat smaller than the value obtained 
from a simple perturbative estimate [l]. However, 
this estimate comes from assuming that H8 be- 
comes negligibly small when the momentum cut- 
off is AQCD. If one assumes, instead, that H8 
becomes negligible at a cutoff closer to the bot- 
tomonium binding energy, then the perturbative 
estimate is closer to the lattice measurement. Of 
course, the lattice-regulated G I ,  H I  and H8 differ 
from their continuum counterparts at O(ad),  but 
since our methods are equivalent to using mean- 
field improved actions, these renormalisations are 
expected to be small. 

We have also considered the S-wave decays 
through next-to-leading order in v2.  To this or- 
der, GI is no longer the same for 'I' and rib. How- 
ever, we would need an improved action in order 

to calculate these corrections. In addition, there 
is a second term in Eqn. (l), 

F1(S)f'i(QQ(Z"+iSj -t X )  , (10) 
where fi is another perturbative parton-level de- 
cay rate and FI can be calculated on the lattice 
using the Lagrangian of Eqn. (2). In the vacuum 
saturation approximation, 

F d S )  = ~ o l ~ ~ x l o ~ ~ o l d ~ ~  ii)2xIo)/M; - (11) 

On the lattice we measure F,*, defined as 

We find that 

F: = 1.3134(9) - non-covariant (13) 
F;' = 0.8519(6) - covariant , (14) 
where non-covariant and covariant refer to 
whether we use ordinary derivatives (in coulomb 
gauge) or gauge-covariant derivatives in Eqn. 
(11). As with GI, H I  and Ha, Ff requires renor- 
malisation. F1 mixes with G I .  Since Fl/G1 - v2, 
this mixing can be significant. We have calculated 
these mixings to 1-loop order. Preliminary esti- 
mates of the Fl's which take these mixings into 
account are 

F,"(renmmalized) = 0.76 - non-covariant (15) 
F;'(renormlized) = 0.62 - covariant. (16) 

Finally, in table 1 we present some mass and 
wavefunction calculations which were incidental 
to our calculations of matrix elements. Clearly 
our numbers are inferior to those obtained by 
the NRQCD collaboration [3], since we work only 
to lowest non-trivial order in v2. However, they 
serve as a consistency check of our calculations. 

We are now in the process of repeating these 
calculations for the charmonium system at p = 
5.7 (p = 6.0 has too small a lattice spacing for 
NRQCD at the charmed-quark mass. Our earlier 
attempts [4] used charmed-quark masses which 
were too large.) The charmonium system affords 
the opportunity to confront our calculations with 
experiment, since there is already sufficient ex- 
perimental data to allow extraction of Hs. In the 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



DISCLAIMER i *  
:- 

This report was Prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Gwernment nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- 
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of tbe 
United States Government or any agency thereof. 

3 

Table 1 
Properties of S- and p-wave bottomonium from our Simulations. The lattice quantltles lncluUe mean 
renormalirations. The mass of the 1s state is obtained by using M = 2(zM - EO)  + En with 'M and 
Eo set at their mean field va 

MxL - My = 0.4398(7) GeV 
7.2(2) GeV3 
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calculating the complete renormalization matrix 
through O(a,)  for the four operators discussed in 
this paper. 
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Figure 2. H i  as a function of T and TI. 
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Figure 1. GI as a function of T and TI. 
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