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Coulomb Effects in Quasielastic Elastic Electron Scattering

D.S. Onley

Physics Department, Ohio University, Athens, Ohio $5701

Coulomb distortion plays an important role in interpreting both (e,e') and
(e, alp) reactions in the quasielastic region. A fully distorted partial wave cal-
culation is presented, and the results are compared with the widely-used plane
wave approximation and other distorted-wave calculations. The new calculation
seems to give higher occupation numbers in the (e, alp) reactions. The usefulness
of the (e, dp) reaction in studying different nuclear optical potentials is discussed.
Also considered are the effects of electron Coulomb distortion in the separation
of longitudinal and transverse structure functions in (e.d).

I would like to report on some results of distorted-wave calculations of quasi-elastic electron

scattering carried out at Ohio University by my colleagues, Yanhe Jin , Louis Wright, and

myself.

The quasi-elastic peak occurs roughly where the momentum transfer _"and the energy trans-

fer w are related by

w _ _- "F EB (1)

where EB is the (average) binding energy and M is the nucleon mass. _[his is the kinematic

condition for striking a proton initially at rest; Fermi motion in the nucleus can then be said

to account for the width of the peak.

If one observes the proton leaving the nucleus then it is possible to tie down its binding energy

and the single-particle level within the nucleus. The difference betwf_n the proton momentum

1_and the momentum transfer t7 is often called the missing momentum: ig,,, = rf- _'. If one

were to ignore ali final state interactions, this would be the momentum of the proton at the

moment it is struck. The cross section reduced by dividing out an expression for the offshell

electron-proton cross section a_, is usually displayed as a function of p,,:

1 dsa

p,,,(ig,,,) = pEa_ dk_dFtl,,dil_, (2)

Consider the elements which go into an (e, e'p) calculation. They can be divided into:



• those we can refine (more or less indefinitely):

1) The electron wavefunctions

2) The treatment of the electromagnetic interaction

• those on which we must take a chance

1) Nucleon form factor (or expression for the nucleon current)

2) Nuclear wavefunctions (no lack of candidates)

3) Nucleon final state (is it described by the optical model?)

In our calculations we make a partial-wave decomposition of the electron wavefunctions with

as many as 60 partial waves. The interaction includes ali electromagnetic multipoles, EL and

ML, a maximum L = 30 is usually enough to ensure convergence. The interaction matrix

elements are calculated numerically within a volume enclosing the nucleus, and analytically,

using asymptotic expansions, in the exterior region. In this way we can set the accuracy
required to 1 part in 106. Ali of our tests indicate that this is sufficient to calculate the cross

sections we need; we are able to increase the number of terms, for example, to to get a precise
treatment of a diffraction minimum if necessary.

For the nuclear parts of the calculation, we have used the free nucieon form fa,ctors, nuclear

wavefunctions from a relativistic Hartree or Hartree-Fock code[li, and a standard relativistic

'global' optical model [2].

Some of our results are compared with experimental data from NIKHEF [3] in the following.
First 4°Ca, where Coulomb distortion is not likely to be serious.
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FIG. I. Reduced cross section for 4°Ca(e, t/p) for 2st/_ and d3/a with parallel (b,d) and ta-q

constaat (a_c) kinematics. The solid line is the DWBA calculation, and the dotted line the PWBA
calculation. Data from Ref. 3.

The results (Fig. la,c) are for protons from the 2sl/2 and ld3/2 orbitals assuming the states
are 100% occupied, which is not realistic; if we reduce the occcupations to 75% and 80%

respectively we get a very satisfactory description of the data. These occupation fractions are

easily comparable with those required by other reactions (pickup for example [4-5]). According
to our Hartree code the overlap of the residual a9K state and the 4°Ca + hole state the reaction
leaves behind, is about 80%. Furthpr rm4,,,-t;,_n;o .... _..._t... :-_,._J" ...... , , ....

.................. _ .... _ u_ lUbILIILilII_ ULII_]L" _correz&geu)
components in the nuclear wavefunction not represented in the Hartree state.
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In the data shown in Fig.(la,c) the p,,, is changed by varying the proton angle; this is called

w-q constant kinematics. In other experiments the proton is detected in the direction of the
momentum transfer _'; this is calked parallel kinematics. With this arrangement, as shown

in Fig.(1 b,d), we again get a good description of the shape but we seem to require a small_.r

occupation fraction, which is very strange.
We have also looked at a°SPb. The Fig.2b shows the comparison with data; here we have

already applied a reduction factor of 71% to give a best fit to the data. In this case that the

inclusion of Coulomb distortion is essential. We also compare with rival calculations (Fig.

2a). McDermott's calculation [6](dotted line), like ours, uses relativistic wave functions and

partial-wave analysis of the distorted electron waves. The other calculation (dashed line) is
by Giusti and Pacati (Pavia). [7], and uses non-relativistic nuclear wavefunctions, and treats
the electron distortion in a second-order eikonal approximation. Surprisingly we come closer

to agreeing with the Pavia result. Turning off the electron distortion, so that these different
treatments of the electron wavefunctions can be removed, we find we come even closer to
the Pavia results. The use of relativistic as opposed to non-relativistic nuclear wavefunctions

should not have a big effect in this process. The Pavia treatment of electron distortion appears

to have the same effect as ours but exaggerates the magnitude. We are unable to explain our

disagreement with McDermott.
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FIG. 2. Reduced cross sectlon for 2°aPb(e, elp) with parallel kinematics; (a) the DWBA calcula-
tion (1mild line) is compared to those of Ref. 6 (dotted) and Ref. ? (dashed), (b) with experimental

1 data [3] (the dashed line is PWBA). (c,d) show the effects from the use of SV (solid) and SVT optical
potentials.

We have also looked at different proton distorted wavefunction for 2°SPb. Whereas the

relativistic opti!cal model gives a good account of the proton cross section and spin observables,
these are given entirely in terms of the phase shifts. But our problem should also be sensitive

to the wavefunction in the nuclear interior. Using a phase-shift equivalent transformation
given by B.C. Clark, et al. [8] we can consider a range of interior wavefunctions which share

the sam,: .,symptotic behavior. Among these the standard potential is scalar + vector (SV),
but another, the SVT [9], will give virtually the same result as an equivalent non-relativistic

potential. Fig.(2c,d) shows that the cross section is affected very little in the neighborhood of

the first peak but the different choices of wavefunction begin to show up at the second peak,
this is more prominent for ht_/2 (Fig.2d) than 381/2 (Fig.2c).
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to sum over ali possible initial nucleon states, and indeed, neutrons as well as protons may

now contribute. Since we no longer select nucleons which leave without initiating a further

interaction, the optical model with its absorptive part is no longer appropriate. We deal with

this rather simply. We discard the imaginary potential, and actually use the same real poten-

tial as for the bound states. While sacrificing some believability, we ensure orthogonality of
initial and final states, also current conservation and gauge invariance - ali potential problems

with the calculation. The fits we obtain with this simple model are as good (or as bad) as

with many more sophisticated treatments of the final state.
Indeed it is rare to find (e, e') cross sections published any more, instead we find the separated

longitudinal and transverse response functions (SL and Sr), which are extracted from the cross
sections by assuming that they are of the plane-w_,ve form:

S(q,O) = SL(q) + x(q,O)ST(q) (3)

Here S is the cross section reduced by dividing by a modified Mott cross section(aMo.q_/q4).
SL and fir' are functions of momentum transfer only, whereas x explicitly contains the electron

scattering angle:

o ]lq2
z=[tan =2 2q2 _ (4)

Ideally, with the momentum transfer q fixed, the reduced cross section should appear as a
linear function of x: SL and ST being the intercept and slope of the line. In practice, data are

reduced to these same two functions by interpolating the measurements. The functions thus
found do not correspond to theoretical expectations: the SL extracted is usually too small by

a factor of 20-50% - a dilemma known as the longitudinal suppression problem.

The suppression problem has, fairly obviously, little to do with Coulomb distortion, lt is
not correlated with the nuclear charge (it occurs in light nuclei for example). Nevertheless

we can see the effects of distortion on Sr. and ST, by putting our calculated cross section into

the equation for S above. We still get a straight line as a function of z (approximately), and
so it is still possible to extract a slope and intercept, even though their meanings in physical

terms are now unclear. The main effect is to shift the peak sideways, which is something we
can take care of, to a large extent, by defining an effective momentum transfer.

Our fits to the (e, e') cross sections (we have used MIT data [10] are not too bad, but when

we look at the separated structure functions, Sr., is poorly reproduced. In the Fig. 3a we

look at the longitudinal structure function for 4°Ca at q = 410 MeV/c, with our theoretical

curve. We deliberately extend the values of SL to cover a range shown by the bold bars, while

leaving ST unchanged. Now look at the effect on the cross section: you see that the 'error'
bars thus produced are comparable with experimental error at 0 = 90°, and much smaller at

0 = 140". Evidently the cross sections are insensitive to changes in St,. We should remark

that the original publication does show a wide band (called the systematic error band) which
is reproduced in our figure, but seldom shown in discussions of the suppression problem.

In conclusion, we look forward to using electron quasi-elastic scattering as a precision tool in

the establishment of nuclear properties. The promise that the electrodynamics of the problem

,-an h, a,_n,_,-_.,_d_- _,,y ----t....... s,,_,_u, precisioii, _,l has a little way to go, however. What



could we use that is not now being measured? Data at more forward angles is important;
polarisation data would be nice; also is (e,e'n) a possibility?
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FIG. 3. Longitudinal structure function at q = 410 MeV/c (a). The bold bars indicate the values
used in the reconstruction of the experimental cross sections (bold bars shown in (b,c)). The shaded
region corresponds to the systematic error band, and the solid line (b,c) are PWBA. The data are
from Ref. I0.
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