Provided by Cornell Law Library

Cornell Law Library
Scholarship@Cornell Law: A Digital Repository

Cornell Law Faculty Publications Faculty Scholarship

3-1975

A General Solution for Linear Decision Rules: An
Optimal Dynamic Strategy Applicable Under
Uncertainty

George A. Hay
Cornell Law School, george hay@cornell.edu

Charles C. Holt

Follow this and additional works at: http://scholarship.law.cornell.edu/facpub

b Part of the Econometrics Commons, and the Economic Theory Commons

Recommended Citation

Hay, George A. and Holt, Charles C., "A General Solution for Linear Decision Rules: An Optimal Dynamic Strategy Applicable Under
Uncertainty" (1975). Cornell Law Faculty Publications. Paper 1162.
http://scholarship.law.cornell.edu/facpub/1162

This Article is brought to you for free and open access by the Faculty Scholarship at Scholarship@Cornell Law: A Digital Repository. It has been
accepted for inclusion in Cornell Law Faculty Publications by an authorized administrator of Scholarship@Cornell Law: A Digital Repository. For

more information, please contact jmp8@cornell.edu.


https://core.ac.uk/display/216734838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.law.cornell.edu?utm_source=scholarship.law.cornell.edu%2Ffacpub%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.law.cornell.edu/facpub?utm_source=scholarship.law.cornell.edu%2Ffacpub%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.law.cornell.edu/facsch?utm_source=scholarship.law.cornell.edu%2Ffacpub%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.law.cornell.edu/facpub?utm_source=scholarship.law.cornell.edu%2Ffacpub%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/342?utm_source=scholarship.law.cornell.edu%2Ffacpub%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/344?utm_source=scholarship.law.cornell.edu%2Ffacpub%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.law.cornell.edu/facpub/1162?utm_source=scholarship.law.cornell.edu%2Ffacpub%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jmp8@cornell.edu

A GENERAL SOLUTION FOR LINEAR DECISION RULES: AN OPTIMAL DYNAMIC STRATEC(
GEORGE A HAY; CHARLESC HOLT

Econometrica (pre-1986); Mar 1975; 43, 2; ABI/INFORM Global

pg. 231

Econometrica, Vol. 43, No. 2 (March, 1975)

A GENERAL SOLUTION FOR LINEAR DECISION RULES:
AN OPTIMAL DYNAMIC STRATEGY
APPLICABLE UNDER UNCERTAINTY!

By GEORGE A. Hay anp CHARLES C. HoLt?

Linear decision rules for controlling complex systems are often obtained by matrix
inversion, but transform methods offer an alternative approach that yields insights into
the structure of the decision problem of maximizing expected payoffs under constraints.

1. INTRODUCTION

PROBLEMS OF DECISION MAKING and control involving dynamic relationships and
uncertainty have in recent years increasingly been quantified and analyzed
mathematically to obtain optimal solutions. This paper presents one such analysis
which is applicable to large and complex decision problems and yet is readily
computable. The combination of flexibility and simplicity is attained by using
quadratic functions to approximate the decision maker’s welfare function that
expresses his objectives, and by using linear difference equations in discrete time
to approximate the dynamic relationships of the system being controlled and
any equality constraints on the controlled variables. Since the first order conditions
for an optimum are linear equations, the solutions can be obtained by using the
well-developed body of linear mathematics. The paper develops a general method
of solution utilizing a technique known as the z-transform.

Although this decision analysis will yield a decision rule that is optimal under
conditions of uncertainty in the sense of minimizing (or maximizing) the expected
value of the decision criterion, the analysis is carried out entirely in terms of
certainty as if the future were known exactly. This seeming paradox is explained
by the fact that linear decision rules have been proved to have the property of
certainty equivalence [26, 28, and 29]. In brief, this means that the decision rules
obtained for the certainty problem are also optimal for the uncertainty problem.
Expected value forecasts of the uncontrolled variables are substituted for perfect
forecasts in the decision rules.? In the following analysis we treat the future
uncontrolled variables as if they were “‘known,” but of course in the final applica-
tion of the decision rules these variables will be replaced by forecasts. The ability
to separate out the probability analysis and treat it by a separate proof greatly
simplifies the present analysis. For contrast, see some of the automatic control
literature, for example [19 or 32].

! An earlier version of this paper was presented and discussed at the September, 1971 European
Congress of the Econometric Society in Barcelona, Spain.

2 Charles C. Holt’s research for this paper was supported by the National Science Foundation.

3 Durbin [6] has considered the problem that is posed when sampling or other errors occur in
estimating the expected values, and Holt has considered optimal methods for estimating forecast
relationships [12].
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232 G. A. HAY AND C. C. HOLT

This paper presents a general method which can be applied in a straightforward
manner to a class of decision problems that involve complicated objectives, many
uncontrolied variables impinging on the system, some of them random, many
control (or instrument) variables under the direction of the decision maker (or
automatic controller), many partly controlled variables, and many complex
relationships linking the controlled, the partly controlled, and the uncontrolled
variables.*

This type of decision analysis has already been applied to a rather wide range of
problems, and in the industrial area it has already reached the stage of practical
applications, some of which are reported in [13] together with related analyses.
In the area of positive economic theory, several authors [4, 5, 9, and 20] have used
the analysis to derive the implications of profit maximizing behavior for firms’
decisions regarding variables such as investment, wages, vacancies, output,
inventories and price. The models generated predictions of the coefficients in
regression equations describing industry aggregates of behavioral relations. These
predictions have turned out to be reasonably accurate.

Similar decision models have been obtained independently by three research
groups : H. Theil, Kalman and associates, and Holt and associates. Theil developed
his analysis working on problems of economic policy using matrix inversion for
obtaining optimal decisions [27 and 28]. Kalman, Lapidus, and Shapiro developed
their analysis for the optimization of industrial process controls [18] using Bell-
man’s dynamic programming approach [2]. Holt, Modigliani, Muth, and Simon
developed their analysis, an earlier version of the one presented in this paper,
working on business decision problems in the area of production, inventory
control, and employment [13, 14, 15, and 16]. Subsequent work on industrial
decisions using continuous time has been done by Schild [25], on railroad schedul-
ing by Mansfield and Wein [21], and on economic stabilization by Theil [28],
van den Bogaard and Barten [30], van den Bogaard and Theil {31], and Holt [11].

Although a great deal of work has been done on optimization problems in the
fields of operations research and even more in automatic control engineering, the
knowledge base is not yet fully consolidated even for the relatively simple case in
which the criterion function is quadratic and the constraints are linear equations.
With the work listed in the above paragraph by Bellman, Theil, Simon, Kalman,
Muth, and Holt, the basic work on the linear decision analysis was essentially
complete for optimal strategies under uncertainty. However, the solution for
optimal strategies is inherently complex and expositional generalization and
clarity are needed. In addition, the refinement of solution methods and the writing
of general purpose computer programs are needed.’

*# Economists have commonly drawn a dichotomy between exogenous and endogenous variables.
In this paper we need three classifications, but they can readily be related to the dichotomy. The un-
controlled and the controlled variables are exogenous to the system, and the partly controlled variables
are endogenous. The analysis yields decision rules (the compensating networks in control parlance).
which are the dynamic relations that govern the controlled variables.

> Computer programs for the analysis in this paper have been designed by the authors, but Hay's
program has a small capacity and is not documented, and Holt’s large and general program has not
been quite finished (in its treatment of zero roots).
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LINEAR DECISION RULES 233

Some sophisticated textbooks on control engineering still neglect to present
Simon’s certainty equivalence theorem [1] or imply that it applies only to Gaussian
distributions [3]. Also the engineering orientation toward servomechanisms and
regulators is, in some respects, less general than the decision analysis formula-
tion.

Much of the engineering control literature is developed in terms of linear differ-
ential equations, but economists and operations researchers are more interested
in discrete time and difference equations. Even though the z-transform is well
known to control engineers, it is less so to economists and operations research
people, who could use it for solving decision problems in discrete time.

The formulation that is presented here makes exogenous variables explicit and
hence allows the isolation and general treatment of the forecasting problem.
This has not yet been done in the control literature, although it is straightforward.
By using the z-transform, the inversion of large matrices, 4 la Theil, is avoided,
but this comes at the price of searching numerically for the roots of a polynomial.
The Kalman matrix iteration approach has been advantageously applied to the
decision problem posed here. Since this paper deals with a decision analysis
formulation with time discrete and uses a z-transform solution, we hope that it
will contribute to the interdisciplinary consolidation of knowledge that is badly
needed. |

The analysis is presented as follows. Section 2 states the formal problem, and
Section 3 gives the solution for the decision rules. Section 4 illustrates the technique
with a simple example, whose concreteness should serve to illuminate both the
notation and the solution procedure of the general derivation which, admittedly,
is a bit hard to follow. Section 5 briefly supplements and extends the analysis, and
Section 6 concludes.

2. THE DECISION PROBLEM

The decision problem is to find the values of the control variables that minimize
(or maximize) the decision maker’s welfare taking into account the constraint
relationships that exist between the controlled, partly controlled, and uncontrolled
variables. Welfare is measured by a function which serves as the criterion for
making the decisions. The uncontrolled variables constitute the decision maker’s
external environment in response to which he seeks the best adjustment by setting
the value of the controlled variables. The partly or indirectly controlled variables
that occur in the criterion function are determined by certain linear relationships
with the controlled and uncontrolled variables. Other linear relationships can
apply constraints to the decision maker in setting his control variables. The
decision problem is to set the control variables so that through their interactions
with the partly controlled and uncontrolled. variables the best possible results
are obtained as measured by the criterion function. The decision model can now be
stated precisely.®

® The example of Section 4 parallels this theoretical exposition including the use of identical equation
numbers. The example should aid in interpreting both the notation and operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



234 G. A. HAY AND C. C. HOLT

The variables are of three types:

X, (i=12,...,N,): the ith controlled (or instrument) variable in the tth
period. These variables are under the control of the decision maker.

yi (G=1,2,..., N)): the jth partly controlled (or endogenous) variable in the
tth period. These variables can be influenced by the decision maker through their
relationships with the controlled variables and similarly are influenced by the
uncontrolled variables.

v, (k=1,2,...,N,): the kth uncontrolled (or exogenous) variable in the tth
period. These variables are determined outside the system under consideration.
They may be forecast by the decision maker but cannot (for purposes of this
analysis) be influenced by him.

The variables should be chosen in such a way as to simplify as much as possible
the criterion function and the relationships. Usually this will indicate avoiding
variables that appear in continuing sums because this introduces a large number
of terms. Such a sum can be defined as a new variable, thereby greatly decreasing
the number of terms.

The criterion for making decisions is assumed to be a function that puts weight
(or measure) on the possible outcomes indicating their desirability or undesirability.
This common measure of welfare, utility, cost, profit, output, quality, or other
objective enables quantitative comparisons to be made between alternative
courses of action. This statement of the decision maker’s value judgments enables
a meaningful choice to be made of the best course of action. Weight may attach
directly to the values given the control variables as well as to the state of the system
which is the joint consequence of the decision maker’s actions and the uncontrolled
environment.

We assume that the criterion function can be adequately approximated in the
region of its constrained optimum by a quadratic function of the controlled,
partly controlled, and uncontrolled variables:

() c=Yc

=0

where T is a large finite integer and” where

=YYy Z(KWP NP

PeP 7 QeQ &
PO =x,X3,0 s Xn 0 V15 V2000 YNy V1 V25 o s Uny»
(x), = Xits (yj)x = Yjes (), = vy

»6=0,1,2,...,L8
7 Alternatively, a discount factor can be added and T allowed to go to infinity. This is treated in
Section 5.

¥ For specific solutions, computer storage space can be conserved by specifying the maximum lag
for each of the variables.
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LINEAR DECISION RULES 235

The component of the criterion from the tth period, C,, is a quadratic function
including square, cross product, linear, and constant terms, all with constant
coefficients Kpy,;. The linear and constant terms are admitted by holding one of
the uncontrolled variables constant, ie, V), = 1(t =0,1,2,..., T). At this stage
we assume that the C, function is identical for all time periods. This assumption
will be somewhat relaxed later.

Note that the welfare in the tth period depends only on current and those past
values up to the maximum lag L of the variables, not on future values.

The constraint relations between the variables are assumed to be adequately
approximated locally by a set of linear functions:

)] Ffl=0

where
Fp = Z Z(Hﬂ’?PI-'f) =0,
v

PeP
P = XiXa5e s XN V1 V20w o2 ¥y V1o V2s e oo s Uy
f=12...,N,,
y=0,12,...,L,
t=0,1,2,...,T.

These relationships reflect the fact that the partly controlled variables of a
period are jointly and uniquely determined by the controlled and uncontrolled
variables of the current and previous periods. (Thus the lag y is limited to positive
values.) To ensure this uniqueness, we require that a non-singular square matrix
of rank N, can be made up from the coefficients of the partly controlled variables.
Thus, we cannot have fewer equations in (2) than partly controlled variables,
Nf Z N)..

All of the control variables may not be free to move independently ; specifically,
there may be additional linear constraints governing the control variables so that
there are not N degrees of freedom open to the decision maker. This situation
would appear as a larger number of constraint relations than there are partly
controlled variables. However, there is an upper limit to the number of equations
that is reached when the decision maker has no degrees of freedom left and hence
no decision problem N, + N, > N,. The constraint relations must be independent
and not inconsistent. This requirement combined with the determinantal require-
ment above means from (2) for ¢t = 0 a matrix of rank N, can be made up from the
coefficients of all N, of the partly controlled variables y;, (j = 1,...,N,) and
(N, — N,) different controlled variables x;,.

At this point we assume that the same relations apply to each period but some
relaxation of this will be discussed later.

Constant terms can appear in the relations by holding one of the uncontrolled
variables constant as before.
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236 G. A. HAY AND C. C. HOLT

We assume that the decision analysis is made at the beginning of period ¢ = 0.
Thus negative values of ¢ designate the past which is known, and the periods
(t=0,1,2,..., T)constitute the future.

The formal statement of the decision problem is now complete except for
conditions that will ensure the existence of a unique solution, but because of their
complexity they will be discussed later. The problem can now be summarized as
follows: given the initial conditions of a dynamic system and perfect forecasts of
the future values of the uncontrolled variables, find the values of the controlled
variables that minimize (maximize) the criterion subject to the constraint relations.

Since in the uncertain dynamic case we would take action only in the next period
on the basis of current knowledge, we need in this analysis to find the solution
only for the actions in the period ¢ = 0. The solution that is desired is a general
one in the form of an optimal decision rule that can be applied repeatedly to find
the best values for the control variables period after period.

We might remark in passing that the above model is suitable for dealing with
decision problems that can be characterized as being “smooth” or “‘continuous.”
If sharp discontinuities or inequality constraints are important in a decision
problem, the above model would be likely to give a poor approximation. However,
decision problems that involve substantial departures from linearity and quadrati-
city in the large may not raise serious difficulties, if in spite of disturbances to the
system the control decisions that have been based on the approximations are able
to avoid extreme fluctuations in the variables, and hence do not encounter the
discontinuities or violate the constraints.’

3. THE SOLUTION FOR THE DECISION RULES

In this section we carry through the main development of the solution leaving
aside in the interests of simplicity certain miscellaneous technical points for
consideration later in Section 5.

We can summarize the decision problems as one of finding the minimum (or
maximum) of the criterion (1) subject to the constraint of the relations (2). This
can be converted into an unconstrained minimization (maximization) problem
by the use of Lagrange multipliers.!® We desire to minimize (maximize)

T Ny
3) cH=Y (c, + Y ).,,Fﬂ)
t=0 J=1
OVET Xjp, ¥j» Apy (= 1,2, ., Ns j=1,2,...,Ny; f=1,2,...,N/) where 4, is
the Lagrange multiplier corresponding to the constraint F, = 0. In this certainty
analysis all the uncontrolled variables v, (k=1,2,...,N,; t=0, 1,2,...,T)
are treated as if they were known and, of course, past values of x;, y;, v, are known
initial conditions for t < 0.
9 Although it is impossible within the model to impose inequality limits on the excursions of variables,
the effect of a limit can be approximated by introducing a quadratic cost term that rises steeply as the

excursion becomes excessive. In this way excessive excursions can be minimized.
10 See [10] or a textbook on advanced calculus.
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First Order Conditions

237

First order conditions for finding the minimum (maximum) of (3) are obtained
by equating to zero the partial derivatives of C(4) with respect to the unknown

x and y components of P and Q. We consider derivatives with respect to
variables in a generalized future period t.

@ 6(;(2.)2 Y. Y% (Kegys + Kops)Qisyms
mn QeQ & 7
+ ;;(HIP?)'I,(+7) =0 (P,eP)
where
ﬁ=‘(X;aXz,”.,XNx’.Vl’)’z,'..,yNy)’ t=1,2,
Q-‘—‘Xuxz,...,xzvx,ylfyz,...,}’Ny,vl,vz,...,um’
8,y=0,1,2,...,L,
f=12...,Ny,
t=0,1,2,...,T, )
and where

Qi»p=lpnr=0 forallQeQandf. .

these

1),

These conditions together with the constraint relations (2) constitute the first

order conditions for an optimum. They can be written in matrix form as

[
©) AVl + 4, VY| =1(0] (t=0,1,2,...
;-tl.
where
r o _1
Xl—l. :
Vr—l Y;-[ .
. X . . 0
V = . R ) : = . s
L . ( y)”‘ 1 /4
V1+I 1+1
Uy Ny LT ;'11
Ve = - » Xp= : , I = Sl A=
UNut NN Yoy ';‘Nﬂ

,T)
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238 G. A. HAY AND C. C. HOLT
and all of the matrices 4,, and 4,, would be identical respectively for all ¢
except that no variables from the periods beyond T occur in (3), and hence the
corresponding matrix elements are zero. Without actually changing the equations,
we can assign zero values to all variables in the periods beyond T. By so doing, we
are free to assign arbitrary values to the corresponding matrix elements. We chose
to assign values to these elements so that 4, (t =0,1,2,...,T) = 4, and 4,,
(t=0,1,2,...,T) = A,. The matrix 4, can be expanded to show its structure
more clearly:
K H,
4=a, 7]

6)

where the matrices K, H,, and H, are defined by reference to (2), {4), and (5). The
elements of K come from the criterion function, and the elements of H, and H,
come from the constraint relations.

We desire the solution of the system of equations (5) for X, the optimal action

vector of the period t = 0.
The set of matrix equations (5) can now be written as a single matrix equation:

f4,]
0
(7 4] Vit
0 [4,]
[4,]
M (K] [H] } X+
K] 0 [H,) 0 [Y_-I
. . XxX]-°
0 (K] 0 (H.] [Y .,
+ [K] [ﬁzl X7+
(H,] 0 [Y_ o {0]
[H,] . [1]0
. O T
[ﬁl] [}':IT+1
i 0 [Hl] } T+L

where there are T (one for each time period) diagonal submatrices with overlapping
columns in each block, and time limits have been added to the vectors defined
in (5) to indicate the number of time periods included in each vector. The right
vector has been partitioned to separate the known from the unknown elements.
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LINEAR DECISION RULES 239

The block of diagonal H ,’s will be found to be the transpose of the diagonal block
of Hy’s.

Second Order Conditions

The vectors

) = [,

contain all of the unknowns, and we desire to determine whether a unique and
optimal solution for them exists. By selecting those columns in (7) that multiply
the above vectors we obtain a matrix to which we might refer as the test matrix.
Uniqueness of solution would be ensured simply by the nonsingularity of the
test matrix. However, it is quite possible in a complex situation through errors of
statistical estimation or an inadequately comprehensive criterion function to set
up a nonsense decision problem that has no unique optimum. Hence, it is highly
desirable to have a method for detecting this situation at the outset. A unique
optimal solution would be ensured by the positive (negative) definiteness of the
block of the test matrix having a diagonal of K matrices. This is a sufficient con-
dition for the existence of an optimal solution, but it is not necessary. Even though
this test fails, it is still possible by considering the constraint relations to find that
a unique optimum exists.

The relevant test involves sign conditions on the determinants of certain matrices
made up in a rather complex way from the test matrix. We will avoid discussing
this test further by citing Samuelson,’! who has analyzed the general case.

Satisfying the second order conditions ensures us that we have not framed a
decision problem in which an infinite number of equally good decisions exist'?2
or one that allows the bliss of infinite welfare to be obtained by giving some of the
control variables infinite values. The latter would clearly imply a nonsense
decision problem but not necessarily the former.

Assuming that an optimal solution exists, we return to the problem of obtaining
a solution'? for the first order conditions.

Transform methods offer an approach to the solution which as we shall see is
actually simplified by having a large number of periods in the criterion function.
These methods enable us to concentrate on solving for the initial actions without
considering explicitly most of the other unknowns.

‘ '1 See [24, pp. 376-379). If nccessary, the K block of the test matrix may be readily put in symmetric
orm.

'2 This case would give us fewer equations than unknowns and will not be considered here.

'3 Usual matrix inversion methods could be used for obtaining the solution (see [28 and 30]) except
that the system of equations may be of unwieldy size. Also, if we think of equations (5) without time
subscripts on the matrices as difference equations representing the dynamics of a system, it would be
an inherently unstable system. This may cause difficulty for numerical matrix inversion methods by
producing a tendency for round-off errors to cumulate excessively.
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240 G. A. HAY AND C. C. HOLT

Initial Equations

If we consider in (5) the first order conditions obtained for the initial period
(t = 0), we obtain equations that include the controlled variables in the initial
period for which we desire a solution:

X
3] A\[Vo, ] + 4, (Y)OL = [0].

N

4oL

Unfortunately, we would have only (N, + N, + N/) equations but a larger
number of unknown X’s, Y’s, and 2’s since each of the variables will appear not
only with the subscripts of t = 0 and ¢ < 0 (and therefore already known) but
also with subscripts of ¢ > 0 as a result of the intertemporal nature of some of
the constraints and the existence of lags in the criterion, C,.

To move toward a complete solution, we note that the repetitive nature of these
equations for all ¢t (¢t =0,1,2,..., T) suggests that we might consider a set of
equations relating sequences of the time series variables. Indeed, because the first
order conditions are identical for every time period, there is, for each set of T
equations, an additional relation among the sequences of variables. Moreover,
the restrictions placed on the decision variables for ¢ = 0 by the set of additional
relations among the sequences of variables will be precisely enough to make up
the remainder of the (N, + N, + N/) equations needed to solve for the initial
period’s decision variables.

We turn to transform methods to obtain the missing equations. The method
we shall use is to transform the set of matrix equations (5) into a single matrix
equation. Then, reducing a certain determinant to zero by setting the transform
parameter equal to the roots of the determinant, we eliminate all of the unknown
transform variables. This leaves us with a set of equations sufficient to complete (8).

z-Transform'*
Consider a time series variable M,, for example, that takes a sequence of real

bounded values at successive points of time (..., M_,,M_, My, M, , M,,...).
Its one-sided truncated generating function transform is defined as follows:

T
©) GIM(t=0,1,2,...,T),z2] =GM, = ¥ M,z
=0

where z is a finite real or complex number. In the latter case, GM, is complex also.
We will refer to GM, (which is a function of the transform parameter z) as a
transform variable to distinguish it from M, which is a time series variable.

'* For a mathematical discussion of the =-transform, sec {8 and 17].
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LINEAR DECISION RULES 241
Variables with leads and lags are transformed similarly :

T T-p
(100 GM,_,=Y M,_2= Y Mz*r
1=0

t=-p

-1 T
= z”[ M + GM, — ¥ M,Z'H
f

=—p t=T-p+1
and

T T+p
(11) GM,,,= Y M, 2= Y Mz"°
=0 t=p

1 p-1 T+p
= —p|:— Y. Mz + GM, + ( > M,z’):l
z =0 (=T+1
where p is a positive integer which indicates the number of periods of lag or lead.
In this analysis the last term of (11) can be neglected because the variables with
subscripts greater than T are set equal to zero. The last term in (10) will be very
small if T is large and |z| < 1. It is quite reasonable to assume that the criterion
contains a large number of periods and we shall see later that the latter condition
also is satisfied. Hence, we will simplify the analysis at the cost of introducing
only a negligibly small error by dropping the last terms of both (10) and (11).
The ¥’s and the other variables can grow exponentially or otherwise in time
provided that they do not become infinite within the 7 time periods and provided
they are not growing faster than can be attenuated by the factor z'. Otherwise,
the last terms of the transforms cease to be negligible.
It is clear from (9) that GKM, = KGM, where K is a constant.

Transform Equations

We proceed by multiplying each of the first order equations (5) for time period
t(t=0,1,2,...,T) by z* where z is an arbitrary number within the context of
certain restrictions to be discussed below. The set consisting of the T versions of
any particular equation can then be compressed into a single equation by convert-
ing each of the sequences of time series variables into a transform variable, which
is a function of z, and a few additional time series terms. Thus by applying the
generating function transform to each of these sequences of variables we can
obtain (N, + N, -+ N;) equations relating the transformed variables and a few
time sequence variables. We can write the transform equations in matrix form
using the vectors of (5) except that we need also to provide for vectors of transform
variables. Since the V’s are known, future as well as past, their transforms can be
evaluated, but the other transform variables are unknown. Reflecting this we
separate the known from the unknown variables in the transform equations:

X) X,
(12) By(2)GV, + B,(2)V,,, + Ba2) (Y | T B3(2G Y [ =[0)
)'IL ’1:
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242 G. A. HAY AND C. C. HOLT

where the matrices By(z), ..., B3(2z) have elements that are polynomials in z and
1/z arising from the application of the transform formulas (9), (10), and (11), and
the transform operator G is generalized to apply to vectors of time series variables.

Eliminating the Unknown Transform Variables

Since the last term of (12) includes the unknown transform variables which in
turn depend on whole sequences of unknowns, it is almost essential to supress
this term. Fortunately this can be done. Premultiply (12) by the adjoint of B4(z)
to obtain the determinant |B;(z)| times the unit matrix I as the coefficient of the
last term, i.e.,

X) X,
(13) By(2)' S Bo(2)GV, + By(2)Vi. + B,(2) (Y wle +IBs@NIG [ Y| =0.
}‘IL A‘l

Since the relations among the sequences of variables must hold for any arbitrary
value of z, they must hold for the particular values of z which make |B;(z)| = 0.
Thus we find the values of z which satisfy the determinantal equation

(14) IBs(z,)] = 0

where z, (r = 1,2,...,2R) are the roots, and 2R is the total number of roots.!*

By substituting z, into (13) the determinant will go to zero, and this will cause
the last term to vanish if its vector of transform variables contains no infinite
elements, i.e., all z,, x;,, yj;, and A, are bounded. To ensure this, we need to impose
the restriction that all v,,’s are bounded for all time periods (¢t =0, 1,2,...,T).
The unique solution of the complete system of equations (7) then ensures the
boundedness of the X’s, Y’s, and A’s. The boundedness of the relevant z,’s will
be demonstrated later.

The substitution of z, into (13) has the additional effect of reducing the remaining
product matrices to unit rank (see [7, Theorem D, p. 61]) so that the matrix equation
contains but a single independent equation. This equation can be found by evaluat-
ing one row of B(z)® (it makes no difference which is selected) and carrying out the
matrix multiplications for this one row. The equation thus obtained after sub-
stitution of the root z, is:

)
(13) oGV + e VoL + o | VYo | =1[0]

4oL

!5 The procedure that the Holt program uses for finding the roots of (14} is to substitute a trial value
of z;in (12) and eliminate all of the transform variables but one. Its coefficient is zero when z; is a root.
Numerical gradient methods are used to find a root and a transformation of the equation is made to
avoid finding the same root again.
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where cg,, ¢}, and c¢5, are now row vectors with constant elements and G,V, =
Giv(t=0,1,2,...,7),z]

Of the 2R roots we select half of them by the criterion |z,| < 1 to be discussed
later. Thus we obtain R equations like (15) which can be written in matrix form

[
(16) Ilco,G V) + CiVor + C; [\Y/ g | =1[0]
dor
where C, and C, are matrices whose rows are ¢, and ¢}, respectively and the
vector .GV,
[c0,G V] = :
corGrV,

Complex roots which will be considered later require a slight modification of this
vector.
Solution for the Decision Rules

We can now combine (8) and (16) into a single matrix equation, the latter
supplying the exact number of rows needed to complete the system

[CIOr Gr VT]
VIt

My

AR

where we have partially expanded the vector to show its elements.

The final solution is now obtained by eliminating the unknowns that we do not
need—namely, those below the dotted partition in the vector. We then solve the
remaining equations for X, by matrix inversion to obtain decision rules of the form

T
(18) Xio = Z_Z VViQyQ—v + ZO I/th'-’kn
1=

QeQ v
L=12,...,N,, k=12,...,N,,
y=12,...,L,
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where the Wy, and W,, are constants. In this way we obtain for each of the control
variables a decision rule which is a linear function of known past values of the
control, partly controlled, and uncontrolled variables, and future values of the
uncontrolled variables which we have assumed were known but actually will
need to be forecast.

Plans for actions in later periods are implicit in the analysis and can be found
if needed by applying the above decision rules successively using the dynamic
relations in (2) to obtain the initial conditions for the future periods. Of course,
in the uncertainty case these plans are tentative and subject to revision each period.

4., AN EXAMPLE

Before going on to consider some more detailed points and extensions, we will
illustrate the foregoing analysis with a specific example. The numbering of equa-
tions corresponds to the related equation in the preceding sections.

A firm for which sales are determined exogenously is attempting to minimize
costs over a T-period decision horizon. The decision variables for period ¢ are
production, X,, and end-of-period inventories, H,. Sales are denoted as S,.

The cost structure for the firm is as follows: There is assumed to be a desired
level of inventories, H, which is proportional to sales, i..,

*
H} = c¢,S,.

Moreover, the firm incurs a cost for departing from the desired level which is
assumed to be quadratic, i.e.,

c\(H, — H}.
There is also a cost of changing production rate, i.e.,
(X, ~ X, )%

Unit costs of production within a period are assumed constant and are equal to C,,.
Thus the cost function for any period ¢ is

(1 Cl = CZOXI + CI(HI - C“S,)z + X, — }(1—1)2
= ¢y0X, + ¢;H? + ¢,¢3,82 — 2c,¢,,H,S, + c,X? + ¢, X1,
~ 2c,X, X,_,.

There is a single constraint :
2 X,—S,=H —H_,.

The Lagrangean to be minimized is
-
(3) C(A) = Z {(c20X, + ¢ H} + ¢,¢3,8F — 2¢y¢,H,S, + ¢, X}

=0

+ X7 =20, X,X,_0) + A(X, — S, — H,+ H,_))]
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aC(%)

4) oH = 2C1H1 - 26‘1(3”3, - ;'1 + ;'l+l =0.
t

(The last term comes from differentiating the criterion function in period ¢ + 1
with respect to H,.)

aac;g') =Cy + 26X, — 26, X,y 4 2+ 20X, — 20,X,4, =0
(t=0,1,2,...,T),
~2¢,¢y, 0 0 0 2 0 0 ;-11
(5) 0 3 [Sl'] 1022 0 4 21 10
-1 0 o -1 t 0 ;700
Ch ]
D O
H,
X X, = {0].
X4
o
Jasr

Applying the transform relation to (4) and the constraint equation (2) yields

2¢,G(H) ~ 2¢,¢,,G(S) — G(2) + M =0,

1c2° + 26,G(X) = 26,[X _, + zG(X)] + G() + 2¢,G(X)

2, 16X — Xol
- z
G(X) — G(S) — G(H) + [H._, + zG(H)] = 0.

0,

Rearranging terms yields:

0 o
g
(12) o o |Fs
0 [GS]+ |0 — l:lo] +
- 0 0

(equation continued on next page)
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| 1 H—l
0 0 0 o0!'—
4
Ik
+ o-2c202%i0 H,
1 0 0 o} ol]Xe
4o
i 1
2¢, 0 — (1 - ;)
H
1
+ 0 2c2(2—z—;) 1 G|X | =[0].
-1 ~2) 1 0 A
The roots are located by solving the determinantal equation:
1
2, 0 - (1 - )
V4
| .
(14) 0 2c2(2 -z~ ;) 1 =0.
-1 =2 1 0

Expansion of the determinant yields the following equation:
, 5 1)? 4
(14" cyl2® + Z ——42—2 + (¢, + 6¢5) =0.

Solution of the quadratic will yield four roots (complex, if both ¢, and ¢, are
positive). Furthermore, it is obvious from the form of (14') that if z is a root, then
1/z is also a root. Therefore there will be in general exactly two roots that satisfy
both (14') and the convergence requirement |z| < 1 (see Section 5, below). Since
in this case the two roots will be complex conjugates, we carry forward only one
of the pair.

The adjoint of the matrix premultiplying G[H, X, 2] equals:

! . _(1_3) zc2(2—z-§)(l‘§)-

-1 -2) —(1 - l)(1 ~2) —2¢,
z

1 1
_2c2(2 -z - ;)(1 - 2) —2¢, 4c,c2(2 -z ;) ]

Since when zis a root, the adjoint matrix has unit rank (as can be seen by evaluating

any of the 2 x 2 sub-determinants), we can carry out the multiplication using
only one row (say the first) to yield:
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(15, 16) { q VTFS
[zc'c“ B 262(2 T ?)(1 B 5)]6:(3) " [O —en'g _(12/).)][ 10]

+ [2c2(2 —z - l)([ - 1) 252([ _ l) ’0' ~2¢,(1 — (1/2) l]
z z z z

z
H_,
Xy

where the vertical bars simply separate matrix elements.

However, since z is complex, (16) actually contains two independent equations,
since both the real and the imaginary parts of the left-hand side of (16) must equal
zero. (See Section 5 below.) Hence, combining (5) (for t = 0) with the two equations
in (16) yields a single matrix equation with the exact number of rows to complete
the system.

[0 ~2c,c,;, O 0 0 2, O 0 -1
0 0 Cy 0 —2c, 0 4c;  ~2¢, 1
0 -1 0 0 -1 1 0 o0
" 10 TSP o a2 ac, 0 2P Loy
ag ZR Zp
vo0 Zfb g e aep 0 ZXH o 1
- a; z; zy -
T
ZWR.IZR.ISx
=0
So
1
H_,
X X, = [0]
H,
Xo
X,
Ao
L A
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where

1
ag; =1~ 2z, bp;= (1 e B
ZR1

1 1
Wiy = 2c,04y — 2c2(2 — Zpy— ~——)(1 -—,
ZR.1 Zr,1

and the subscripts R, I denote whether the real or the imaginary part of the complex
expression is to be used. The expression Z]_ Wi ;zx ;S, uses the real parts of W
and z for multiplication with the fourth row of the premultiplying matrix, and
the imaginary parts for multiplication with the fifth row. Since the i’s drop out,
the matrices contain only real elements. _

To obtain the final solution we isolate the last five elements of the column
matrix and solve by matrix inversion:

i HO ] —201 0 0 —1 I-— -1
Xo 0 4c, -2, 1 0
X -1 1 0o 0 0
(17 = -
) /o 0 = 2c,agbg 0 l 0
Zp Zp
2 0 —2c,a;b, 0 1 0
-7 - 2y Z i
- — 2(,‘1(-'1 1 0 0 0 - _
0 0 €3 0 _ 2c20 1§0 WRJZR.IS(
0 -1 0 1 0 5,
X . b !
1 0 TR ge,apbd 2ebg .
ap H—l
P00 I b o2, | Loxoo

- a; -

We can then eliminate the variables which we do not need, those below the
dotted line; we are left with decision rules for H, and X, which are linear in the
lagged values of H and X, a constant term, and weighted forecasts of current and
future sales. Since the weights on future sales normally approach zero rapidly,!®
the decision rules can be truncated after a few periods, if necessary adjusting the
weight on the last included term to make up for the omitted terms.

16 Even though the derivation has utilized the assumption that the criterion function extends for
a great many periods 7, the solution for the decision rules usually indicates that forecasts beyond a
few periods are given so little weight as to be practically irrelevant. Thus the forecast analysis itself
determines the relevant horizon.
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5. ANCILLARY ANALYSIS AND EXTENSIONS

With the main development complete and illustrated, we turn to some points
which have been set aside and others which are important qualifications or
extensions of the main development. These include a variety of issues relating to
the roots of the characteristic equation, problems posed by estimated rather than
known relationships, changes through time in the criterion and the constraints,
and time discounting.

Choosing the Appropriate Roots

In solving the characteristic equation (14) to eliminate the unknown transform
variable, we obtained a total of 2R roots. From these we selected exactly R to
supply the number of additional equations to complete the system and permit us
to derive the optimal decision rules. We now demonstrate that the roots occur in
reciprocal pairs and that only the R “small” roots, i.e., those whose absolute
values are less than one, are relevant. Subsequently we show why this procedure
will always yield exactly the right number of roots and the corresponding additional
equations to complete the system.

Consider a decision problem accurately described by (1) and (2) in which T is
even and very large and the second order conditions are satisfied. Imagine that
the solution of the first order conditions (7) has been obtained for all time periods,
and then that we lift part of the solution for the periods (7/2,..., T). This part is
also an optimal solution since any part of an optimal solution is itself an optimal
solution for the smaller problem. Now if one of the uncontrolled variables were
changed by a unit pulse disturbance lasting one period at time ¢ = T/2, what
would be the effect on the part solution?!? Since (7) is a linear system, we have the
property of super position so that we may answer this question in terms of devia-
tions from the original solution without considering it explicitly. Since (5) is a
difference equation, it has a solution for the pulse disturbance that is of known form
in the succeeding periods:

19)  gu=3 Wl ™"? @=X,Y, 7t =T2+1,...,T),

where the g, , are deviations from the original solution, the W,; are constants, and
the z; are the roots of the characteristic equation.

If any of the roots satisfied the conditions |z;] = 1 and W,; # 0 for some «, the
deviations would grow with the passage of time or persist through all the remaining
periods. Because (1) is a quadratic form, such deviations from the original solution
would be penalized with the square of their sizes, and the penalties would cumulate
over all the periods from (7/2 + 1) to T. Performance as measured by the criterion
function would certainly be improved if the deviations from the original solution
occurred only in the periods near the disturbance and decreased as you moved
away in time. Clearly the response that would occur if the above conditions were

'7 No restrictions on the above conclusions arise from considering a pulse disturbance since through

super position any disturbance can be built up from pulses. Also selecting the period T/2 for the pulse
or assuming T to be large and even can have no effect on the roots of the determinant.
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satisfied would be non-optimal, and we can conclude that they would not be
allowed by a decision analysis that guarantees an optimum. It follows that after
the pulse occurred, the deviations would decay with the passage of time. This
means that the roots satisfy the condition |z| < 1 and/or W,; = 0 for all i and «.

Now imagine that we lift the first part of the original solution for the periods
(0, ..., T/2),again apply a unit pulse for the period T/2, and consider the deviations
from the original solution. In the foregoing discussion we have treated time as
going forward from the time of the disturbance. But the analysis of Sections 2 and
3 is “'static” in the sense that time plays no unique role because the future un-
controlled variables including the pulse disturbance are assumed to be known
perfectly in advance of their occurrence. We obtain no new information with the
passage of time from ¢t = 0 to ¢t = T/2; hence there is nothing unidirectional about
time. We could as well have run time backwards from the time of the pulse and
obtain the following difference equation solution:

(20) g =Y Wiz Y20 (=X, Y, At =T/2—1,...,0)

Now therequirement Jz;| < [implies|z; ! > 1 which would cause the deviations
to grow with the backward passage of time, but again this cannot occur because
of its non-optimality. Furthermore since time is in no way unidirectional under
certainiy, the deviations (19) and (20) will necessarily be symmetrical about
t = T/2. We conclude therefore that the characteristic equation must contain
pairs of roots, one root in each pair being the reciprocal of the other. One root is
stable, i.e., converges for the forward passage of time, and the other is stable for
the backward passage of time. Also necessarily the roots that have non-zero
weights and are stable for the forward passage of time will have zero weights for
the backward passage of time. The same is true for the roots that are stable with
the backward passage of time. From symmetry the non-zero weights of the
reciprocal roots will be equal.'®

Since a pulse disturbance contains frequency components of all harmonics,
the weights attached to each of the stable roots will be non-zero; i.e,, half of the
roots will be excited for the forward passage of time and the other half for the
backward passage of time. Hence all roots will occur in reciprocal pairs.'® Since
the determinantal equation (14) is the characteristic equation of the system, the
foregoing conclusions apply to the roots z,.

'8 An earlier approach to some of the problems treated in this paper is found in [22] in which the
solution for decision rules is treated as a classical problem in the solution of difference equations.

!9 Mechanically, the presence of a z in the determinant B;(z) arises from a term in the objective
function in which a current controlled or partly controlled variable is multiplied by a. lagged controlled
or partly controlled variable, e.g.. kx,y,_, (t = 0,1,2,..., T) where k is a constant and x and y are any
controlled or partly controlled variables. Differentiation with respect 1o x, leaves ky,_, which after
passing through the generating function transform yields kz” as the element in the xth row, yth column
of By(2). Differentiation with respect to y, leaves kx, ., which yields k(1/z) as the element in the yth row,
xth column of B4(z). Upon expansion, a term k(z7 + {1/2)) will appear in the polynomial so that if z
is a root, so is (1/z). The same analysis holds if the lag originates in a constraint equation since there
will be a term Z,y,_, in the Lagrange function where 2 is the Lagrange multiplier. Both cases appear
in the example of Section 4 above.
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The conclusions about roots can be summarized by suitably arranging the roots
so that

1) lz,] < 1 (r=1,2...,R)
and

1
@) zge= r=1,2,...,R).

r

Thus we have established the presence of 2R roots, half of which are “"small,” i.e.,
satisfy (21). Note that by the above argument we have excluded |z,| = 1 for any r,
since this would cause infinitely distant future events to affect the decisions made
at T/2.

For the forward passage of time the roots satisfy (21), and our neglect of the
last term in the transform formula (11) is justified for large T.

When the decision rule (18) is used in real time under conditions of uncertainty,
it will be subjected continually to disturbances so its dynamic stability is of
considerable interest and importance. In this case time is very much unidirectional
in the forward direction so we should use the roots z, (r = 1, 2,..., R). Regardless
of the stability or instability of the original dynamic system (2), the intreduction
of the optimal decision rules to govern the controlled variables ensures that the
system will be inherently stable, i.e., any disturbances will die out with the passage
of time. This neatly handles one of the servo engineer’s headaches. Not only is the
system inherently stable, but further it has the optimal degree of stability.

Number of Equations and Unknowns

When we set up the final matrix equation in the unknown time series variable .
(17) we expect to obtain the final decision rules (18) by elimination and matrix
inversion. This can be done only if we have a complete system of equations, i.e.,
as many linear independent relations between the unknown variables as there are
unknowns. To test whether or not this condition is satisfied we need to determine
the number of unknowns and equations.

The transformation of an equation containing a leading variable, M, ., for
example, introduces by use of (11) the following additional time series variables:
My, M,,...,M,_,, making a total of (p + 1) time series variables. Even if there
is no lead p = 0, one variable, M, occurs. Since the past time series variables
(ones with negative time subscripts) in (17) are known, we need count as unknown
only those with time subscripts between zero and the maximum lead L.

The greatest lead for each variable L} (¢ = X, Y, 2) can be determined from (5)
where L is the max of L}. Thus the total number of unknown x;, v, and Z,, in
(17) is given by

(Ly + 1) = _;,— (L) 4 (Ne+ No+ Ny
: :;“:; a=A, 1.4
ANy

(23) Unknowns =
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The initial equation (8) contains (N, + N,) rows from differentiation with respect
to the controlled and uncontrolled variables in the period ¢t = 0, with an additional
N, rows from the corresponding constraints.

This gives us a total of (N, + N, + N/) linear independent equations whose
independence follows from satisfying the second order conditions.

As we found in Section 3, an equation (15) is found for each of the R small roots
of the determinantal equation, so we need to find what determines R.

Now consider the test matrix which is the matrix obtained from (7) that multiplies
the complete vector of unknowns. Imagine the columns of the matrix and the rows
of the vector rearranged so that the variables corresponding to the greatest lead
are grouped together in the vector
ro ]

X(l"lvf.‘\'- )

Y(:+L;)

7. +
{t+L7)

where T runs over the range (—L;...,0,..., L). By performing row operations on
this matrix, we can reduce all elements below the diagonal to zeros so that it is
triangular. We know that this matrix is non-singular from the satisfaction of the
second order conditions so its determinant is non-zero. Since the determinant of
the large triangulated matrix is equal to the product of its diagonal elements, we
conclude that all of the coefficients on the diagonal are non-zero. Thus the greatest
lead variable for t = 0 is known to occur with a non-zero coefficient in a particular
row, another in the following row, and so on.

The block diagonal character of (7) will carry through to the diagonalized matrix
so that repeating sub-matrices similar to (5) occur. We may take the transform of
this set of equations to obtain an equation comparable to (12). The vector of
unknown transform variables in this equation has a matrix which corresponds
to B;(z) and will necessarily have the same determinant since the triangularization
process and rearrangement of columns does not affect the fundamental structure
of the equations. The transform process as shown by (11) converts leads to powers
of (1/2) in the coefficients of the transform variables so greatest lead terms become
greatest power terms.

The determinantal polynomial is the sum of all possible different pr~duct terms
where each term is the product of matrix elements chosen so that each row and
column is represented only once. Because each of the greatest lead terms for t =0
occurred in different rows with non-zero coefficients, each of the largest powers of
(1/z) will occur in different rows with non-zero coefficients and (because they relate
to different transform variables) in different columns.

We conclude that the largest power of (1/z) in the determinant is the product of
all the largest powers, one from each row and column, and hence is equal to the
sum of the greatest leads.
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Since the leads are matched by lags, corresponding powers of z occur to give an
equal number of reciprocal roots. Since the degree of the polynomial is 2R and
half of its roots are small (modulus less than one) we have

@) R= ) L7= } L]
a=X,Y,2 2=X,Y.A
where L is the greatest lag in (5).

Thus we have a number of small roots so that the number of equations
(R + N, + N, + N;) equals exactly the unknowns given by (23). Independence
of the R equations is ensured by the second order conditions as follows. In (17)
we have a set of linear equations that are known (if the terminal terms from (11)
are negligible) to relate a certain set of time series variables. Equation (7) which
involves the set of variables for all time periods and which is known from the
second order conditions to have a unique solution could be solved to eliminate
all variables beyond the first period, giving us a second complete set of linear
independent equations in this same set of variables. Since the second set of equa-
tions has a unique solution, the first set must have the same unique solution, and
because its solution is unique, its equations are independent.

Complex Roots

When the determinantal polynomial (14) is factored and the R small roots
selected, some of the z, are likely to be complex numbers in conjugate pairs; for
example, ’

z,=.5+ .2i,

Z,.1=.5— 2.

Substitution of a complex z, in the solution for equation (15) will yield an equation
with complex coefficients which incorporates two linear equations with real
coefficients, one equation relating the real components and the other relating
the imaginary ones. If we repeat this process for the complex z,, ,, we only obtain
the same two equations over again. Hence when roots are complex, we should
disregard one root of each conjugate pair and obtain two equations from the
remaining root.

Multiple Roots

If two or more, say n, roots are equal, i.e, z, = z, = ... = z,, then their sub-
stitution in (13) will not yield n independent equations (15) but only one. However,
n independent equations can readily be obtained by taking derivatives of (13):

& By2r...} +(z—2) ﬁ (3—-’,(3"‘1‘)16 (Y)'L 1 = [0]

a:k r=n+1i Zr
;"A'L

(k=1,2,...,n—1)

(25)

Zn
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where we have expanded the determinant to show its roots. We can take n — |
derivatives of the factor {z — z,)" before it disappears. Since this factor goes to
zero when we let z = z,,, it will knock out the unknown tranform terms on the
right in each of the derivative equations. Equation (13) plus the (n — 1) equations
(25) give us the needed equations corresponding to the n roots. Having established
this fact, it is more convenient to perform the (n — 1) derivatives on (12) and obtain
the equations (15) by elimination.

Insufficient Roots

There is one further instance where the initial solution may appear to generate
an insufficient number of roots.2? If one of the first order or constraint equations
is such that all the controlled and partly controlled variables appear with the
same subscript, and each of the same variables appears with a lag elsewhere in the
Lagrangean function C(1) so that future values of those variables appear in (5)
when t = 0. the transform technique will not generate enough additional equations
to compicix the system. The trick is that the equation in question is valid for every
time penwd (¢ =0,1,2,...,T), and we may re-use it with all time subscripts
increased by one or more periods so long as the new equation contains only time-
subscripted variables which are already in (5), thereby adding enough additional
equations (and no additional unknowns) to complete the system.

In light of the above, it will often prove useful to check the original set of relation-
ships to determine whether any partly controlled variables can be conveniently
eliminated from the relation (2) and the criterion (1). If so, wé can avoid carrying
those variables through the balance of the analysis. Because the elimination of a
partly controlled variable reduces by one the number of equations in (2), we need
one less Lagrange multiplier. Hence there is a double saving. Any simultaneous
relationships (i.e., 2!l variables in the same time period) are especially suitable
candidates for elimination. Variables that occur with various leads and lags often
cannot be conveniently eliminated because an infinite regress occurs.

It is even possible to eliminate controlled variables if fairly simple relations—
especially simultaneous ones—exist between variables from past periods and
controlled variables in the period t = 0. The decision rules for the eliminated
control variables are found at the end by making substitutions into the relations
that were used for their elimination.

Estimated Constraint Relations

Often relationships will be estimated statistically with residual random error
variables. These enter the decision analysis as uncontrolled variables which are
to be forecast. If, however, their conditional expected values are zero,?! there is
no point in putting them in the analysis explicitly. If they are included, they will,
of course, appear in the decision ruIes but when zero forecasts are substituted
their terms disappear anyway.

20 This is sometimes called the zero root case.
2! This excludes autocorrelated crror terms whose conditional forecasts will in general not be zero.
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Changes in the Criterion and Relationships Through Time

We assumed above that the criterion function and the relationships were the
same in every period. Specifically we assumed that Ky, in (1) and Hp, in (2)
were constants., This restriction of constancy is now reviewed to determine to
what extent it can be relaxed.

The large matrix equation (7) shows the structure of the first order conditions
where the right matrix and vector may be partitioned into two terms to separate
the knowns from the unknowns. The foregoing derivation in Section 3 is a method
for obtaining a solution of this system for certain X s as linear functions of the ¥’s
and certain past X’s and Y’s. This involves in effect obtaining part of the inverse
of the block diagonal matrix that multiplies the unknown vector and pre-
multiplying the other matrix. For this solution to be performed and the resulting
decision rules used in succeeding periods, it is necessary that all of the matrices
be composed of constants (i.e., the coefficients of the matrices do not change over
time) and further that the diagonal blocks be identical, because our derivation has
used this property in obtaining the transform equations. However, since the V’s
appear explicitly in the decision rules, they should allow some flexibility. By tracing
the origins of the matrices and vectors we can determine the necessary restrictions
on the decision model, (1) and (2). -

The required constancy of the matrices in (7) clearly indicates that the H,y. in
(2) must be constants as had been assumed. However, the uncontrolled V’s
contained in these relations or in the criterion function have the following kind of
flexibility. The uncontrolled variable v, may be the product of a coefficient wy;,
that takes different values at different points of time and another uncontrolled
variable v,

(26) Vg = Wyl

This would allow the uncontrolled v}, to have a time varying impact on the relations
in (2). We can also accommodate the even more general situation in which:

(27) U = fr (o i

where fy, indicates that the functional relationship changes with time and (.. )y,
indicates that the set of variables that are arguments of the function change with
time. The functions must, of course, give unique values of r;,. Thus we see that the
impact of uncontrolled variables on the relations (2) may be very flexible indeed.

The controlled variables may not be determined directly by the decision maker
but through some complex and time varying function

(28) Xy = ful - e

provided that knowing an optimal decision x;, gives sufficient indication of the
appropriate values of its arguments (.. .)y, that are causal variables by means of
which the decision maker has control of x;,.

In the criterion function (1) the square and cross product terms of, and between,
partly controlled and controlled variables contribute terms to the submatrix K
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in the 4, matrix of (7). We conclude that their coefficients must be constants
with the same values in every period.

The terms in the criterion function that depend only on the uncontrolled
variables disappear on differentiation. Indeed arbitrary additive functions of the
V’s can be included in the criterion function since they drop out on differentiation.

The cross product terms between controlled and partly controlled variables on
the one hand and uncontrolled variables on the other in (1) contribute linear
terms in the V’s upon differentiation by the X's and Y’s in (4). Their coefficients
appear in 4, matrix of (7) and must be constants with the same values in all time
periods. These components of the criterion reflect the dependence of the decision
maker’s welfare on the interaction between the controlled and partly controlled
variables on one hand and the uncontrolled environment on the other. However,
they can be given another interpretation in which the ¥’s reflect changes in the
weight given in the criterion function to linear terms in the controlled and partly
controlled variables. Thus some of the ¥’s can be given the role of changing from
period to period some of the parameters of the criterion function.

In summary we see that the uncontrolled variables can play the following three
distinct functions in the decision model. They can

(i) impinge as uncontrolled d:sturbance variables (random or otherwise) on
the dynamic system ;

(i) interact as uncontrolled env1ronmental variables with the controlled and
partly controlled variables in jointly determining the decision maker’s welfare
which is measured by his criterion function; or

(iii) enable the linear contributions of the controlled and partly controlled
variables to the decision maker’s welfare to be given different weights at different
times.

When we consider the problem of forecasting these three types of uncontrolled
variables, it is interesting that for the first two the decision maker must forecast
his environment, but for the third he must forecast his own preferences.

We need to add one final qualification to the constancy of coefficients. The
decision rule incorporates weighted sums of the future uncontrolled variables,
but these weights have the form z! where ¢t indicates distance in the future. Since
lz,| < 1, these weights approach zero indicating the practical irrelevance of the
future beyond a certain horizon in the future. For the analysis to be applicable
to current decisions, we need only assume that the relevant coefficients will be
constant to this forecast horizon and it will be determined by the weights in the
decision rule.

Systems and criterion functions that are changing through time may, of course,
be handled by matrix inversion to obtain decisions. However, there would be no
decision rules that could be used repeatedly.

Time Discounting

In some decision problems the decision maker may desire to put decreased
weight on future welfare in making current decisions. This can be done by modify-
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ing the criterion function (1) as follows:

T
im Y CpYT

1
T~w (=0

(29 C=

where the real constant p is less than unity. Here we can let the criterion include
an infinite number of time periods because the discount factor ensures convergence
provided, of course, that the uncontrolled variables do not grow at an exponential
rate greater than pz,. Letting T be infinity nicely disposes of the terminal transform
terms which appeared in (11).

The analysis with the discount modification carries through much as before
except that we obtain the transform equations by using the transform for power
functions

@
(30) G(M,p) = Zo M,(p2)' = G(M,, pz).

(=
In effect z is replaced by pz. The roots will no longer occur in simple reciprocal
pairs since the direction of time is now unique. Because |pz| < |z|, another effect
of time discounting will be the shortening of the forecast horizon, i.e., the time span
beyond which the weights are negligible and hence forecasts are not needed.

6. CONCLUSION

This paper has presented, illustrated, and proved the sufficiency of the z-
transform approach to the general solution of the linear decision analysis in
discrete time. Because the solution for optimal strategies under dynamic uncertainty
is, in general, so complex that in many practical cases it is, or borders on, the
uncomputable, the relative simplicity?? of the solution for this special case is
especially important. Even where the criterion is not quadratic and the constraints
are not linear, the linear decision analysis often is useful in obtaining a first approxi-
mation to the optimal decision (or control) rules.

While matrix iteration or matrix inversion are likely to be computationally
superior approaches to obtaining the numerical solution for linear decision rules,*?
the analysis presented in this paper shows the mathematical structure of the
solution more clearly for the case considered here in which the cost and constraint
structures are nearly identical in all time periods. Then the partial solution of a
large set of simultaneous linear equations is required in which the matrix is
characterized by recurring diagonal blocks. The large (nearly infinite) size of the
equation set allows the z-transform to be used to obtain the only part of the solution
that is needed, namely the decisions for the first period. Thus, the nearly infinite

22 The reader who needs convincing that this analysis is relatively simple might try finding the optimal
strategy under uncertainty for. say, a cubic criterion with quadratic constraints. Since certainty
equivalence is a property only of the linear decision analysis, it no longer applies. As the solution pro-
ceeds backwards from the future, the function to be minimized involves a conditional joint probability
distribution, and becomes successively more complex at cach time period. See Richard Porter's
thesis [23].

23 See [18, 23] or Gregory C. Chow, “Optimal Control of Linear Econometric Systems with Finite
Time Horizon,” International Economic Review, 13 (1972), 16-25.
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set of equations is thereby reduced to the solution of a small set of linear equations,
but a numerical search process is required to find the characteristic roots of the
system.

While simpler and more rigorous proofs undoubtedly can be devised for the
solution of the simultaneous difference equations that constitute the first order
conditions for the optimum, this paper should contribute to crystalizing the issues
involved. This method of solution already has proven useful in a number of
economic and operations research analyses, and also may prove useful for
engineering control problems as well. Interestingly, the applications have been
as much in contributing to rigorous specifications for empirical estimation as for

normative prescriptions.

Yale University
and
The Urban Institute
Manuscript received September, 1972.
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